首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although no high-resolution structural information is available for the ryanodine receptor (RyR) channel pore-forming region (PFR), molecular modeling has revealed broad structural similarities between this region and the equivalent region of K(+) channels. This study predicts that, as is the case in K(+) channels, RyR has a cytosolic vestibule lined with predominantly hydrophobic residues of transmembrane helices (TM10). In K(+) channels, this vestibule is the binding site for blocking tetraalkylammonium (TAA) cations and Shaker B inactivation peptides (ShBPs), which are stabilized by hydrophobic interactions involving specific residues of the lining helices. We have tested the hypothesis that the cytosolic vestibule of RyR fulfils a similar role and that TAAs and ShBPs are stabilized by hydrophobic interactions with residues of TM10. Both TAAs and ShBPs block RyR from the cytosolic side of the channel. By varying the composition of TAAs and ShBPs, we demonstrate that the affinity of both species is determined by their hydrophobicity, with variations reflecting alterations in the dissociation rate of the bound blockers. We investigated the role of TM10 residues of RyR by monitoring block by TAAs and ShBPs in channels in which the hydrophobicity of individual TM10 residues was lowered by alanine substitution. Although substitutions changed the kinetics of TAA interaction, they produced no significant changes in ShBP kinetics, indicating the absence of specific hydrophobic sites of interactions between RyR and these peptides. Our investigations (a) provide significant new information on both the mechanisms and structural components of the RyR PFR involved in block by TAAs and ShBPs, (b) highlight important differences in the mechanisms and structures determining TAA and ShBP block in RyR and K(+) channels, and (c) demonstrate that although the PFRs of these channels contain analogous structural components, significant differences in structure determine the distinct ion-handling properties of the two species of channel.  相似文献   

2.
Cysteine-rich secretory proteins (CRISPs) are widely distributed, and notably occur in the mammalian reproductive tract and in the salivary glands of venomous reptiles. Most CRISPs can inhibit ion channels, such as the cyclic nucleotide-gated ion channel, potassium channel, and calcium channel. Natrin is a CRISP that has been purified from snake venom. Its targets include the calcium-activated potassium channel, the voltage-gated potassium channel, and the calcium release channel/ryanodine receptor (RyR). Immunoprecipitation experiments showed that natrin binds specifically to type 1 RyR (RyR1) from skeletal muscle. Natrin was found to inhibit both the binding of ryanodine to RyR1, and the calcium-channel activity of RyR1. Cryo-electron microscopy and single-particle image reconstruction analysis revealed that natrin binds to the clamp domains of RyR1. Docking of the crystal structure of natrin into our cryo-electron microscopy density map of the RyR1 + natrin complex suggests that natrin inhibits RyR1 by stabilizing a domain-domain interaction, and that the cysteine-rich domain of natrin is crucial for binding. These findings help reveal how natrin toxin inhibits the RyR calcium release channel, and they allow us to posit a generalized mechanism that governs the interaction between CRISPs and ion channels.  相似文献   

3.
Of the three divergent regions of ryanodine receptors (RyRs), divergent region 3 (DR3) is the best studied and is believed to be involved in excitation-contraction coupling as well as in channel regulation by Ca(2+) and Mg(2+). To gain insight into the structural basis of DR3 function, we have determined the location of DR3 in the three-dimensional structure of RyR2. We inserted green fluorescent protein (GFP) into the middle of the DR3 region after Thr-1874 in the sequence. HEK293 cells expressing this GFP-RyR2 fusion protein, RyR2(T1874-GFP,) were readily detected by their green fluorescence, indicating proper folding of the inserted GFP. RyR2(T1874-GFP) was further characterized functionally by assays of Ca(2+) release and [(3)H]ryanodine binding. These analyses revealed that RyR2(T1874-GFP) functions as a caffeine- and ryanodine-sensitive Ca(2+) release channel and displays Ca(2+) dependence and [(3)H]ryanodine binding properties similar to those of the wild type RyR2. RyR2(T1874-GFP) was purified from cell lysates in a single step by affinity chromatography using GST-FKBP12.6 as the affinity ligand. The three-dimensional structure of the purified RyR2(T1874-GFP) was then reconstructed using cryoelectron microscopy and single particle image analysis. Comparison of the three-dimensional reconstructions of wild type RyR2 and RyR2(T1874-GFP) revealed the location of the inserted GFP, and hence the DR3 region, in one of the characteristic domains of RyR, domain 9, in the clamp-shaped structure adjacent to the FKBP12 and FKBP12.6 binding sites. COOH-terminal truncation analysis demonstrated that a region between 1815 and 1855 near DR3 is essential for GST-FKBP12.6 binding. These results provide a structural basis for the role of the DR3 region in excitation-contraction coupling and in channel regulation.  相似文献   

4.
Chloride intracellular channel 2 (CLIC2), a newly discovered small protein distantly related to the glutathione transferase (GST) structural family, is highly expressed in cardiac and skeletal muscle, although its physiological function in these tissues has not been established. In the present study, [3H]ryanodine binding, Ca2+ efflux from skeletal sarcoplasmic reticulum (SR) vesicles, single channel recording, and cryo-electron microscopy were employed to investigate whether CLIC2 can interact with skeletal ryanodine receptor (RyR1) and modulate its channel activity. We found that: (1) CLIC2 facilitated [3H]ryanodine binding to skeletal SR and purified RyR1, by increasing the binding affinity of ryanodine for its receptor without significantly changing the apparent maximal binding capacity; (2) CLIC2 reduced the maximal Ca2+ efflux rate from skeletal SR vesicles; (3) CLIC2 decreased the open probability of RyR1 channel, through increasing the mean closed time of the channel; (4) CLIC2 bound to a region between domains 5 and 6 in the clamp-shaped region of RyR1; (5) and in the same clamp region, domains 9 and 10 became separated after CLIC2 binding, indicating CLIC2 induced a conformational change of RyR1. These data suggest that CLIC2 can interact with RyR1 and modulate its channel activity. We propose that CLIC2 functions as an intrinsic stabilizer of the closed state of RyR channels.  相似文献   

5.
The predicted TM10 transmembrane sequence, (4844)IIFDITFFFFVIVILLAIIQGLII(4867), has been proposed to be the pore inner helix of the ryanodine receptor (RyR) and to play a crucial role in channel activation and gating, as with the inner helix of bacterial potassium channels. However, experimental evidence for the involvement of the TM10 sequence in RyR channel activation and gating is lacking. In the present study, we have systematically investigated the effects of mutations of each residue within the 24-amino acid TM10 sequence of the mouse cardiac ryanodine receptor (RyR2) on channel activation by caffeine and Ca(2+). Intracellular Ca(2+) release measurements in human embryonic kidney 293 cells expressing the RyR2 wild type and TM10 mutants revealed that several mutations in the TM10 sequence either abolished caffeine response or markedly reduced the sensitivity of the RyR2 channel to activation by caffeine. By assessing the Ca(2+) dependence of [(3)H]ryanodine binding to RyR2 wild type and TM10 mutants we also found that mutations in the TM10 sequence altered the sensitivity of the channel to activation by Ca(2+) and enhanced the basal activity of [(3)H]ryanodine binding. Furthermore, single I4862A mutant channels exhibited considerable channel openings and altered gating at very low concentrations of Ca(2+). Our data indicate that the TM10 sequence constitutes an essential determinant for channel activation and gating, in keeping with the proposed role of TM10 as an inner helix of RyR. Our results also shed insight into the orientation of the TM10 helix within the RyR channel pore.  相似文献   

6.
The effect of imperatoxin A (IpTx(a)) on the ryanodine receptor type 3 (RyR3) was studied. IpTx(a) stimulates [(3)H]ryanodine binding to RyR3-containing microsomes, but this effect requires toxin concentrations higher than those required to stimulate RyR1 channels. The effect of IpTx(a) on RyR3 channels was observed at calcium concentrations in the range 0.1 microM to 10 mM. By contrast, RyR2 channels were not significantly affected by IpTx(a) in the same calcium ranges. Single channel current measurements indicated that IpTx(a) induced subconductance state in RyR3 channels that was similar to those observed with RyR1 and RyR2 channels. These results indicate that IpTx(a) is capable of inducing similar subconductance states in all three RyR isoforms, while stimulation of [(3)H]ryanodine binding by this toxin results in isoform-specific responses, with RyR1 being the most sensitive channel, RyR3 displaying an intermediate response and RyR2 the least responsive ones.  相似文献   

7.
The ryanodine receptor (RyR) is a Ca2+ release channel located in the sarcoplasmic/endoplasmic reticulum (ER) membrane and plays a critical role in excitation-contraction coupling of skeletal and cardiac muscles. RyR normally exists in a tetrameric structure and contains two functional domains: a carboxyl-terminal hydrophobic domain that contains the conduction pore of the Ca2+ release channel, and a large amino-terminal domain that contains sites responsible for channel regulation. Recent studies involving mutagenesis and heterologous expression have helped unravel the structure-function relationship of RyR, including transmembrane topology and intracellular localization of the Ca2+-release channel. The carboxyl-terminal portion of RyR contains the putative transmembrane segments and is sufficient to form a functional Ca2+-release channel. The amino-terminal region of the protein contains sites responsible for regulation by endogenous modulators such as Ca2+ and Mg2+ and by exogenous ligands such as caffeine. The membrane topology of RyR appears to contain an even number (four or six) of transmembrane segments with a ion selectivity filter present within a region residing between the last two segments, similar to potassium channel, whose atomic structure was described recently. The transmembrane segments also contain sequences that are responsible for localization of RyR in the endoplasmic reticulum, and this sequence is highly conserved in IP3 receptors, which also function as Ca2+-release channels.  相似文献   

8.
Ryanodine binds with high affinity and specificity to a class of Ca(2+)-release channels known as ryanodine receptors (RyR). The interaction with RyR results in a dramatic alteration in function with open probability (Po) increasing markedly and rates of ion translocation modified. We have investigated the features of ryanodine that govern the interaction of the ligand with RyR and the mechanisms underlying the subsequent alterations in function by monitoring the effects of congeners and derivatives of ryanodine (ryanoids) on individual RyR2 channels. While the interaction of all tested ryanoids results in an increased Po, the amplitude of the modified conductance state depends upon the structure of the ryanoid. We propose that different rates of cation translocation observed in the various RyR-ryanoid complexes represent different conformations of the channel stabilized by specific conformers of the ligand. On the time scale of a single channel experiment ryanodine binds irreversibly to the channel. However, alterations in structure yield some ryanoids with dissociation rate constants orders of magnitude greater than ryanodine. The probability of occurrence of the RyR-ryanoid complex is sensitive to trans-membrane voltage, with the vast majority of the influence of potential arising from a voltage-driven alteration in the affinity of the ryanoid-binding site.  相似文献   

9.
RyR and InsP3R are Ca(2+)-release channels. When induced to open by the appropriate stimulus, these channels allow Ca2+ to leave intracellular storage organelles at an astonishing rate. Investigations of the ion-handling properties of isolated RyR channels have demonstrated that, at least in comparison to voltage-gated channels of surface membranes, these channels display limited powers of discrimination between physiologically relevant cations and this relative lack of selectivity is likely to contribute to the ability of Ca(2+)-release channels to maintain high rates of cation translocation without compromising function. A range of ion-handling properties in RyR are consistent with the proposal that this channel functions as a single-ion channel and theoretical considerations indicate that the high rates of ion translocation monitored for RyR would require the pore of such a structure to be short and possess a large capture radius. Measurements of the dimensions of regions of RyR involved in ion conduction and discrimination indicate that this is likely to be the case. In each monomer of RyR/InsP3R, residues making up the last two trans-membrane spanning domains and a luminal loop linking these two helices contribute to the formation of the channel pore. The luminal loops of both RyR and InsP3R contain amino acid sequences similar to those known to form the selectivity filter of K+ channels. In addition the luminal loops of both Ca(2+)-release channels contain sequences that are likely to form helices that may be analogous to the pore helix visualised in KcsA. The correlation in structural elements of the luminal loops of RyR/InsP3R and KcsA has prompted us to speculate on the tertiary arrangement for this region of the Ca(2+)-release channels using the established structure of KcsA as a framework.  相似文献   

10.
To study the function and regulation of the cardiac ryanodine receptor (RyR2) Ca(2+) release channel, we expressed the RyR2 proteins in a Chinese hamster ovary (CHO) cell line, and assayed its function by single channel current recording and confocal imaging of intracellular Ca(2+) ([Ca(2+)](i)). The 16-kb cDNA encoding the full-length RyR2 was introduced into CHO cells using lipofectAmine and electroporation methods. Incorporation of microsomal membrane vesicles isolated from these transfected cells into lipid bilayer membrane resulted in single Ca(2+) release channel activities similar to those of the native Ca(2+) release channels from rabbit cardiac muscle SR membranes, both in terms of gating kinetics, conductance, and ryanodine modification. The expressed RyR2 channels were found to exhibit more frequent transitions to subconductance states than the native RyR2 channels and RyR1 expressed in CHO cells. Caffeine, an exogenous activator of RyR, induced release of [Ca(2+)](i) from these cells. Confocal imaging of cells expressing RyR2 did not detect spontaneous or caffeine-induced local Ca(2+) release events (i.e., "Ca(2+) sparks") typically seen in cardiac muscle. Our data show that the RyR2 expressed in CHO cells forms functional Ca(2+) release channels. Furthermore, the lack of localized Ca(2+) release events in these cells suggests that Ca(2+) sparks observed in cardiac muscle may involve cooperative gating of a group of Ca(2+) release channels and/or their interaction with muscle-specific proteins.  相似文献   

11.
J Nakai  L Gao  L Xu  C Xin  D A Pasek  G Meissner 《FEBS letters》1999,459(2):154-158
Six chimeras of the skeletal muscle (RyR1) and cardiac muscle (RyR2) Ca(2+) release channels (ryanodine receptors) previously used to identify RyR1 dihydropyridine receptor interactions [Nakai et al. (1998) J. Biol. Chem. 273, 13403] were expressed in HEK293 cells to assess their Ca(2+) dependence in [(3)H]ryanodine binding and single channel measurements. The results indicate that the C-terminal one-fourth has a major role in Ca(2+) activation and inactivation of RyR1. Further, our results show that replacement of RyR1 regions with corresponding RyR2 regions can result in loss and/or reduction of [(3)H]ryanodine binding affinity while maintaining channel activity.  相似文献   

12.
Two distinct skeletal muscle ryanodine receptors (RyR1s) are expressed in a fiber type-specific manner in fish skeletal muscle (11). In this study, we compare [(3)H]ryanodine binding and single channel activity of RyR1-slow from fish slow-twitch skeletal muscle with RyR1-fast and RyR3 isolated from fast-twitch skeletal muscle. Scatchard plots indicate that RyR1-slow has a lower affinity for [(3)H]ryanodine when compared with RyR1-fast. In single channel recordings, RyR1-slow and RyR1-fast had similar slope conductances. However, the maximum open probability (P(o)) of RyR1-slow was threefold less than the maximum P(o) of RyR1-fast. Single channel studies also revealed the presence of two populations of RyRs in tuna fast-twitch muscle (RyR1-fast and RyR3). RyR3 had the highest P(o) of all the RyR channels and displayed less inhibition at millimolar Ca(2+). The addition of 5 mM Mg-ATP or 2.5 mM beta, gamma-methyleneadenosine 5'-triphosphate (AMP-PCP) to the channels increased the P(o) and [(3)H]ryanodine binding of both RyR1s but also caused a shift in the Ca(2+) dependency curve of RyR1-slow such that Ca(2+)-dependent inactivation was attenuated. [(3)H]ryanodine binding data also showed that Mg(2+)-dependent inhibition of RyR1-slow was reduced in the presence of AMP-PCP. These results indicate differences in the physiological properties of RyRs in fish slow- and fast-twitch skeletal muscle, which may contribute to differences in the way intracellular Ca(2+) is regulated in these muscle types.  相似文献   

13.
Phosphorylation of the skeletal muscle (RyR1) and cardiac muscle (RyR2) ryanodine receptors has been reported to modulate channel activity. Abnormally high phosphorylation levels (hyperphosphorylation) at Ser-2843 in RyR1 and Ser-2809 in RyR2 and dissociation of FK506-binding proteins from the receptors have been implicated as one of the causes of altered calcium homeostasis observed during human heart failure. Using site-directed mutagenesis, we prepared recombinant RyR1 and RyR2 mutant receptors mimicking constitutively phosphorylated and dephosphorylated channels carrying a Ser/Asp (RyR1-S2843D and RyR2-S2809D) and Ser/Ala (RyR1-S2843A and RyR2-S2809A) substitution, respectively. Following transient expression in human embryonic kidney 293 cells, the effects of Ca2+, Mg2+, and ATP on channel function were determined using single channel and [3H]ryanodine binding measurements. In both assays, neither the skeletal nor cardiac mutants showed significant differences compared with wild type. Similarly essentially identical caffeine responses were observed in Ca2+ imaging measurements. Co-immunoprecipitation and Western blot analysis showed comparable binding of FK506-binding proteins to wild type and mutant receptors. Finally metabolic labeling experiments showed that the cardiac ryanodine receptor was phosphorylated at additional sites. Taken together, the results did not support the view that phosphorylation of a single site (RyR1-Ser-2843 and RyR2-Ser-2809) substantially changes RyR1 and RyR2 channel function.  相似文献   

14.
Mouton J  Ronjat M  Jona I  Villaz M  Feltz A  Maulet Y 《FEBS letters》2001,505(3):441-444
In striated muscles, excitation-contraction coupling is mediated by the functional interplay between dihydropyridine receptor L-type calcium channels (DHPR) and ryanodine receptor calcium-release channel (RyR). Although significantly different molecular mechanisms are involved in skeletal and cardiac muscles, bidirectional cross-talk between the two channels has been described in both tissues. In the present study using surface plasmon resonance spectroscopy, we demonstrate that both RyR1 and RyR2 can bind to structural elements of the C-terminal cytoplasmic domain of alpha(1C). The interaction is restricted to the CB and IQ motifs involved in the calmodulin-mediated Ca(2+)-dependent inactivation of the DHPR, suggesting functional interactions between the two channels.  相似文献   

15.
Isoform 2 of the ryanodine receptor (RyR2) is the major calcium release channel in cardiac muscle. In the present study, two kinds of RyR2 cDNA were constructed, one encoding the wild type mouse RyR2 (RyR2(wt)) and the other encoding modified RyR2, into which was inserted a cDNA encoding green fluorescent protein (GFP). GFP was inserted into the divergent region 1 (DR1) of RyR2, after the Asp-4365 (RyR2(D4365-GFP)). HEK293 cells expressing both RyR2(wt) and RyR2(D4365-GFP) cDNAs showed caffeine- and ryanodine-sensitive calcium release, demonstrating that both wild type and modified RyR2s form functional calcium release channels. Cells expressing the fusion protein, RyR2(D4365-GFP), were readily identified by their fluorescence due to the presence of GFP, indicating that the inserted GFP folded properly. Both expressed RyR2s were purified from cell lysates in a single step by affinity chromatography using a GST-FKBP12.6 as the affinity ligand. Cryoelectron microscopy of purified RyR2s showed structurally intact receptors, and three-dimensional reconstructions were obtained by single particle image processing. The three-dimensional reconstruction of RyR2(wt) appeared very similar to that of the native RyR2 purified from dog heart. The location of the inserted GFP, and consequently of DR1, was mapped on the three-dimensional structure of RyR2 to one of the subunit's characteristic domains, domain 3, also known as the "handle" domain. This study describes the first internal fusion of a protein into a ryanodine receptor, and it demonstrates the potential of this technology for localizing functional and structural domains on the three-dimensional structure of RyR.  相似文献   

16.
Ryanodine receptor channels (RyR) are key components of striated muscle excitation-contraction coupling, and alterations in their function underlie both inherited and acquired disease. A full understanding of the disease process will require a detailed knowledge of the mechanisms and structures involved in RyR function. Unfortunately, high-resolution structural data, such as exist for K+-selective channels, are not available for RyR. In the absence of these data, we have used modeling to identify similarities in the structural elements of K+ channel pore-forming regions and postulated equivalent regions of RyR. This has identified a sequence of residues in the cytosolic cavity-lining transmembrane helix of RyR (G4864LIIDA4869 in RyR2) analogous to the glycine hinge motif present in many K+ channels. Gating in these K+ channels can be disrupted by substitution of residues for the hinge glycine. We investigated the involvement of glycine 4864 in RyR2 gating by monitoring properties of recombinant human RyR2 channels in which this glycine is replaced by residues that alter gating in K+ channels. Our data demonstrate that introducing alanine at position 4864 produces no significant change in RyR2 function. In contrast, function is altered when glycine 4864 is replaced by either valine or proline, the former preventing channel opening and the latter modifying both ion translocation and gating. Our studies reveal novel information on the structural basis of RyR gating, identifying both similarities with, and differences from, K+ channels. Glycine 4864 is not absolutely required for channel gating, but some flexibility at this point in the cavity-lining transmembrane helix is necessary for normal RyR function.  相似文献   

17.
Activation of the cardiac ryanodine receptor (RyR2) by Ca(2)+ is an essential step in excitation-contraction coupling in heart muscle. However, little is known about the molecular basis of activation of RyR2 by Ca(2)+. In this study, we investigated the role in Ca(2)+ sensing of the conserved glutamate 3987 located in the predicted transmembrane segment M2 of the mouse RyR2. Single point mutation of this conserved glutamate to alanine (E3987A) reduced markedly the sensitivity of the channel to activation by Ca(2)+, as measured by using single-channel recordings in planar lipid bilayers and by [(3)H]ryanodine binding assay. However, this mutation did not alter the affinity of [(3)H]ryanodine binding and the single-channel conductance. In addition, the E3987A mutant channel was activated by caffeine and ATP, was inhibited by Mg(2)+, and was modified by ryanodine in a fashion similar to that of the wild-type channel. Coexpression of the wild-type and mutant E3987A RyR2 proteins in HEK293 cells produced individual single channels with intermediate sensitivities to activating Ca(2)+. These results are consistent with the view that glutamate 3987 is a major determinant of Ca(2)+ sensitivity to activation of the mouse RyR2 channel, and that Ca(2)+ sensing by RyR2 involves the cooperative action between ryanodine receptor monomers. The results of this study also provide initial insights into the structural and functional properties of the mouse RyR2, which should be useful for studying RyR2 function and regulation in genetically modified mouse models.  相似文献   

18.
The intracellular Ca2+ release channels are indispensable molecular machinery in practically all eukaryotic cells of multicellular animals. They serve a key role in cell signaling by way of Ca2+ as a second messenger. In response to a signaling event, the channels release Ca2+ from intracellular stores. The resulting rise in cytoplasmic Ca2+ concentration triggers the cell to carry out its specialized role, after which the intracellular Ca2+ concentration must be reduced so that the signaling event can again be repeated. There are two types of intracellular Ca2+ release channels, i.e., the ryanodine receptors and the inositol triphosphate receptors. My focus in this minireview is to present a personal account, from the vantage point our laboratory, of the discovery, isolation, and characterization of the ryanodine receptors from mammalian muscle. There are three isoforms: ryanodine receptor 1 (RyR1), first isolated from rabbit fast twitch skeletal muscle; ryanodine receptor 2 (RyR2), first isolated from dog heart; and ryanodine receptor 3 (RyR3), first isolated from bovine diaphragm muscle. The ryanodine receptors are the largest channel structures known. The RyR isoforms are very similar albeit with important differences. Natural mutations in humans in these receptors have already been associated with a number of muscle diseases.  相似文献   

19.
Type 1 ryanodine receptors (RyR1s) release Ca2+ from the sarcoplasmic reticulum to initiate skeletal muscle contraction. The role of RyR1-G4934 and -G4941 in the pore-lining helix in channel gating and ion permeation was probed by replacing them with amino acid residues of increasing side chain volume. RyR1-G4934A, -G4941A, and -G4941V mutant channels exhibited a caffeine-induced Ca2+ release response in HEK293 cells and bound the RyR-specific ligand [3H]ryanodine. In single channel recordings, significant differences in the number of channel events and mean open and close times were observed between WT and RyR1-G4934A and -G4941A. RyR1-G4934A had reduced K+ conductance and ion selectivity compared with WT. Mutations further increasing the side chain volume at these positions (G4934V and G4941I) resulted in reduced caffeine-induced Ca2+ release in HEK293 cells, low [3H]ryanodine binding levels, and channels that were not regulated by Ca2+ and did not conduct Ca2+ in single channel measurements. Computational predictions of the thermodynamic impact of mutations on protein stability indicated that although the G4934A mutation was tolerated, the G4934V mutation decreased protein stability by introducing clashes with neighboring amino acid residues. In similar fashion, the G4941A mutation did not introduce clashes, whereas the G4941I mutation resulted in intersubunit clashes among the mutated isoleucines. Co-expression of RyR1-WT with RyR1-G4934V or -G4941I partially restored the WT phenotype, which suggested lessening of amino acid clashes in heterotetrameric channel complexes. The results indicate that both glycines are important for RyR1 channel function by providing flexibility and minimizing amino acid clashes.  相似文献   

20.
The actions of three endogenous polyamines (spermine, spermidine, and putrescine) were defined on Ca2+ release channels (ryanodine receptors, RyRs) isolated from rabbit cardiac sarcoplasmic reticulum. The current-voltage relationship of the RyR channel was N-shaped in the presence of polyamine (1-5 mM). Polyamine blocked conduction near 0 mV, but the blockade was relieved at large potentials. Polyamines acted (blocked) from both sides of the channel. Polyamine efficacy was dependent on current direction and was inversely related to the ion selectivity of the RyR pore. This suggests that polyamine interacts with current-carrying ions in the permeation pathway. The apparent half-block concentration of spermine at 0 mV was < 0.1 mM. The features of polyamine blockade suggest that the polyamines are permeable cationic blockers of the RyR channel. Further, the levels of polyamines found in muscle cells are sufficient to block single RyR channels and thus may alter the sarcoplasmic reticulum Ca2+ release process in situ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号