首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Powdery mildew disease caused by Leveillula taurica is a serious fungal threat to greenhouse tomato and pepper production. In contrast to most powdery mildew species which are epiphytic, L. taurica is an endophytic fungus colonizing the mesophyll tissues of the leaf. In barley, Arabidopsis, tomato and pea, the correct functioning of specific homologues of the plant Mlo gene family has been found to be required for pathogenesis of epiphytic powdery mildew fungi. The aim of this study was to investigate the involvement of the Mlo genes in susceptibility to the endophytic fungus L. taurica. In tomato (Solanum lycopersicum), a loss-of-function mutation in the SlMlo1 gene results in resistance to powdery mildew disease caused by Oidium neolycopersici. When the tomato Slmlo1 mutant was inoculated with L. taurica in this study, it proved to be less susceptible compared to the control, S. lycopersicum cv. Moneymaker. Further, overexpression of SlMlo1 in the tomato Slmlo1 mutant enhanced susceptibility to L. taurica. In pepper, the CaMlo2 gene was isolated by applying a homology-based cloning approach. Compared to the previously identified CaMlo1 gene, the CaMlo2 gene is more similar to SlMlo1 as shown by phylogenetic analysis, and the expression of CaMlo2 is up-regulated at an earlier time point upon L. taurica infection. However, results of virus-induced gene silencing suggest that both CaMlo1 and CaMlo2 may be involved in the susceptibility of pepper to L. taurica. The fact that overexpression of CaMlo2 restored the susceptibility of the tomato Slmlo1 mutant to O. neolycopersici and increased its susceptibility to L. taurica confirmed the role of CaMlo2 acting as a susceptibility factor to different powdery mildews, though the role of CaMlo1 as a co-factor for susceptibility cannot be excluded.  相似文献   

2.
Multiple susceptibility genes (S), identified in Arabidopsis, have been shown to be functionally conserved in crop plants. Mutations in these S genes result in resistance to different pathogens, opening a new way to achieve plant disease resistance. The aim of this study was to investigate the role of Defense No Death 1 (DND1) in susceptibility of tomato and potato to late blight (Phytophthora infestans). In Arabidopsis, the dnd1 mutant has broad-spectrum resistance against several fungal, bacterial, and viral pathogens. However this mutation is also associated with a dwarfed phenotype. Using an RNAi approach, we silenced AtDND1 orthologs in potato and tomato. Our results showed that silencing of the DND1 ortholog in both crops resulted in resistance to the pathogenic oomycete P. infestans and to two powdery mildew species, Oidium neolycopersici and Golovinomyces orontii. The resistance to P. infestans in potato was effective to four different isolates although the level of resistance (complete or partial) was dependent on the aggressiveness of the isolate. In tomato, DND1-silenced plants showed a severe dwarf phenotype and autonecrosis, whereas DND1-silenced potato plants were not dwarfed and showed a less pronounced autonecrosis. Our results indicate that S gene function of DND1 is conserved in tomato and potato. We discuss the possibilities of using RNAi silencing or loss-of-function mutations of DND1 orthologs, as well as additional S gene orthologs from Arabidopsis, to breed for resistance to pathogens in crop plants.  相似文献   

3.
To screen for potentially novel types of resistance to tomato powdery mildew Oidium neolycopersici, a disease assay was performed on 123 Arabidopsis thaliana accessions. Forty accessions were fully resistant, and one, C24, was analysed in detail. By quantitative trait locus (QTL) analysis of an F2 population derived from C24 × Sha (susceptible accession), two QTLs associated with resistance were identified in C24. Fine mapping of QTL‐1 on chromosome 1 delimited the region to an interval of 58 kb encompassing 15 candidate genes. One of these was Enhanced Disease Resistance 1 (EDR1). Evaluation of the previously obtained edr1 mutant of Arabidopsis accession Col‐0, which was identified because of its resistance to powdery mildew Golovinomyces cichoracearum, showed that it also displayed resistance to O. neolycopersici. Sequencing of EDR1 in our C24 germplasm (referred to as C24‐W) revealed two missing nucleotides in the second exon of EDR1 resulting in a premature stop codon. Remarkably, C24 obtained from other laboratories does not contain the EDR1 mutation. To verify the identity of C24‐W, a DNA region containing a single nucleotide polymorphism (SNP) unique to C24 was sequenced showing that C24‐W contains the C24‐specific nucleotide. C24‐W showed enhanced resistance to O. neolycopersici compared with C24 not containing the edr1 mutation. Furthermore, C24‐W displayed a dwarf phenotype, which was not associated with the mutation in EDR1 and was not caused by the differential accumulation of pathogenesis‐related genes. In conclusion, we identified a natural edr1 mutant in the background of C24.  相似文献   

4.
The resistant cherry tomato (Solanum lycopersicum var. cerasiforme) line LC-95, derived from an accession collected in Ecuador, harbors a natural allele (ol-2) that confers broad-spectrum and recessively inherited resistance to powdery mildew (Oidium neolycopersici). As both the genetic and phytopathological characteristics of ol-2-mediated resistance are reminiscent of powdery mildew immunity conferred by loss-of-function mlo alleles in barley and Arabidopsis, we initiated a candidate-gene approach to clone Ol-2. A tomato Mlo gene (SlMlo1) with high sequence-relatedness to barley Mlo and Arabidopsis AtMLO2 mapped to the chromosomal region harboring the Ol-2 locus. Complementation experiments using transgenic tomato lines as well as virus-induced gene silencing assays suggested that loss of SlMlo1 function is responsible for powdery mildew resistance conferred by ol-2. In progeny of a cross between a resistant line bearing ol-2 and the susceptible tomato cultivar Moneymaker, a 19-bp deletion disrupting the SlMlo1 coding region cosegregated with resistance. This polymorphism results in a frameshift and, thus, a truncated nonfunctional SlMlo1 protein. Our findings reveal the second example of a natural mlo mutant that possibly arose post-domestication, suggesting that natural mlo alleles might be evolutionarily short-lived due to fitness costs related to loss of mlo function.  相似文献   

5.
Detailed studies of the infection processes of Oidium neolycopersici (tomato powdery mildew) and plant tissue responses were carried out on 10 Lycopersicon spp. accessions and one of each species of Cucumis sativus, Datura stramonium, Lactuca sativa, Petunia hybrida and Pisum sativum with different levels of resistance. Germination of O. neolycopersici conidia was not inhibited by the host plant. However, in the early stages of O. neolycopersici infection significant differences in conidial germ tube development on resistant and susceptible plant lines were observed. The first substantial differences appeared after 24 h post inoculation (hpi). Mycelia and conidiophores developed on susceptible lines; however, there was no mycelial development on resistant plant lines. The most frequent resistant response in Lycopersicon species was the necrotic (hypersensitive) reaction (HR), occasionally followed by pathogen development. The completely resistant accession L. hirsutum (LA 1347) showed only a limited number of necrotic host cells per infection site (2%). In Oidium resistant tomato lines OR 4061 and OR 960008 the existence of adult resistance was detected. This phenomenon occurred mainly in accession OR 4061. Rapid development and profuse sporulation of O. neolycopersici was observed on juvenile plants (6–8 wk old), however this was in contrast to the slow development and sporadic sporulation observed on 4 month old plants. Evidence of posthaustorial resistance was observed in the interaction of O. neolycopersici with non-host species (Lactuca sativa and Pisum sativum.) This was in contrast to Datura stramonium and Petunia hybrida, where development of powdery mildew was delayed at a later stage in the infection cycle. With the exception of Pisum sativum, the necrotic (hypersensitive) response was observed often.  相似文献   

6.
Obligate biotrophs, such as the powdery mildew pathogens, deliver effectors to the host cell and obtain nutrients from the infection site. The interface between the plant host and the biotrophic pathogen thus represents a major battleground for plant-pathogen interactions. Increasing evidence shows that cellular trafficking plays an important role in plant immunity. Here, we report that Arabidopsis thaliana ENHANCED DISEASE RESISTANCE4 (EDR4) plays a negative role in resistance to powdery mildew and that the enhanced disease resistance in edr4 mutants requires salicylic acid signaling. EDR4 mainly localizes to the plasma membrane and endosomal compartments. Genetic analyses show that EDR4 and EDR1 function in the same genetic pathway. EDR1 and EDR4 accumulate at the penetration site of powdery mildew infection, and EDR4 physically interacts with EDR1, recruiting EDR1 to the fungal penetration site. In addition, EDR4 interacts with CLATHRIN HEAVY CHAIN2 (CHC2), and edr4 mutants show reduced endocytosis rates. Taken together, our data indicate that EDR4 associates with CHC2 and modulates plant immunity by regulating the relocation of EDR1 in Arabidopsis.  相似文献   

7.
Eggplant (Solanum melongena L.) is one of the most important vegetables among the Solanaceae and can be a host to fungal species causing powdery mildew (PM) disease. Specific homologs of the plant Mildew Locus O (MLO) gene family are PM susceptibility factors, as their loss of function results in a recessive form of resistance known as mlo resistance. In a previous work, we isolated the eggplant MLO homolog SmMLO1. SmMLO1 is closely related to MLO susceptibility genes characterized in other plant species. However, it displays a peculiar non-synonymous substitution that leads to a T → M amino acid change at protein position 422, in correspondence of the MLO calmodulin-binding domain. In this study, we performed the functional characterization of SmMLO1. Transgenic overexpression of SmMLO1 in a tomato mlo mutant compromised resistance to the tomato PM pathogen Oidium neolycopersici, thus indicating that SmMLO1 is a PM susceptibility factor in eggplant. PM susceptibility was also restored by the transgenic expression of a synthetic gene, named s-SmMLO1, encoding a protein identical to SmMLO1, except for the presence of T at position 422. This indicates that the T → M polymorphism does not affect the protein role as PM susceptibility factor. Overall, the results of this work are of interest for the functional characterization of MLO proteins and the introduction of PM resistance in eggplant using reverse genetics.  相似文献   

8.
Wheat powdery mildew is a severe foliar disease and causes significant yield losses in epidemic years. Breeding and using resistant cultivars is the most widely employed strategy to curb this disease. To identify and transfer powdery mildew resistance genes in wild emmer wheat accession TA1410 into common wheat, a resistant F3 line derived from the cross of TA1410 × durum wheat line Zhongyin1320 was crossed with common wheat cultivar Yangmai158. The homozygous resistant BC5F2 lines derived from the backcross with Yangmai158 exhibited susceptibility at seedling stage and conferred increasing resistance when the plants were closer to heading stage. In two segregating BC5F3 families investigated at heading stage, the segregation of the resistance fit a 3:1 ratio, suggesting that a single dominant gene controls the resistance. This resistance gene, designated HSM1, was mapped to the 0.6-cM Xmag5825.1–Xgwm344 interval on chromosome 7AL and co-segregated with Xrga-C3 and Xrga-C6. A mapping position comparison with other powdery mildew resistance genes on this chromosome suggested that HSM1 belongs to the Pm1 resistance gene cluster. HSM1 is a useful candidate gene for resistance breeding, particularly in winter-wheat growing areas.  相似文献   

9.
Powdery mildew pathogens are biotrophic fungi that infect large number of plant species. EDR1 (ENHANCED DISEASE RESISTANCE 1) is a negative regulator of plant disease resistance, and loss-of-function in the EDR1 gene confers enhanced disease resistance to powdery mildew pathogen Golovinomyces cichoracearum. In an edr1 suppressor screen, we recently found that a mutation in HPR1, a component of the THO/TREX complex, suppresses edr1-mediated disease resistance, however the hpr1 mutation enhances the ethylene-induced senescence in edr1. The hpr1 single mutant displays enhanced susceptibility, indicating that HPR1 is involved in plant defense responses.1 THO/TREX is a conserved protein complex that functions in pre-mRNA processing and mRNA export. Several components of THO/TREX complex in Arabidopsis have been identified. By searching Arabidopsis database, we found that Arabidopsis (Columbia-0) has two copies of UAP56, another component of the THO/TREX complex, and the UAP56 proteins are highly conserved. Similar to human UAP56 protein, Arabidopsis UAP56 also localizes to the nucleus, showing a pattern similar to the splicing speckles. Further characterization of the components of THO/TREX in Arabidopsis will provide new insights into the role of THO/TREX in defense responses in plants.  相似文献   

10.
Wheat (Triticum aestivum L.) incurs significant yield losses from powdery mildew, a major fungal disease caused by Blumeria graminis f. sp. tritici (Bgt). enhanced disease resistance1 (EDR1) plays a negative role in the defense response against powdery mildew in Arabidopsis thaliana; however, the edr1 mutant does not show constitutively activated defense responses. This makes EDR1 an ideal target for approaches using new genome‐editing tools to improve resistance to powdery mildew. We cloned TaEDR1 from hexaploid wheat and found high similarity among the three homoeologs of EDR1. Knock‐down of TaEDR1 by virus‐induced gene silencing or RNA interference enhanced resistance to powdery mildew, indicating that TaEDR1 negatively regulates powdery mildew resistance in wheat. We used CRISPR/Cas9 technology to generate Taedr1 wheat plants by simultaneous modification of the three homoeologs of wheat EDR1. No off‐target mutations were detected in the Taedr1 mutant plants. The Taedr1 plants were resistant to powdery mildew and did not show mildew‐induced cell death. Our study represents the successful generation of a potentially valuable trait using genome‐editing technology in wheat and provides germplasm for disease resistance breeding.  相似文献   

11.
When tomato leaves were sprayed with 0.1% emulsified canola oil, corn oil, grape seed oil, peanut oil, safflower oil, soya bean oil or sunflower oil, the severity of powdery mildew caused by Oidium neolycopersici was greatly reduced. Among these edible oils tested, sunflower oil was the most effective in the control of powdery mildew. When sprayed with 0.5% sunflower oil, powdery mildew on tomato leaves was reduced to a negligible level. Sunflower oil applied to halves of upper leaf surface did not induce resistance against the pathogen in the non‐treated halves. When applied to halves of lower leaf surface, it also failed to reduce the severity of powdery mildew on the upper leaf surface right above the treated area indicating that control of the powdery mildew by sunflower oil did not result from activation of host defence mechanisms. Scanning electron microscopy showed that control of powdery mildew with sunflower oil resulted mainly from the inhibition of conidial germination and suppression of mycelial growth of the pathogen.  相似文献   

12.
Compost teas are fermented watery extracts of composted materials that are used for their ability to decrease plant disease. Non-aerated compost teas (NCT) prepared from five types of compost were tested for their ability to inhibit the growth of Alternaria solani, Botrytis cinerea, and Phytophthora infestans in vitro. Weekly applications of NCT were also used in greenhouse trials to assess their suppressive effect on powdery mildew (Oidium neolycopersici) and gray mold (B. cinerea) on tomato plants. All NCT significantly inhibited the mycelial growth of A. solani (37–66%), B. cinerea (57–75%), and P. infestans (100%), whereas sterilized teas did not inhibit growth of the tested pathogens. Although NCT failed to efficiently control powdery mildew, they were able to control tomato gray mold for up to 9 weeks in greenhouse experiments. Among the tested compost teas, NCT prepared from sheep manure compost consistently provided the highest inhibition of mycelial growth and the highest disease suppression, in particular of gray mold (>95% disease reduction). The overall relative efficacy of the various NCT did not correlate well with microbial communities or physico-chemical composition of the prepared NCT. Results also suggest that the presence of the microorganisms in the NCT is a prerequisite for inhibition.  相似文献   

13.
Powdery mildew, caused by Blumeria graminis f. sp. tritici, is a major fungal disease in common wheat (Triticum aestivum L.) worldwide. The Chinese winter wheat cultivar Lumai 21 has shown good and stable adult plant resistance for 19 years. The aim of this study was to map quantitative trait loci (QTLs) for resistance to powdery mildew in a population of 200 F3 lines from the cross Lumai 21/Jingshuang 16. The population was tested for powdery mildew reaction in Beijing and Anyang in the 2005–2006 and 2006–2007 cropping seasons, providing data for 4 environments. A total of 1,375 simple sequence repeat (SSR) markers were screened for associations with powdery mildew reactions, initially in bulked segregant analysis. Based on the mean disease values averaged across environments, broad-sense heritabilities of maximum disease severity and area under the disease progress curve were 0.96 and 0.77, respectively. Three QTLs for adult plant resistance were detected by inclusive composite interval mapping. These were designated QPm.caas-2BS, QPm.caas-2BL and QPm.caas-2DL, respectively, and explained from 5.4 to 20.6% of the phenotypic variance across environments. QPm.caas-2BS and QPm.caas-2DL were likely new adult plant resistance QTLs flanked by SSR markers Xbarc98Xbarc1147 and Xwmc18Xcfd233, respectively. These markers could be useful for improving wheat powdery mildew resistance in breeding programs.  相似文献   

14.
Loss-of-function alleles of plant-specific MLO (Mildew Resistance Locus O) genes confer broad-spectrum powdery mildew resistance in monocot (barley) and dicot (Arabidopsis thaliana, tomato) plants. Recessively inherited powdery mildew resistance in pea (Pisum sativum) er1 plants is, in many aspects, reminiscent of mlo-conditioned powdery mildew immunity, yet the underlying gene has remained elusive to date. We used a polymerase chain reaction (PCR)-based approach to amplify a candidate MLO cDNA from wild-type (Er1) pea. Sequence analysis of the PsMLO1 candidate gene in two natural er1 accessions from Asia and two er1-containing pea cultivars with a New World origin revealed, in each case, detrimental nucleotide polymorphisms in PsMLO1, suggesting that PsMLO1 is Er1. We corroborated this hypothesis by restoration of susceptibility on transient expression of PsMLO1 in the leaves of two resistant er1 accessions. Orthologous legume MLO genes from Medicago truncatula and Lotus japonicus likewise complemented the er1 phenotype. All tested er1 genotypes showed unaltered colonization with the arbuscular mycorrhizal fungus, Glomus intraradices, and with nitrogen-fixing rhizobial bacteria. Our data demonstrate that PsMLO1 is Er1 and that the loss of PsMLO1 function conditions durable broad-spectrum powdery mildew resistance in pea.  相似文献   

15.
Improved efficacy and durability of powdery mildew resistance can be enhanced via knowledge of the genetics of resistance and susceptibility coupled with the development of high-resolution maps to facilitate the stacking of multiple resistance genes and other desirable traits. We studied the inheritance of powdery mildew (Erysiphe necator) resistance and susceptibility of wild Vitis rupestris B38 and cultivated V. vinifera ‘Chardonnay’, finding evidence for quantitative variation. Molecular markers were identified using genotyping-by-sequencing, resulting in 16,833 single nucleotide polymorphisms (SNPs) based on alignment to the V. vinifera ‘PN40024’ reference genome sequence. With an average density of 36 SNPs/Mbp and uniform coverage of the genome, this 17K set was used to identify 11 SNPs on chromosome 7 associated with a resistance locus from V. rupestris B38 and ten SNPs on chromosome 9 associated with a locus for susceptibility from ‘Chardonnay’ using single marker association and linkage disequilibrium analysis. Linkage maps for V. rupestris B38 (1,146 SNPs) and ‘Chardonnay’ (1,215 SNPs) were constructed and used to corroborate the ‘Chardonnay’ locus named Sen1 (Susceptibility to Erysiphe necator 1), providing the first insight into the genetics of susceptibility to powdery mildew from V. vinifera. The identification of markers associated with a susceptibility locus in a V. vinifera background can be used for negative selection among breeding progenies. This work improves our understanding of the nature of powdery mildew resistance in V. rupestris B38 and ‘Chardonnay’, while applying next-generation sequencing tools to advance grapevine genomics and breeding.  相似文献   

16.
17.
18.
Blumeria graminis f. sp. tritici, which causes wheat powdery mildew, is an obligate biotrophic pathogen that can easily genetically adapt to its host plant. Understanding the virulence structure of and genetic variations in this pathogen is essential for disease control and for breeding resistance to wheat powdery mildew. This study investigated 17 pathogenic populations in Sichuan, China and classified 109 isolates into two distinct groups based on pathogenicity analysis: high virulence (HV, 92 isolates) and low virulence (LV, 17 isolates). Populations from Yibin (Southern region), Xichang (Western region), and Meishan (Middle region) showed lower virulence frequencies than populations from other regions. Many of the previously known resistance genes did not confer resistance in this study. The resistance gene Pm21 displayed an immune response to pathogenic challenge with all populations in Sichuan, and Pm13, Pm5b, Pm2+6, and PmXBD maintained resistance. AMOVA revealed significantly higher levels of variation within populations and lower levels of variation among populations within regions. High levels of gene flow were detected among populations in the four regions. Closely related populations within each region were distinguished by cluster analyses using ISSR and SRAP alleles. Both ISSR and SRAP allele profiling analyses revealed high levels of genetic diversity among pathogenic populations in Sichuan. Although ISSR and SRAP profiling analysis showed similar resolutions, the SRAP alleles appeared to be more informative. We did not detect any significant association between these alleles and the virulence or pathogenicity of the pathogen. Our results suggest that ISSR and SRAP alleles are more efficient for the characterization of small or closely related populations versus distantly related populations.  相似文献   

19.
Powdery mildew (Golovinomyces cichoracearum), one of the most prolific obligate biotrophic fungal pathogens worldwide, infects its host by penetrating the plant cell wall without activating the plant's innate immune system. The Arabidopsis mutant powdery mildew resistant 5 (pmr5) carries a mutation in a putative pectin acetyltransferase gene that confers enhanced resistance to powdery mildew. Here, we show that heterologously expressed PMR5 protein transfers acetyl groups from [14C]‐acetyl‐CoA to oligogalacturonides. Through site‐directed mutagenesis, we show that three amino acids within a highly conserved esterase domain in putative PMR5 orthologs are necessary for PMR5 function. A suppressor screen of mutagenized pmr5 seed selecting for increased powdery mildew susceptibility identified two previously characterized genes affecting the acetylation of plant cell wall polysaccharides, RWA2 and TBR. The rwa2 and tbr mutants also suppress powdery mildew disease resistance in pmr6, a mutant defective in a putative pectate lyase gene. Cell wall analysis of pmr5 and pmr6, and their rwa2 and tbr suppressor mutants, demonstrates minor shifts in cellulose and pectin composition. In direct contrast to their increased powdery mildew resistance, both pmr5 and pmr6 plants are highly susceptibile to multiple strains of the generalist necrotroph Botrytis cinerea, and have decreased camalexin production upon infection with B. cinerea. These results illustrate that cell wall composition is intimately connected to fungal disease resistance and outline a potential route for engineering powdery mildew resistance into susceptible crop species.  相似文献   

20.
Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most important wheat diseases worldwide. The basis for wheat powdery mildew resistance breeding consists of screening diversified host genetic resources with a range of races of the powdery mildew pathogen. Spelt wheat (Triticum aestivum ssp. spelta 2n = 6x = 42, AABBDD) is a close relative of common wheat (T. aestivum ssp. aestivum) and contains several known disease resistance genes, including Pm1d, Yr5, and Lr65. Here, we report the identification and mapping of a powdery mildew resistance gene in spelt wheat cultivar Hubel, which was introduced to China from Europe and is resistant to Chinese Bgt isolate E09 at the seedling stage. Genetic analysis of a recombinant inbred line population derived from a cross of Hubel and a susceptible early maturing mutant line indicated that Hubel possessed a recessive powdery mildew resistance gene (temporarily designated MlHubel). Markers linked to MlHubel were identified using bulked segregant analysis, simple sequence repeat, and expressed sequence tag-derived sequence tagged site methods. The linked markers were physically located on wheat chromosome 2D. Comparative genomic analysis indicated that the genetic interval covering MlHubel in wheat is highly colinear with the corresponding regions on Brachypodium distachyon chromosome 5 and Oryza sativa chromosome 4. Accordingly, the genetic map of MlHubel was established in comparison with B. distachyon 5L and O. sativa 4L, with the closest marker Xgwm265 being 0.4 cM from MlHubel. The identification of the recessive powdery mildew gene in spelt wheat suggests the potential of this accession along with its closely linked markers in breeding for resistance to powdery mildew.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号