首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In rod-shaped bacteria, cell morphology is correlated with the replication rate. For a given species, cells that replicate faster are longer and have less cross-linked cell walls. Here, we propose a simple mechanochemical model that explains the dependence of cell length and cross-linking on the replication rate. Our model shows good agreement with existing experimental data and provides further evidence that cell wall synthesis is mediated by multienzyme complexes; however, our results suggest that these synthesis complexes only mediate glycan insertion and cross-link severing, whereas recross-linking is performed independently.  相似文献   

2.
3.
Chromosomal DNA replication in higher eukaryotes takes place in DNA synthesis factories containing numerous replication forks. We explored the role of replication fork aggregation in vitro, using as a model the simian virus 40 (SV40) large tumor antigen (T antigen), essential for its DNA helicase and origin-binding activities. Previous studies have shown that T antigen binds model DNA replication forks primarily as a hexamer (TAgH) and to a lesser extent as a double hexamer (TAgDH). We find that DNA unwinding in the presence of ATP or other nucleotides strongly correlates with the formation of TAgDH-DNA fork complexes. TAgH- and TAgDH-fork complexes were isolated, and the TAgDH-bound fork was denatured at a 15-fold-higher rate during the initial times of unwinding. TAgDH bound preferentially to a DNA substrate containing a 50-nucleotide bubble, indicating the bridging of each single-stranded DNA/duplex DNA junction, and this DNA molecule was also unwound at a high rate. Both the TAgH- and TAgDH-fork complexes were relatively stable, with the half-life of the TAgDH-fork complex greater than 40 min. Our data therefore indicate that the linking of two viral replication forks serves to activate DNA replication.  相似文献   

4.
Regulation of proliferating cell nuclear antigen during the cell cycle   总被引:53,自引:0,他引:53  
The proliferating cell nuclear antigen (PCNA), also known as cyclin and DNA polymerase delta auxiliary factor, is present in reduced amounts in nongrowing cells and is synthesized at a greater rate in the S phase of growing cells. The recently discovered involvement of PCNA in DNA replication suggested that this pattern of expression functions to regulate DNA synthesis. We have investigated this possibility further by examining the synthesis, stability, and accumulation of PCNA in HeLa cells fractionated by centrifugal elutriation into nearly synchronous populations of cells at various positions in the cell cycle. In these fractionated cells we found that there is an increase in the rate of PCNA synthesis with a peak in early S phase of the cell cycle, but the magnitude of the increase is only 2-3-fold. This change reflects similar changes in the amount of PCNA mRNA. The fluctuating synthesis of PCNA maintains this protein at a roughly constant proportion of the total cell protein, although the amount doubles/cell in the cell cycle. Consistent with this observation, the stability of PCNA does not differ significantly from that of total cellular protein in synchronized HeLa cells. We also observed that a maximum of one-third of the total PCNA is tightly associated with the nucleus, presumably in replication complexes, at the peak of S phase. We conclude that the cyclic synthesis of PCNA in cycling HeLa cells maintains PCNA in excess of the amount involved directly in DNA replication and the amount of the protein neither fluctuates significantly with the cell cycle nor is limiting for DNA synthesis.  相似文献   

5.
A de Bruyn Kops  D M Knipe 《Cell》1988,55(5):857-868
Eukaryotic DNA synthesis is thought to occur in multienzyme complexes present at numerous discrete sites throughout the nucleus. We demonstrate here that cellular DNA replication sites identified by bromodeoxyuridine labeling are relocated in cells infected with herpes simplex virus such that they correspond to viral prereplicative structures containing the HSV DNA replication protein, ICP8. Thus components of the cellular DNA replication apparatus are present at viral prereplicative sites. Mutant virus strains expressing defective ICP8 do not alter the pattern of host cell DNA replication sites, indicating that functional ICP8 is required for the redistribution of cellular DNA replication complexes. This demonstrates that a specific protein molecule can play a role in the organization of DNA replication proteins at discrete sites within the cell nucleus.  相似文献   

6.
Mcm2, Mcm3, and Mcm5/Cdc46 are conserved proteins essential for the initiation of DNA synthesis at replication origins in Saccharomyces cerevisiae. The accumulation of these proteins in the nucleus before the onset of DNA synthesis suggests that they play a role in restricting DNA synthesis to once per cell cycle. In this work, we show that Mcm2, Mcm3, and Mcm5 self-interact and interact with one another to form complexes. Mcm2 and Mcm3 are abundant proteins, present in approximately 4 X 10(4) and 2 X 10(5) copies per cell, respectively. Reducing the dosage of Mcm2 by half results in diminished usage of specific replication origins. These results together suggest that a significant molar excess of Mcm proteins relative to replication origins is required for the proper initiation of all replication origins.  相似文献   

7.
Initiation of DNA replication is regulated by cyclin-dependent protein kinase 2 (Cdk2) in association with two different regulatory subunits, cyclin A and cyclin E (reviewed in ref. 1). But why two different cyclins are required and why their order of activation is tightly regulated are unknown. Using a cell-free system for initiation of DNA replication that is based on G1 nuclei, G1 cytosol and recombinant proteins, we find that cyclins E and A have specialized roles during the transition from G0 to S phase. Cyclin E stimulates replication complex assembly by cooperating with Cdc6, to make G1 nuclei competent to replicate in vitro. Cyclin A has two separable functions: it activates DNA synthesis by replication complexes that are already assembled, and it inhibits the assembly of new complexes. Thus, cyclin E opens a 'window of opportunity' for replication complex assembly that is closed by cyclin A. The dual functions of cyclin A ensure that the assembly phase (G1) ends before DNA synthesis (S) begins, thereby preventing re-initiation until the next cell cycle.  相似文献   

8.
9.
Antibodies directed to Sindbis virus (SV) envelope protein E2 are able to control virus replication in vivo and in persistently infected cultures of neurons in vitro. We investigated the mechanisms by which anti-E2 monoclonal antibody (MAb) alters virus replication by using AT3 rat prostatic carcinoma cells expressing the inhibitor of apoptosis bcl-2. Treatment of SV-infected AT3-bcl-2 cells with anti-E2 MAb G5 for 2 h decreased the rate of virus release for 6 to 8 h after removal of the antibody. Electron microscopic analysis of MAb-treated cells revealed that failure of virus release was linked to a defect in the budding process. The decrease in extracellular virus particles occurred despite continued formation of nucleocapsids and synthesis of envelope glycoproteins. MAb treatment delayed the inhibition of K+ influx and shutoff of host cell protein synthesis by SV infection in a dose-dependent manner. Synthesis of host cell factors and of nonstructural polyprotein precursors required for the formation of initial replication complexes was also prolonged, causing a slower shutdown of overall viral RNA synthesis. We conclude that one mechanism by which anti-E2 MAb treatment down-regulates SV replication is by reestablishing certain critical host cell functions in infected cells.  相似文献   

10.
The cre(2C) hairpin is a cis-acting replication element in poliovirus RNA and serves as a template for the synthesis of VPgpUpU. We investigated the role of the cre(2C) hairpin on VPgpUpU synthesis and viral RNA replication in preinitiation RNA replication complexes isolated from HeLa S10 translation-RNA replication reactions. cre(2C) hairpin mutations that block VPgpUpU synthesis in reconstituted assays with purified VPg and poliovirus polymerase were also found to completely inhibit VPgpUpU synthesis in preinitiation replication complexes. Surprisingly, blocking VPgpUpU synthesis by mutating the cre(2C) hairpin had no significant effect on negative-strand synthesis but completely inhibited positive-strand synthesis. Negative-strand RNA synthesized in these reactions immunoprecipitated with anti-VPg antibody and demonstrated that it was covalently linked to VPg. This indicated that VPg was used to initiate negative-strand RNA synthesis, although the cre(2C)-dependent synthesis of VPgpUpU was inhibited. Based on these results, we concluded that the cre(2C)-dependent synthesis of VPgpUpU was required for positive- but not negative-strand RNA synthesis. These findings suggest a replication model in which negative-strand synthesis initiates with VPg uridylylated in the 3' poly(A) tail in virion RNA and positive-strand synthesis initiates with VPgpUpU synthesized on the cre(2C) hairpin. The pool of excess VPgpUpU synthesized on the cre(2C) hairpin should support high levels of positive-strand synthesis and thereby promote the asymmetric replication of poliovirus RNA.  相似文献   

11.
Chimeric poliovirus RNAs, possessing the 5' nontranslated region (NTR) of hepatitis C virus in place of the 5' NTR of poliovirus, were used to examine the role of the poliovirus 5' NTR in viral replication. The chimeric viral RNAs were incubated in cell-free reaction mixtures capable of supporting the sequential translation and replication of poliovirus RNA. Using preinitiation RNA replication complexes formed in these reactions, we demonstrated that the 3' NTR of poliovirus RNA was insufficient, by itself, to recruit the viral replication proteins required for negative-strand RNA synthesis. The 5'-terminal cloverleaf of poliovirus RNA was required in cis to form functional preinitiation RNA replication complexes capable of uridylylating VPg and initiating the synthesis of negative-strand RNA. These results are consistent with a model in which the 5'-terminal cloverleaf and 3' NTRs of poliovirus RNA interact via temporally dynamic ribonucleoprotein complexes to coordinately mediate and regulate the sequential translation and replication of poliovirus RNA.  相似文献   

12.
Studies to elucidate the reactions that occur at the eukaryotic replication fork have been limited by the model systems available. We have established a method for isolating and characterizing Simian Virus 40 (SV40) replication complexes. SV40 rolling circle complexes are isolated using paramagnetic beads and then incubated under replication conditions to obtain continued elongation. In rolling circle replication, the normal mechanism for termination of SV40 replication does not occur and the elongation phase of replication is prolonged. Thus, using this assay system, elongation phase reactions can be examined in the absence of initiation or termination. We show that the protein requirements for elongation of SV40 rolling circles are equivalent to complete SV40 replication reactions. The DNA produced by SV40 rolling circles is double-stranded, unmethylated and with a much longer length than the template DNA. These properties are similar to those of physiological replication forks. We show that proteins associated with the isolated rolling circles, including SV40 T antigen, DNA polymerase alpha, replication protein A (RPA) and RF-C, are necessary for continued DNA synthesis. PCNA is also required but is not associated with the isolated complexes. We present evidence suggesting that synthesis of the leading and lagging strands are co-ordinated in SV40 rolling circle replication. We have used this system to show that both RPA-protein and RPA-DNA interactions are important for RPA's function in elongation.  相似文献   

13.
All organisms that synthesize their own DNA have evolved mechanisms for maintaining a constant DNA/cell mass ratio independent of growth rate. The DNA/cell mass ratio is a central parameter in the processes controlling the cell cycle. The co-ordination of DNA replication with cell growth involves multiple levels of regulation. DNA synthesis is initiated at specific sites on the chromosome termed origins of replication, and proceeds bidirectionally to elongate and duplicate the chromosome. These two processes, initiation and elongation, therefore determine the total rate of DNA synthesis in the cell. In Escherichia coli, initiation depends on the DnaA protein while elongation depends on a multiprotein replication factory that incorporates deoxyribonucleotides (dNTPs) into the growing DNA chain. The enzyme ribonucleotide reductase (RNR) is universally responsible for synthesizing the necessary dNTPs. In this review we examine the role RNR plays in regulating the total rate of DNA synthesis in E. coli and, hence, in maintaining constant DNA/cell mass ratios during normal growth and under conditions of DNA stress.  相似文献   

14.
Efficient translation of poliovirus (PV) RNA in uninfected HeLa cell extracts generates all of the viral proteins required to carry out viral RNA replication and encapsidation and to produce infectious virus in vitro. In infected cells, viral RNA replication occurs in ribonucleoprotein complexes associated with clusters of vesicles that are formed from preexisting intracellular organelles, which serve as a scaffold for the viral RNA replication complex. In this study, we have examined the role of membranes in viral RNA replication in vitro. Electron microscopic and biochemical examination of extracts actively engaged in viral RNA replication failed to reveal a significant increase in vesicular membrane structures or the protective aggregation of vesicles observed in PV-infected cells. Viral, nonstructural replication proteins, however, bind to heterogeneous membrane fragments in the extract. Treatment of the extracts with nonionic detergents, a membrane-altering inhibitor of fatty acid synthesis (cerulenin), or an inhibitor of intracellular membrane trafficking (brefeldin A) prevents the formation of active replication complexes in vitro, under conditions in which polyprotein synthesis and processing occur normally. Under all three of these conditions, synthesis of uridylylated VPg to form the primer for initiation of viral RNA synthesis, as well as subsequent viral RNA replication, was inhibited. Thus, although organized membranous structures morphologically similar to the vesicles observed in infected cells do not appear to form in vitro, intact membranes are required for viral RNA synthesis, including the first step of forming the uridylylated VPg primer for RNA chain elongation.  相似文献   

15.
The dependence of spontaneous rate and phenotypic expression of 6-mercaptopurine resistance mutations of DNA replication synthesis was studied in cultured Chinese hamster cells. Spontaneous mutations arising with a constant rate per cell per time unit independently on DNA replication rate were shown to be expressed only in the course of subsequent cell divisions. The frequency of N-nitrosomethylurea induced mutations in cells with reduced and normal DNA replication rate is approximately the same. However, DNA replication synthesis is necessary for the phenotypic expression of both induced and spontaneous mutations. The causes of the phenotypic lag are discussed.  相似文献   

16.
A genomically and chemically detailed mathematical model of a "minimal cell" would be useful to understand better the "design logic" of cellular regulation. A "minimal cell" will be a prokaryote with the minimum number of genes necessary for growth and replication in an ideal environment (i.e., preformed precursors, constant temperature, etc.). The Cornell single-cell model of Escherichia coli serves as the basic framework upon which a minimal cell model can be constructed. A critical issue for any cell model is to describe a mechanism for control of initiation of chromosome replication. There is strong evidence that the essence of chromosome replication control is highly conserved in eubacteria and even extends to the archae. A generalized mechanism is possible based on binding of the protein DnaA-ATP to the origin of replication (oriC) as a primary control. Other features, such as regulatory inactivation of DnaA (RIDA) by conversion of DnaA-ATP to DnaA-ADP and titration of DnaA by binding to other DnaA boxes on the chromosome, have emerged as critical elements in obtaining a functional system to control initiation of chromosome synthesis. We describe a biologically realistic model of chromosome replication initiation control embedded in a complete whole-cell model that explicitly links the external environment to the mechanism of replication control. The base model is deterministic and then modified to include stochastic variation in the components for replication control. The stochastic model allows evaluation of the model's robustness, employing a low standard deviation of interinitiation time as a measure of robustness. Four factors were examined: DnaA synthesis rate; DnaA-ATP binding sites at oriC; the binding rate of DnaA-ATP to the nonfunctional DnaA boxes; and the effect of changing the number of nonfunctional binding sites. The observed DnaA synthesis rate (2000 molecules/cell) and the number of DnaA binding sites per origin (30) are close to the values predicted by the model to provide good control (low variance of interinitiation time), with a reasonable expenditure of cell resources. At relatively high binding rates for DnaA-ATP to the DnaA boxes (10(16) M(-1) s(-1)), increasing the number of DnaA binding sites to about 300, improved control (but little further improvement was seen by extension to 1000 boxes); however, at a low binding rate (10(10) M(-1) s(-1)), an increase in DnaA boxes had an adverse effect on control. The combination of all four factors is probably necessary to obtain a robust control system. Although this mechanism of replication initiation control is highly conserved, it is not clear if simpler control in a minimal cell might exist based on experimental observations with Mycoplasma. This issue is discussed in this investigation.  相似文献   

17.
In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s) that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes.  相似文献   

18.
Permeable cell systems have been developed by treatment with digitonin or saponin for studying in vitro DNA replication of chromatin. DNA replication of SV40 nucleoprotein complexes (SV40 chromatin) in these systems requires the addition of ATP, dCTP, dGTP, dTTP, and Mg2+. Further addition of three other ribonucleoside triphosphates slightly increased DNA synthesis. Omission of ATP greatly reduced DNA synthesis. In the presence of ATP, however, omission of dATP did not significantly alter or rather slightly enhanced DNA synthesis. Analysis of replicated SV40 DNA by gel electrophoresis and autoradiography indicated that complete replication of SV40 DNA and chromatin occurred in these systems  相似文献   

19.
Intracellular events that take place during influenza virus replication in animal cells are well understood qualitatively. However, to better understand the complex interaction of the virus with its host cell and to quantitatively analyze the use of cellular resources for virion formation or the overall dynamic for the entire infection cycle, a mathematical model for influenza virus replication has to be formulated. Here, we present a structured model for the single-cell reproductive cycle of influenza A virus in animal cells that accounts for the individual steps of the process such as attachment, internalization, genome replication and translation, and progeny virion assembly. The model describes an average cell surrounded by a small quantity of medium and infected by a low number of virus particles. The model allows estimation of the cellular resources consumed by virus replication. Simulation results show that the number of cellular surface receptors and endosomes, as well as other resources, such as the number of free nucleotides or amino acids, is not significantly influenced by influenza virus propagation. A factor that limits the growth rate of progeny viruses and their release is the total amount of matrix proteins (M1) in the nucleus while other newly synthesized viral proteins (e.g., nucleoprotein NP) and viral RNAs accumulate. During budding, synthesis of vRNPs (viral ribonucleoprotein complexes) represents another limiting factor. Based on this model it is also possible to analyze effects of parameter changes on the dynamics of virus replication, to identify possible targets for molecular engineering, or to develop strategies for improving yields in vaccine production processes. Furthermore, a better insight into the interactions of viruses and host cells might help to improve our understanding of virus-related diseases and to develop therapies.  相似文献   

20.
Human Topoisomerase II is present in two isoforms, 170KDa alpha and 180KDa beta. Both the isoforms play a crucial role in maintenance of topological changes during DNA replication and recombination. It has been shown that Topoisomerase II activity is required for HIV-1 replication and the enzyme is phosphorylated during early time points of HIV-1 replication. In the present study, we have studied the molecular action of Topoisomerase II inhibitors, azalactone ferrocene (AzaFecp), Thiomorpholide amido methyl ferrocene (ThioFecp), and Ruthenium benzene amino pyridine (Ru(ben)Apy) on cell proliferation and also on various events of HIV-1 replication cycle. The Topoisomerase II beta over-expressing neuroblastoma cell line shows a higher sensitivity to these compounds compared to the Sup-T1 cell line. All the three Topoisomerase II inhibitors show significant anti-HIV activity at nanomolar concentrations against an Indian isolate of HIV-1(93IN101) in Sup-T1 cell line. An analysis of action of these compounds on proviral DNA synthesis at 5h of post-infection shows that they inhibit proviral DNA synthesis as well as the formation of pre-integration complexes completely. Further analysis, using polymerase chain reaction and western blot, showed that both the Topoisomerase II alpha and beta isoforms are present in the pre-integration complexes, suggesting their significant role in HIV-1 replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号