首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ATP-dependent Clp protease (ClpP) is an attractive new target for the development of anti-infective agents. The ClpP protease consists of two heptameric rings that enclose a large chamber containing 14 proteolytic active sites. Recent studies indicate that ClpP likely undergoes conformational switching between an extended and degraded active state required for substrate proteolysis and a compacted and catalytically inactive state allowing product release. Here, we present the wild-type ClpP structures in two distinct states from Staphylococcus aureus. One structure is very similar to those solved ClpP structures in the extended states. The other is strikingly different from both the extended and the compacted state as observed in ClpP from other species; the handle domain of this structure kinks to take on a compressed conformation. Structural analysis and molecular dynamic simulations show that the handle domain predominantly controls the way in which degradation products exit the chamber through dynamic conformational switching from the extended state to the compressed state. Given the highly conserved sequences among ClpP from different species, this compressed conformation is unexpected and novel, which is potentially valuable for understanding the enzymatic dynamics and the acting mechanisms of ClpP.  相似文献   

2.
In most bacteria, Clp protease is a conserved, non-essential serine protease that regulates the response to various stresses. Mycobacteria, including Mycobacterium tuberculosis (Mtb) and Mycobacterium smegmatis, unlike most well studied prokaryotes, encode two ClpP homologs, ClpP1 and ClpP2, in a single operon. Here we demonstrate that the two proteins form a mixed complex (ClpP1P2) in mycobacteria. Using two different approaches, promoter replacement, and a novel system of inducible protein degradation, leading to inducible expression of clpP1 and clpP2, we demonstrate that both genes are essential for growth and that a marked depletion of either one results in rapid bacterial death. ClpP1P2 protease appears important in degrading missense and prematurely terminated peptides, as partial depletion of ClpP2 reduced growth specifically in the presence of antibiotics that increase errors in translation. We further show that the ClpP1P2 protease is required for the degradation of proteins tagged with the SsrA motif, a tag co-translationally added to incomplete protein products. Using active site mutants of ClpP1 and ClpP2, we show that the activity of each subunit is required for proteolysis, for normal growth of Mtb in vitro and during infection of mice. These observations suggest that the Clp protease plays an unusual and essential role in Mtb and may serve as an ideal target for antimycobacterial therapy.  相似文献   

3.
Clp chaperone-proteases are cylindrical complexes built from ATP-dependent chaperone rings that stack onto a proteolytic ClpP double-ring core to carry out substrate protein degradation. Interaction of the ClpP particle with the chaperone is mediated by an N-terminal loop and a hydrophobic surface patch on the ClpP ring surface. In contrast to E. coli, Mycobacterium tuberculosis harbors not only one but two ClpP protease subunits, ClpP1 and ClpP2, and a homo-heptameric ring of each assembles to form the ClpP1P2 double-ring core. Consequently, this hetero double-ring presents two different potential binding surfaces for the interaction with the chaperones ClpX and ClpC1. To investigate whether ClpX or ClpC1 might preferentially interact with one or the other double-ring face, we mutated the hydrophobic chaperone-interaction patch on either ClpP1 or ClpP2, generating ClpP1P2 particles that are defective in one of the two binding patches and thereby in their ability to interact with their chaperone partners. Using chaperone-mediated degradation of ssrA-tagged model substrates, we show that both Mycobacterium tuberculosis Clp chaperones require the intact interaction face of ClpP2 to support degradation, resulting in an asymmetric complex where chaperones only bind to the ClpP2 side of the proteolytic core. This sets the Clp proteases of Mycobacterium tuberculosis, and probably other Actinobacteria, apart from the well-studied E. coli system, where chaperones bind to both sides of the protease core, and it frees the ClpP1 interaction interface for putative new binding partners.  相似文献   

4.
Crystal structures of short chain dehydrogenase-like l-threonine dehydrogenase from Cupriavidus necator (CnThrDH) in the apo and holo forms were determined at 2.25 and 2.5 Å, respectively. Structural comparison between the apo and holo forms revealed that four regions of CnThrDH adopted flexible conformations when neither NAD+ nor l-Thr were bound: residues 38–59, residues 77–87, residues 180–186, and the catalytic domain. Molecular dynamics simulations performed at the 50-ns time scale revealed that three of these regions remained flexible when NAD+ was bound to CnThrDH: residues 80–87, residues 180–186, and the catalytic domain. Molecular dynamics simulations also indicated that the structure of CnThrDH changed from a closed form to an open form upon NAD+ binding. The newly formed cleft in the open form may function as a conduit for substrate entry and product exit. These computational results led us to hypothesize that the CnThrDH reaction progresses by switching between the closed and open forms. Enzyme kinetics parameters of the L80G, G184A, and T186N variants also supported this prediction: the kcat/Km, l-Thr value of the variants was >330-fold lower than that of the wild type; this decrease suggested that the variants mostly adopt the open form when l-Thr is bound to the active site. These results are summarized in a schematic model of the stepwise changes in flexibility and structure that occur in CnThrDH upon binding of NAD+ and l-Thr. This demonstrates that the dynamical structural changes of short chain dehydrogenase-like l-threonine dehydrogenase are important for the reactivity and specificity of the enzyme.  相似文献   

5.
Abstract

ClpP is a highly conserved serine protease present in most bacterial species and in the mitochondria of mammalian cells. It forms a cylindrical tetradecameric complex arranged into two stacked heptamers. The two heptameric rings of ClpP enclose a roughly spherical proteolytic chamber of about 51 Å in diameter with 14 Ser–His–Asp proteolytic active sites. ClpP typically forms complexes with unfoldase chaperones of the AAA+ superfamily. Chaperones dock on one or both ends of the ClpP double ring cylindrical structure. Dynamics in the ClpP structure is critical for its function. Polypeptides targeted for degradation by ClpP are initially recognized by the AAA+ chaperones. Polypeptides are unfolded by the chaperones and then translocated through the ClpP axial pores, present on both ends of the ClpP cylinder, into the ClpP catalytic chamber. The axial pores of ClpP are gated by dynamic axial loops that restrict or allow substrate entry. As a processive protease, ClpP degrades substrates to generate peptides of about 7–8 residues. Based on structural, biochemical and theoretical studies, the exit of these polypeptides from the proteolytic chamber is proposed to be mediated by the dynamics of the ClpP oligomer. The ClpP cylinder has been found to exist in at least three conformations, extended, compact and compressed, that seem to represent different states of ClpP during its proteolytic functional cycle. In this review, we discuss the link between ClpP dynamics and its activity. We propose that such dynamics also exist in other cylindrical proteases such as HslV and the proteasome.  相似文献   

6.
The Clp protease is conserved among eubacteria and most eukaryotes, and uses ATP to drive protein substrate unfolding and translocation into a chamber of sequestered proteolytic active sites. The main constitutive Clp protease in photosynthetic organisms has evolved into a functionally essential and structurally intricate enzyme. The model Clp protease from the cyanobacterium Synechococcus consists of the HSP100 molecular chaperone ClpC and a mixed proteolytic core comprised of two distinct subunits, ClpP3 and ClpR. We have purified the ClpP3/R complex, the first for a Clp proteolytic core comprised of heterologous subunits. The ClpP3/R complex has unique functional and structural features, consisting of twin heptameric rings each with an identical ClpP33ClpR4 configuration. As predicted by its lack of an obvious catalytic triad, the ClpR subunit is shown to be proteolytically inactive. Interestingly, extensive modification to ClpR to restore proteolytic activity to this subunit showed that its presence in the core complex is not rate-limiting for the overall proteolytic activity of the ClpCP3/R protease. Altogether, the ClpP3/R complex shows remarkable similarities to the 20 S core of the proteasome, revealing a far greater degree of convergent evolution than previously thought between the development of the Clp protease in photosynthetic organisms and that of the eukaryotic 26 S proteasome.Proteases perform numerous tasks vital for cellular homeostasis in all organisms. Much of the selective proteolysis within living cells is performed by multisubunit chaperone-protease complexes. These proteases all share a common two-component architecture and mode of action, with one of the best known examples being the proteasome in archaebacteria, certain eubacteria, and eukaryotes (1).The 20 S proteasome is a highly conserved cylindrical structure composed of two distinct types of subunits, α and β. These are organized in four stacked heptameric rings, with two central β-rings sandwiched between two outer α-rings. Although the α- and β-protein sequences are similar, it is only the latter that is proteolytic active, with a single Thr active site at the N terminus. The barrel-shaped complex is traversed by a central channel that widens up into three cavities. The catalytic sites are positioned in the central chamber formed by the β-rings, adjacent to which are two antechambers conjointly built up by β- and α-subunits. In general, substrate entry into the core complex is essentially blocked by the α-rings, and thus relies on the associating regulatory partner, PAN and 19 S complexes in archaea and eukaryotes, respectively (1). Typically, the archaeal core structure is assembled from only one type of α- and β-subunit, so that the central proteolytic chamber contains 14 catalytic active sites (2). In contrast, each ring of the eukaryotic 20 S complex has seven distinct α- and β-subunits. Moreover, only three of the seven β-subunits in each ring are proteolytically active (3). Having a strictly conserved architecture, the main difference between the 20 S proteasomes is one of complexity. In mammalian cells, the three constitutive active subunits can even be replaced with related subunits upon induction by γ-interferon to generate antigenic peptides presented by the class 1 major histocompatibility complex (4).Two chambered proteases architecturally similar to the proteasome also exist in eubacteria, HslV and ClpP. HslV is commonly thought to be the prokaryotic counterpart to the 20 S proteasome mainly because both are Thr proteases. A single type of HslV protein, however, forms a proteolytic chamber consisting of twin hexameric rather than heptameric rings (5). Also displaying structural similarities to the proteasome is the unrelated ClpP protease. The model Clp protease from Escherichia coli consists of a proteolytic ClpP core flanked on one or both sides by the ATP-dependent chaperones ClpA or ClpX (6). The ClpP proteolytic chamber is comprised of two opposing homo-heptameric rings with the catalytic sites harbored within (7). ClpP alone displays only limited peptidase activity toward short unstructured peptides (8). Larger native protein substrates need to be recognized by ClpA or ClpX and then translocated in an unfolded state into the ClpP proteolytic chamber (9, 10). Inside, the unfolded substrate is bound in an extended manner to the catalytic triads (Ser-97, His-122, and Asp-171) and degraded into small peptide fragments that can readily diffuse out (11). Several adaptor proteins broaden the array of substrates degraded by a Clp protease by binding to the associated HSP100 partner and modifying its protein substrate specificity (12, 13). One example is the adaptor ClpS that interacts with ClpA (EcClpA) and targets N-end rule substrates for degradation by the ClpAP protease (14).Like the proteasome, the Clp protease is found in a wide variety of organisms. Besides in all eubacteria, the Clp protease also exist in mammalian and plant mitochondria, as well as in various plastids of algae and plants. It also occurs in the unusual plastid in Apicomplexan protozoan (15), a family of parasites responsible for many important medical and veterinary diseases such as malaria. Of all these organisms, photobionts have by far the most diverse array of Clp proteins. This was first apparent in cyanobacteria, with the model species Synechococcus elongatus having 10 distinct Clp proteins, four HSP100 chaperones (ClpB1–2, ClpC, and ClpX), three ClpP proteins (ClpP1–3), a ClpP-like protein termed ClpR, and two adaptor proteins (ClpS1–2) (16). Of particular interest is the ClpR variant, which has protein sequence similarity to ClpP but appears to lack the catalytic triad of Ser-type proteases (17). This diversity of Clp proteins is even more extreme in photosynthetic eukaryotes, with at least 23 different Clp proteins in the higher plant Arabidopsis thaliana, most of which are plastid-localized (18).We have recently shown that two distinct Clp proteases exist in Synechococcus, both of which contain mixed proteolytic cores. The first consists of ClpP1 and ClpP2 subunits, and associates with ClpX, whereas the other has a proteolytic core consisting of ClpP3 and ClpR that binds to ClpC, as do the two ClpS adaptors (19). Of these proteases, it is the more constitutively abundant ClpCP3/R that is essential for cell viability and growth (20, 21). It is also the ClpP3/R complex that is homologous to the single type in eukaryotic plastids, all of which also have ClpC as the chaperone partner (16). In algae and plants, however, the complexity of the plastidic Clp proteolytic core has evolved dramatically. In Arabidopsis, the core complex consists of five ClpP and four ClpR paralogs, along with two unrelated Clp proteins unique to higher plants (22). Like ClpP3/R, the plastid Clp protease in Arabidopsis is essential for normal growth and development, and appears to function primarily as a housekeeping protease (23, 24).One of the most striking developments in the Clp protease in photosynthetic organisms and Apicomplexan parasites is the inclusion of ClpR within the central proteolytic core. Although this type of Clp protease has evolved into a vital enzyme, little is known about its activity or the exact role of ClpR within the core complex. To address these points we have purified the intact Synechococcus ClpP3/R proteolytic core by co-expression in E. coli. The recombinant ClpP3/R forms a double heptameric ring complex, with each ring having a specific ClpP3/R stoichiometry and arrangement. Together with ClpC, the ClpP3/R complex degrades several polypeptide substrates, but at a rate considerably slower than that by the E. coli ClpAP protease. Interestingly, although ClpR is shown to be proteolytically inactive, its inclusion in the core complex is not rate-limiting to the overall activity of the ClpCP3/R protease. In general, the results reveal remarkable similarities between the evolutionary development of the Clp protease in photosynthetic organisms and the eukaryotic proteasome relative to their simpler prokaryotic counterparts.  相似文献   

7.
8.
Caseinolytic proteases are large oligomeric assemblies responsible for maintaining protein homeostasis in bacteria and in so doing influence a wide range of biological processes. The functional assembly involves three chaperones together with the oligomeric caseinolytic protease catalytic subunit P (ClpP). This protease represents a potential target for therapeutic intervention in pathogenic bacteria. Here, we detail an efficient protocol for production of recombinant ClpP from Francisella tularensis, and the structural characterization of three crystal forms which grow under similar conditions. One crystal form reveals a compressed state of the ClpP tetradecamer and two forms an open state. A comparison of the two types of structure infers that differences at the enzyme active site result from a conformational change involving a highly localized disorder‐order transition of a β‐strand α‐helix combination. This transition occurs at a subunit‐subunit interface. Our study may now underpin future efforts in a structure‐based approach to target ClpP for inhibitor or activator development. Proteins 2016; 85:188–194. © 2016 Wiley Periodicals, Inc.  相似文献   

9.
HDL is a population of apoA-I-containing particles inversely correlated with heart disease. Because HDL is a soft form of matter deformable by thermal fluctuations, structure determination has been difficult. Here, we compare the recently published crystal structure of lipid-free (Δ185-243)apoA-I with apoA-I structure from models and molecular dynamics (MD) simulations of discoidal HDL. These analyses validate four of our previous structural findings for apoA-I: i) a baseline double belt diameter of 105 Å ii) central α helixes with an 11/3 pitch; iii) a “presentation tunnel” gap between pairwise helix 5 repeats hypothesized to move acyl chains and unesterified cholesterol from the lipid bilayer to the active sites of LCAT; and iv) interchain salt bridges hypothesized to stabilize the LL5/5 chain registry. These analyses are also consistent with our finding that multiple salt bridge-forming residues in the N-terminus of apoA-I render that conserved domain “sticky.” Additionally, our crystal MD comparisons led to two new hypotheses: i) the interchain leucine-zippers previously reported between the pair-wise helix 5 repeats drive lipid-free apoA-I registration; ii) lipidation induces rotations of helix 5 to allow formation of interchain salt bridges, creating the LCAT presentation tunnel and “zip-locking” apoA-I into its full LL5/5 registration.  相似文献   

10.
Sortase cysteine transpeptidases covalently attach proteins to the bacterial cell wall or assemble fiber-like pili that promote bacterial adhesion. Members of this enzyme superfamily are widely distributed in Gram-positive bacteria that frequently utilize multiple sortases to elaborate their peptidoglycan. Sortases catalyze transpeptidation using a conserved active site His-Cys-Arg triad that joins a sorting signal located at the C terminus of their protein substrate to an amino nucleophile located on the cell surface. However, despite extensive study, the catalytic mechanism and molecular basis of substrate recognition remains poorly understood. Here we report the crystal structure of the Staphylococcus aureus sortase B enzyme in a covalent complex with an analog of its NPQTN sorting signal substrate, revealing the structural basis through which it displays the IsdC protein involved in heme-iron scavenging from human hemoglobin. The results of computational modeling, molecular dynamics simulations, and targeted amino acid mutagenesis indicate that the backbone amide of Glu224 and the side chain of Arg233 form an oxyanion hole in sortase B that stabilizes high energy tetrahedral catalytic intermediates. Surprisingly, a highly conserved threonine residue within the bound sorting signal substrate facilitates construction of the oxyanion hole by stabilizing the position of the active site arginine residue via hydrogen bonding. Molecular dynamics simulations and primary sequence conservation suggest that the sorting signal-stabilized oxyanion hole is a universal feature of enzymes within the sortase superfamily.  相似文献   

11.
Ras family small GTPases assume two interconverting conformations, “inactive” state 1 and “active” state 2, in their GTP-bound forms. Here, to clarify the mechanism of state transition, we have carried out x-ray crystal structure analyses of a series of mutant H-Ras and M-Ras in complex with guanosine 5′-(β,γ-imido)triphosphate (GppNHp), representing various intermediate states of the transition. Crystallization of H-RasT35S-GppNHp enables us to solve the first complete tertiary structure of H-Ras state 1 possessing two surface pockets unseen in the state 2 or H-Ras-GDP structure. Moreover, determination of the two distinct crystal structures of H-RasT35S-GppNHp, showing prominent polysterism in the switch I and switch II regions, reveals a pivotal role of the guanine nucleotide-mediated interaction between the two switch regions and its rearrangement by a nucleotide positional change in the state 2 to state 1 transition. Furthermore, the 31P NMR spectra and crystal structures of the GppNHp-bound forms of M-Ras mutants, carrying various H-Ras-type amino acid substitutions, also reveal the existence of a surface pocket in state 1 and support a similar mechanism based on the nucleotide-mediated interaction and its rearrangement in the state 1 to state 2 transition. Intriguingly, the conformational changes accompanying the state transition mimic those that occurred upon GDP/GTP exchange, indicating a common mechanistic basis inherent in the high flexibility of the switch regions. Collectively, these results clarify the structural features distinguishing the two states and provide new insights into the molecular basis for the state transition of Ras protein.  相似文献   

12.
The Bcl-2 family proteins regulate mitochondria-mediated apoptosis through intricate molecular mechanisms. One of the pro-apoptotic proteins, tBid, can induce apoptosis by promoting Bax activation, Bax homo-oligomerization, and mitochondrial outer membrane permeabilization. Association of tBid on the mitochondrial outer membrane is key to its biological function. Therefore knowing the conformation of tBid on the membrane will be the first step toward understanding its crucial role in triggering apoptosis. Here, we present NMR characterization of the structure and dynamics of human tBid in 1-palmitoyl-2-hydroxy-sn-glycero-3-[phospho-RAC-(1-glycerol)] micelles. Our data showed that tBid is monomeric with six well defined α-helices in the micelles. Compared with the full-length Bid structure, a longer flexible loop between tBid helix α4 and α5 was observed. Helices in tBid do not pack into a compact-fold but form an extended structure with a C-shape configuration in the micelles. All six tBid helices were shown to interact with LPPG micelles, with helix α6 and α7 being more embedded. Of note, the BH3-containing helix α3, which was previously believed to be exposed above the membrane surface, is also membrane associated, suggesting an “on the membrane” binding mode for tBid interaction with Bax. Our data provided structural details on the membrane-associated state of tBid and the functional implications of its membrane-associated BH3 domain.  相似文献   

13.
ClpP is a cylindrical protease that is tightly regulated by Clp-ATPases. The activation mechanism of ClpP using acyldepsipeptide antibiotics as mimics of natural activators showed enlargement of the axial entrance pore for easier processing of incoming substrates. However, the elimination of degradation products from inside the ClpP chamber remains unclear since there is no exit pore for releasing these products in all determined ClpP structures. Here we report a new crystal structure of ClpP from Bacillus subtilis, which shows a significantly compressed shape along the axial direction. A portion of the handle regions comprising the heptameric ring-ring contacts shows structural transition from an ordered to a disordered state, which triggers the large conformational change from an extended to an overall compressed structure. Along with this structural change, 14 side pores are generated for product release and the catalytic triad adopts an inactive orientation. We have also determined B. subtilis ClpP inhibited by diisopropylfluoro-phosphate and analyzed the active site in detail. Structural information pertaining to several different conformational steps such as those related to extended, ADEP-activated, DFP-inhibited and compressed forms of ClpP from B. subtilis is available. Structural comparisons suggest that functionally important regions in the ClpP-family such as N-terminal segments for the axial pore, catalytic triads, and handle domains for the product releasing pore exhibit intrinsically dynamic and unique structural features. This study provides valuable insights for understanding the enigmatic cylindrical degradation machinery of ClpP as well as other related proteases such as HslV and the 20S proteasome.  相似文献   

14.
The Clp chaperones and proteases play an important role in protein homeostasis in the cell. They are highly conserved across prokaryotes and found also in the mitochondria of eukaryotes and the chloroplasts of plants. They function mainly in the disaggregation, unfolding and degradation of native as well as misfolded proteins. Here, we provide a comprehensive analysis of the Clp chaperones and proteases in the human malaria parasite Plasmodium falciparum. The parasite contains four Clp ATPases, which we term PfClpB1, PfClpB2, PfClpC and PfClpM. One PfClpP, the proteolytic subunit, and one PfClpR, which is an inactive version of the protease, were also identified. Expression of all Clp chaperones and proteases was confirmed in blood-stage parasites. The proteins were localized to the apicoplast, a non-photosynthetic organelle that accommodates several important metabolic pathways in P. falciparum, with the exception of PfClpB2 (also known as Hsp101), which was found in the parasitophorous vacuole. Both PfClpP and PfClpR form mostly homoheptameric rings as observed by size-exclusion chromatography, analytical ultracentrifugation and electron microscopy. The X-ray structure of PfClpP showed the protein as a compacted tetradecamer similar to that observed for Streptococcus pneumoniae and Mycobacterium tuberculosis ClpPs. Our data suggest the presence of a ClpCRP complex in the apicoplast of P. falciparum.  相似文献   

15.
Distinctive types of ATP-dependent Clp proteases in cyanobacteria   总被引:2,自引:0,他引:2  
Cyanobacteria are the only prokaryotes that perform oxygenic photosynthesis and are thought to be ancestors to plant chloroplasts. Like chloroplasts, cyanobacteria possess a diverse array of proteolytic enzymes, with one of the most prominent being the ATP-dependent Ser-type Clp protease. The model Clp protease in Escherichia coli consists of a single ClpP proteolytic core flanked on one or both ends by a HSP100 chaperone partner. In comparison, cyanobacteria have multiple ClpP paralogs plus a ClpP variant (ClpR), which lacks the catalytic triad typical of Ser-type proteases. In this study, we reveal that two distinct soluble Clp proteases exist in the unicellular cyanobacterium Synechococcus elongatus. Each protease consists of a unique proteolytic core comprised of two separate Clp subunits, one with ClpP1 and ClpP2, the other with ClpP3 and ClpR. Each core also associates with a particular HSP100 chaperone partner, ClpC in the case of the ClpP3/R core, and ClpX for the ClpP1/P2 core. The two adaptor proteins, ClpS1 and ClpS2 also interact with the ClpC chaperone protein, likely increasing the range of protein substrates targeted by the Clp protease in cyanobacteria. We also reveal the possible existence of a third Clp protease in Synechococcus, one which associates with the internal membrane network. Altogether, we show that presence of several distinctive Clp proteases in cyanobacteria, a feature which contrasts from that in most other organisms.  相似文献   

16.
The molecular chaperone ClpC/Hsp93 is essential for chloroplast function in vascular plants. ClpC has long been held to act both independently and as the regulatory partner for the ATP-dependent Clp protease, and yet this and many other important characteristics remain unclear. In this study, we reveal that of the two near-identical ClpC paralogs (ClpC1 and ClpC2) in Arabidopsis chloroplasts, along with the closely related ClpD, it is ClpC1 that is the most abundant throughout leaf maturation. An unexpectedly large proportion of both chloroplast ClpC proteins (30% of total ClpC content) associates to envelope membranes in addition to their stromal localization. The Clp proteolytic core is also bound to envelope membranes, the amount of which is sufficient to bind to all the similarly localized ClpC. The role of such an envelope membrane Clp protease remains unclear although it appears uninvolved in preprotein processing or Tic subunit protein turnover. Within the stroma, the amount of oligomeric ClpC protein is less than that of the Clp proteolytic core, suggesting most if not all stromal ClpC functions as part of the Clp protease; a proposal supported by the near abolition of Clp degradation activity in the clpC1 knock-out mutant. Overall, ClpC appears to function primarily within the Clp protease, as the principle stromal protease responsible for maintaining homeostasis, and also on the envelope membrane where it possibly confers a novel protein quality control mechanism for chloroplast preprotein import.  相似文献   

17.
The ClpP component Clp protease fromEscherichia colihas been crystallized and examined by X-ray crystallography and self-rotation function calculations. The crystal belongs to the monoclinic space groupP21with unit cell dimensions ofa=196.9 Å,b=104.3 Å,c=162.4 Å and β=98.3°. The X-ray diffraction pattern extends at least to 2.5 Å Bragg spacing when exposed to CuKα X-rays. Self-rotation function analyses indicate that the ClpP oligomer has 72-point group symmetry. This symmetry suggests that the ClpP oligomer is a tetradecamer, (ClpP)14, consisting of two heptamers, (ClpP)7stacked on top of each other in a head-to-head fashion. The measurement of crystal density indicates that two independent copies of the ClpP oligomers are present in the asymmetric unit, giving a crystal volume per protein mass (VM) of 2.73 Å3/Da and a solvent content of 54.9% (v/v). Self-rotation function calculations are consistent with the presence of two ClpP tetradecamers in the asymmetric unit. The Patterson function suggests that a translation ofx=0.5 andy=0.5 relates a pair of ClpP oligomers in one asymmetric unit to another pair in the other asymmetric unit. And the two independent tetradecamers in one asymmetric unit are related by a relative rotation of about 18° around the 7-fold axis.  相似文献   

18.
Mycobacterial Clp‐family proteases function via collaboration of the heteromeric ClpP1P2 peptidase with a AAA+ partner, ClpX or ClpC1. These enzymes are essential for M. tuberculosis viability and are validated antibacterial drug targets, but the requirements for assembly and regulation of functional proteolytic complexes are poorly understood. Here, we report the reconstitution of protein degradation by mycobacterial Clp proteases in vitro and describe novel features of these enzymes that distinguish them from orthologues in other bacteria. Both ClpX and ClpC1 catalyse ATP‐dependent unfolding and degradation of native protein substrates in conjunction with ClpP1P2, but neither mediates protein degradation with just ClpP1 or ClpP2. ClpP1P2 alone has negligible peptidase activity, but is strongly stimulated by translocation of protein substrates into ClpP1P2 by either AAA+ partner. Interestingly, our results support a model in which both binding of a AAA+ partner and protein‐substrate delivery are required to stabilize active ClpP1P2. Our model has implications for therapeutically targeting ClpP1P2 in dormant M. tuberculosis, and our reconstituted systems should facilitate identification of novel Clp protease inhibitors and activators.  相似文献   

19.
In contrast with the model Escherichia coli Clp protease, the ATP-dependent Clp protease in higher plants has a remarkably diverse proteolytic core consisting of multiple ClpP and ClpR paralogs, presumably arranged within a dual heptameric ring structure. Using antisense lines for the nucleus-encoded ClpP subunit, ClpP6, we show that the Arabidopsis thaliana Clp protease is vital for chloroplast development and function. Repression of ClpP6 produced a proportional decrease in the Clp proteolytic core, causing a chlorotic phenotype in young leaves that lessened upon maturity. Structural analysis of the proteolytic core revealed two distinct subcomplexes that likely correspond to single heptameric rings, one containing the ClpP1 and ClpR1-4 proteins, the other containing ClpP3-6. Proteomic analysis revealed several stromal proteins more abundant in clpP6 antisense lines, suggesting that some are substrates for the Clp protease. A proteolytic assay developed for intact chloroplasts identified potential substrates for the stromal Clp protease in higher plants, most of which were more abundant in young Arabidopsis leaves, consistent with the severity of the chlorotic phenotype observed in the clpP6 antisense lines. The identified substrates all function in more general housekeeping roles such as plastid protein synthesis, folding, and quality control, rather than in metabolic activities such as photosynthesis.  相似文献   

20.
Caseinolytic (Clp) proteases are widespread energy-dependent proteases; the functional ATP-dependent protease is comprised of multimers of proteolytic and regulatory subunits. Mycobacterium tuberculosis has two ClpP proteolytic subunits (ClpP1 and ClpP2), with both being essential for growth in vitro. ClpP1 and clpP2 are arranged in an apparent operon; we demonstrated that the two genes are co-expressed under normal growth conditions. We identified a single promoter region for the clpP1P2 operon; no promoter was detected upstream of clpP2 demonstrating that independent expression of clpP1 and clpP2 was highly unlikely. Promoter activity was not induced by heat shock or oxidative stress. We identified a regulatory region upstream of the promoter with a consensus sequence matching the ClgR regulator motif; we determined the limits of the region by mutagenesis and confirmed that positive regulation of the promoter occurs in M. tuberculosis. We developed a reporter system to monitor ClpP1 and ClpP2 enzymatic activities based on LacZ incorporating ssrAtag sequences. We showed that whilst both ClpP1 and ClpP2 degrade SsrA-tagged LacZ, ClpP2 (but not ClpP1) degrades untagged proteins. Our data suggest that the two proteolytic subunits display different substrate specificities and therefore have different, but overlapping roles in M. tuberculosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号