首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 65 毫秒
1.
Nematodes are the most diverse and highly significant group of soil-inhabiting microorganisms that play a vital role in organic material decomposition and nutrient recycling.Diverse geographical locations and environmental gradients show a significant impact on the diversity of nematodes. Present study aims to assess the effects of ecological (altitude, temperature, moisture) and edaphic (soil pH, nutrients, soil patches) factors on the soil nematode diversity and structure at five different landscape patches (forests, apple orchards, rice fields, pastures, and alpine zone) from ten different sites of Kashmir valley (India). Differences in the altitudinal gradients results in the shift of generic nematode population. Among the soil patches, highest nematode diversity was observed in forest soil and least in alpine soil; however, bacteriovorous nematodes dominated all the soil patches. The temperature and moisture have a significant effect on nematode diversity, the highest nematode trophic levels were observed above 21°C temperature, and 30% moisture. Nematode abundance decreased from alkaline to acidic pH of the soil. Soil nutrients such as, nitrogen (N) and phosphorus (P) have shown a detrimental effect in nematode richness at each site, where nematode diversity and richness of genera were higher at abundant soil N and P but decreased at low soil nutrients. Ecological indices like diversity index (DI), Shannon-Wiener Index (H'), enrichment index (EI), and maturity Index (MI) values demonstrated forest soil more favourable for nematodes and high soil health status than other soil patches. This study suggested that these indices may be helpful as soil monitoring tools and assessing ecosystem sustainability and biodiversity.  相似文献   

2.
胡相明  程积民  万惠娥  赵艳云 《生态学报》2006,26(10):3276-3285
在黄土丘陵区,地形因素和土壤水分是决定草地景观格局的主要因素,同时草地景观格局在不同尺度上影响着景观中的流.地形因素、土壤水分和草地结构在不同尺度上有着密切的联系,研究它们之间的关系对于了解生态系统的过程十分重要.针对黄土高原异质化的草地群落结构,选取黄土丘陵区经过20多年自然封育形成的天然草地,从坡面尺度对景观格局进行了调查研究,在地形因素、土壤水分和草地结构中选取了有代表性的指标14个,用多元统计分析对选取的指标进行了主成分分析和聚类分析.聚类分析将样方分成3种植被类型,不同植被类型的海拔、坡度、20~140cm土壤含水量以及物种丰富度和生物多样性存在显著性差异.相关分析表明:海拔对0~300cm土壤含水量影响显著;海拔对草地群落盖度,坡位、坡向对草地群落的物种丰富度和生物多样性有着重要影响;而草地群落的物种丰富度和生物多样性与0~100cm土层的含水量关系密切.  相似文献   

3.
This study examined the activity, species richness, and species composition of the arbuscular mycorrhizal fungal (AMF) community of Populus-Salix stands on the Verde River (Arizona, USA), quantified patterns of AMF richness and colonization along complex floodplain gradients, and identified environmental variables responsible for structuring the AMF community. Samples from 61 Populus-Salix stands were analyzed for AMF and herbaceous composition, AMF colonization, gravimetric soil moisture, soil texture, per cent organic matter, pH, and concentrations of nitrate, bicarbonate phosphorus and exchangeable potassium. AMF species richness declined with stand age and distance from and elevation above the channel and was positively related to perennial species cover and richness and gravimetric soil moisture. Distance from and elevation above the active channel, forest age, annual species cover, perennial species richness, and exchangeable potassium concentration all played a role in structuring the AMF community in this riparian area. Most AMF species were found across a wide range of soil conditions, but a subset of species tended to occur more often in hydric areas. This group of riparian affiliate AMF species includes several not previously encountered in the surrounding Sonoran desert.  相似文献   

4.
This study quantified relationships of understory vascular plant species composition and richness along environmental gradients over a broad spatial scale in second-growth oak forests in eastern North America. Species frequencies were recorded in 108 25 × 25 m plots in four study sites extending over 70 km in southern Ohio, U.S.A.. The plots were stratified into three long-term soil moisture classes with a GIS-derived integrated moisture index (IMI). In addition to the IMI, the environmental data matrix included eight soil and three overstory variables. Canonical correspondence analysis (CCA) indicated that variations in understory species composition were most strongly related to topographic variations in predicted moisture (IMI), N mineralization rate, nitrification rate, and soil pH. In addition, floristic variation at the regional scale was correlated with variations in soil texture, nitrification, pH, and PO4 , resulting from differences in the soil parent material complexes among sites. Species richness averaged 65 species/plot, and increased with moisture and fertility. Stepwise regression indicated that richness was positively correlated with N mineralization rate and nitrification rate, and inversely correlated with tree basal area. Greater richness on fertile plots was the largely the result of increasing forb richness. Forb richness per quadrat (2 m2) was most strongly and positively related to N mineralization rate. Conversely, richness of understory individuals of tree species was greatest on xeric, less-fertile plots. Our results describe general, broad-scale species-environment relationships that occurred at both the topographic scale (long-term moisture status and fertility) and the regional scale (geomorphological differences among the sites). Strong species richness-N mineralization correlations indicate an important link between below-ground processes and above-ground biodiversity. Because N availability was a strong correlate to vegetation patterns at a broad-scale, our results suggest that the increasing rates of atmospheric N deposition in the region could have a major impact on understory vegetation dynamics.  相似文献   

5.
Theory predicts that the effects of regional richness on the richness of local communities may depend on the productivity, resource availability, and/or heterogeneity of local sites. Using the wetland plant communities of 50 independent streams as 'regions', we tested whether: (1) local richness in 1-m2 quadrats and 50-m stream segments was positively related to regional richness, even after environmental influences were considered; and (2) the effect of regional richness would interact with the effects of biomass, soil moisture, and/or heterogeneity on local richness. In models that explained up to 88% of variation in local richness, we found that richness at both local scales was positively related to regional richness, and that regional richness did not interact with any of the environmental gradients that also shaped local richness. We conclude that species availability from the regional pool may consistently enrich local communities, even while other constraints on local richness operate.  相似文献   

6.
As the Third Pole of the world, the Tibetan Plateau provides a typical alpine grassland environment for soil bacteria with its unique frigid and arid climate. Owing to clear changes in spatial moisture and increased grazing intensity, moisture and livestock grazing have become key factors influencing the microbial communities. Accordingly, we investigated the diversity and composition of soil bacteria in a selected alpine grassland within the dual gradients of moisture and grazing using high-throughput sequencing. Our results showed that grazing changed the soil bacterial diversity and composition, whereas moisture only influenced the relative abundance of the segmental community at the small spatial scale. Species richness was found to be increased by moderate grazing compared with that by high or low-grazing intensity. The relative abundance of dominant species and β-diversity of soil bacteria both showed differences with heavy, moderate, and low grazing. Some dominant bacteria were altered with the moisture content. However, there were no significant differences according to the moisture gradient in terms of the overall bacterial β diversity and composition. These results might be taken account into the small spatial scale as well as the compensation of grazing to moisture on this scale. This work provides new insights into the soil bacterial response to moisture gradients and grazing intensity in alpine steppe habitat.  相似文献   

7.
Abstract. The relationships between biogeographical patterns and local‐scale patterns based on microscale features, such as topoclimate, are well known in plant biogeography. Here we present a method of determining this correspondence using constrained ordination and correlations. We examined compositional gradients at two different scales, biogeographical chorotypes, and diversity. Compositional data (124 taxa × 113 plots) were sampled at four regularly spaced sites in south‐eastern Spain. Longitude (LONGI) was used as a spatial variable representing an east–west climate gradient, together with a radiation index (RADIN), elevation, and a disturbance indicator. All factors correlated with the compositional gradients, but the local‐topoclimate factor (RADIN) and the broad‐scale factor (LONGI) were most important. These two, spatially independent factors were both correlated with the two first ordination axes, and therefore should relate to the same general trend in species‐turnover. There was a significant Spearman's rank correlation between the species order along these two gradients. This is interpreted as an ecological self‐similar pattern, i.e. coenoclines repeating at different scales. A consistent order of species along local‐ and broad‐scale coenoclines may indicate that similar operational factors act at several scales, here related to moisture and temperature. The distribution of Mediterraneo–Macaronesian, Mediterraneo–Saharo–Arabian and Ibero–Maghribian species confirmed the correspondence between the broad‐ and local‐scale gradients. The former group decreases in number with increasing aridity along both gradients, whereas the two latter groups increase. A discordant pattern was found with south‐eastern Iberian endemics, but this may be explained by several of them being edaphic (saxicolous) specialists. There is a significant decrease in species richness with high radiation, but the expected increase along the longitudinal gradient from west (dry) to east (moist) was not statistically significant. This may be due to the correspondence between high richness and disturbance, both occurring in the middle of the broad‐scale gradient.  相似文献   

8.
Environmental gradients are caused by gradual changes in abiotic factors, which affect species abundances and distributions, and are important for the spatial distribution of biodiversity. One prominent environmental gradient is the altitude gradient. Understanding ecological processes associated with altitude gradients may help us to understand the possible effects climate change could have on species communities. We quantified vegetation cover, species richness, species evenness, beta diversity, and spatial patterns of community structure of vascular plants along altitude gradients in a subarctic mountain tundra in northern Sweden. Vascular plant cover and plant species richness showed unimodal relationships with altitude. However, species evenness did not change with altitude, suggesting that no individual species became dominant when species richness declined. Beta diversity also showed a unimodal relationship with altitude, but only for an intermediate spatial scale of 1 km. A lack of relationships with altitude for either patch or landscape scales suggests that any altitude effects on plant spatial heterogeneity occurred on scales larger than individual patches but were not effective across the whole landscape. We observed both nested and modular patterns of community structures, but only the modular patterns corresponded with altitude. Our observations point to biotic regulations of plant communities at high altitudes, but we found both scale dependencies and inconsistent magnitude of the effects of altitude on different diversity components. We urge for further studies evaluating how different factors influence plant communities in high altitude and high latitude environments, as well as studies identifying scale and context dependencies in any such influences.  相似文献   

9.
Patrick L. Lilley  Mark Vellend 《Oikos》2009,118(9):1373-1382
Recent research has proposed a scale-dependence to relationships between native diversity and exotic invasions. At fine spatial scales, native–exotic richness relationships should be negative as higher native richness confers resistance to invasion. At broad scales, relationships should be positive if natives and exotics respond similarly to extrinsic factors. Yet few studies have examined both native and exotic richness patterns across gradients of human influence, where impacts could affect native and exotic species differently. We examined native–exotic richness relationships and extrinsic drivers of plant species richness and distributions across an urban development gradient in remnant oak savanna patches. In sharp contrast to most reported results, we found a negative relationship at the regional scale, and no relationship at the local scale. The negative regional-scale relationship was best explained by extrinsic factors, surrounding road density and climate, affecting natives and exotics in opposite ways, rather than a direct effect of native on exotic richness, or vice versa. Models of individual species distributions also support the result that road density and climate have largely opposite effects on native and exotic species, although simple life history traits (life form, dispersal mode) do not predict which habitat characteristics are important for particular species. Roads likely influence distributions and species richness by increasing both exotic propagule pressure and disturbance to native species. Climate may partially explain the negative relationship due to differing climatic preferences within the native and exotic species pools. As gradients of human influence are increasingly common, negative broad-scale native–exotic richness relationships may be frequent in such landscapes.  相似文献   

10.
Species richness is influenced both by mechanisms occurring at landscape scales, such as habitat availability, and local‐scale processes, that are related to abiotic conditions and plant–plant interactions. However, it is rarely tested to what extent local species richness can be explained by the combined effect of factors measured at multiple spatial scales. In this study, we quantified the simultaneous influence of historical landscape‐scale factors (past human population density, and past habitat availability – an index combining area and connectivity) and small‐scale environmental conditions (shrub cover, and heterogeneity of light, soil depth, and other soil environmental variables) on plant species richness in dry calcareous grasslands (alvars). By applying structural equation modelling (SEM) we found that both landscape conditions and local environmental factors had significant direct and indirect (i.e. through the modification of another factor), effects on species richness. At the landscape scale, we found a direct positive influence of historical habitat availability on species richness, and indirect positive influence of past human population (via its effects on historical habitat availability). At small scales, we found a positive direct influence of light heterogeneity and shrub cover on species richness. Conversely, we found that small‐scale soil environmental heterogeneity, which was mainly determined by soil depth heterogeneity, had a negative effect on species richness. Our study indicates that patterns of species richness in alvar grasslands are positively influenced by the anthropogenic management regime that maintained the landscape habitat conditions in the past. However, the abandonment of management, leading to shrub invasion and increased competition for light resources also influenced species richness. In contrast to the positive heterogeneity–diversity relationship we found that soil heterogeneity reduced species richness. Environmental heterogeneity, occurring at the plant neighbourhood scale (i.e. centimetres), can increase the isolation among suitable soil patches and thus hinder the normal functioning of populations. The combination of previous knowledge of the system with new ecological theories facilitates disentangling how species richness responds to complex relationships among factors operating at multiple scales.  相似文献   

11.
Assembly of fungal communities remains poorly understood in part because of the daunting range of spatial scales that may be involved in this process. Here, we use individual leaves as a natural sampling unit, comprising spatially distinct habitat and/or resource patches with unique histories and suites of resources. Spatial patterns in fungal beta diversity were tested for consistency with the metacommunity paradigms of species sorting and neutral dynamics. Thirty senesced leaves were collected from the forest floor (O horizon) in replicate upland forest, riparian forest and vernal pool habitats. We quantified spatial distance between leaves, and fungal community composition was assayed by terminal restriction fragment length polymorphism. Significant distance‐decay relationships were detected at all but one upland site. This is the first study where changes in fungal community composition were quantified across discrete adjacent habitat patches, providing evidence that fungal distance decay is operational at a scale of centimetres. Although leaves of differing lignin contents were sampled from each site, leaf type was not consistently important in explaining variation in fungal community composition. However, depth of a leaf within the forest floor significantly influenced community composition at five of six sites. Environmental heterogeneity associated with depth could include moisture gradients, relative influence of soil or spore colonization, and impact of forest floor biotic community (i.e. collembola and earthworms). Because the influence of spatial distance and depth on fungal community composition could not be disentangled, both species‐sorting and neutral processes may be embedded within the distance‐decay relationships that we found.  相似文献   

12.

Background and aims

The relations between tree species, microbial diversity and activity can alter ecosystem functioning. We investigated ammonia oxidizing bacteria (AOB) community structure and richness, microbial/environmental factors related to AOB diversity and the relationship between AOB diversity and the nitrification process under several tree species.

Methods

Forest floor (Of, Oh) was sampled under European beech, sessile oak, Norway spruce and Douglas-fir at three sites. AOB community structure was assessed by PCR-DGGE and sequencing. Samples were analyzed for net N mineralization, potential nitrification, basal respiration, microbial biomass, microbial or metabolic quotient, pH, total nitrogen, extractable ammonium, organic matter content and exchangeable cations.

Results

AOB community structure and tree species effect on AOB diversity were site-specific. AOB richness was not related to nitrification. Factors regulating ammonium availability, i.e. net N mineralization or microbial biomass, were related to AOB community structure.

Conclusion

Our research shows that, at larger spatial scales, site specific characteristics may be more important than the nature of tree species in determining AOB diversity (richness and community structure). Within sites, tree species influence AOB diversity. The absence of a relation between AOB richness and nitrification points to a possibly role of AOB abundance, phenotypic plasticity or the implication of ammonia oxidizing archaea.  相似文献   

13.
1. Spatial scale may influence the interpretation of environmental gradients that underlie classification and ordination analyses of lotic macroinvertebrate communities. This could have important consequences for the spatial scale over which predictive models derived from these multivariate analyses can be applied. 2. Macroinvertebrate community data (identified to genus or species) from edge and main-channel habitats were obtained for sites on rivers from 25 of the 29 drainage basins in Victoria. Trends in community similarity were analysed by carrying out separate multivariate analyses on data from the edge habitats (199 sites) and the main-channel habitats (163 sites). 3. Hierarchical classification (UPGMA) showed that the edge data could be placed into 11 site groups and the main-channel data into 12 site groups. 4. Ordination analysis (hybrid multidimensional scaling) showed no sharp disjunctions between site groups in either habitat; overlap was frequent. Correlation of the ordination patterns with environmental variables showed that edge communities varied longitudinally within a drainage basin and from the east to the west of Victoria. These two trends were superimposed on one another to form a single gradient on the ordination. The taxon richness of edge communities was also related to the species richness of macrophytes at a site. Main-channel communities also displayed a longitudinal and a geographic gradient, but these two gradients were uncorrelated on the ordination. 5. Community similarity only weakly reflected geographic proximity in either habitat. A preliminary subdivision of Victoria into a series of biogeographic regions did not match the pattern of distribution of site groups for the edge habitat, illustrating the difficulties of applying to lotic communities a priori regionalizations based on terrestrial features of the landscape. 6. The longitudinal gradients in the two data sets were commonly observed in data gathered at smaller spatial scales in Victoria. The other gradients (geographic, macrophyte), however, were either not consistently repeated or not evident at smaller spatial scales. At small spatial scales (i.e. within a single drainage basin) gradients were related to variables that varied over restricted ranges, e.g. mean particle size of the substratum. 7. Species richness was very variable when plotted against river slope or distance of site from source; both of these are measures of position on the longitudinal gradients. In contrast to suggestions in the literature, species richness did not show a unimodal trend on these gradients, or any other trend. 8. Environmental gradients (apart from longitudinal gradients) that underlie predictive models of macroinvertebrate distribution are reflections of the spatial scale on which the model has been constructed and cannot be extrapolated to different scales. Models must be suited to the spatial scale over which predictions are required.  相似文献   

14.
We evaluated spatial patterns of soil N and C mineralization, microbial community composition (phospholipid fatty acids), and local site characteristics (plant/forest floor cover, soil pH, soil %C and %N) in a 0.25-ha burned black spruce forest stand in interior Alaska. Results indicated that factors governing soil N and C mineralization varied at two different scales. In situ net N mineralization was autocorrelated with microbial community composition at relatively broad scales (∼ ∼8 m) and with local site characteristics (`site' axis 1 of non-metric scaling ordination) at relatively fine scales (2–4 m). At the scale of the individual core, soil moisture was the best predictor of in situ net N mineralization and laboratory C mineralization, explaining between 47 and 67% of the variation (p < 0.001). Ordination of microbial lipid data showed that bacteria were more common in severely burned microsites, whereas fungi were more common in low fire severity microsites. We conclude that C and N mineralization rates in this burned black spruce stand were related to different variables depending on the scale of analysis, suggesting the importance of considering multiple scales of variability among key drivers of C and N transformations.  相似文献   

15.
Fungi have important roles as decomposers, mycorrhizal root symbionts and pathogens in forest ecosystems, but there is limited information about their diversity and composition at the landscape scale. This work aimed to disentangle the factors underlying fungal richness and composition along the landscape‐scale moisture, organic matter and productivity gradients. Using high‐throughput sequencing, we identified soil fungi from 54 low‐productivity Pinus sylvestris‐dominated plots across three study areas in Estonia and determined the main predictors of fungal richness based on edaphic, floristic and spatial variables. Fungal richness displayed unimodal relationship with organic matter and deduced soil moisture. Plant richness and productivity constituted the key predictors for taxonomic richness of functional guilds. Composition of fungi and the main ectomycorrhizal fungal lineages and hyphal exploration types was segregated by moisture availability and soil nitrogen. We conclude that plant productivity and diversity determine the richness and proportion of most functional groups of soil fungi in low‐productive pine forests on a landscape scale. Adjacent stands of pine forest may differ greatly in the dominance of functional guilds that have marked effects on soil carbon and nitrogen cycling in these forest ecosystems.  相似文献   

16.
Soils harbor large, diverse microbial communities critical for local and global ecosystem functioning that are controlled by multiple and poorly understood processes. In particular, while there is observational evidence of relationships between both biotic and abiotic conditions and microbial composition and diversity, there have been few experimental tests to determine the relative importance of these two sets of factors at local scales. Here, we report the results of a fully factorial experiment manipulating soil conditions and plant cover on old‐field mesocosms across a latitudinal gradient. The largest contributor to beta diversity was site‐to‐site variation, but, having corrected for that, we observed significant effects of both plant and soil treatments on microbial composition. Separate phyla were associated with each treatment type, and no interactions between soil and plant treatment were observed. Individual soil characteristics and biotic parameters were also associated with overall beta‐diversity patterns and phyla abundance. In contrast, soil microbial diversity was only associated with site and not experimental treatment. Overall, plant community treatment explained more variation than soil treatment, a result not previously appreciated because it is difficult to dissociate plant community composition and soil conditions in observational studies across gradients. This work highlights the need for more nuanced, multifactorial experiments in microbial ecology and in particular indicates a greater focus on relationships between plant composition and microbial composition during community assembly.  相似文献   

17.
Aims Studies of species distribution patterns traditionally have been conducted at a single scale, often overlooking species–environment relationships operating at finer or coarser scales. Testing diversity-related hypotheses at multiple scales requires a robust sampling design that is nested across scales. Our chief motivation in this study was to quantify the contributions of different predictors of herbaceous species richness at a range of local scales.Methods Here, we develop a hierarchically nested sampling design that is balanced across scales, in order to study the role of several environmental factors in determining herbaceous species distribution at various scales simultaneously. We focus on the impact of woody vegetation, a relatively unexplored factor, as well as that of soil and topography. Light detection and ranging (LiDAR) imaging enabled precise characterization of the 3D structure of the woody vegetation, while acoustic spectrophotometry allowed a particularly high-resolution mapping of soil CaCO 3 and organic matter contents.Important findings We found that woody vegetation was the dominant explanatory variable at all three scales (10, 100 and 1000 m 2), accounting for more than 60% of the total explained variance. In addition, we found that the species richness–environment relationship was scale dependent. Many studies that explicitly address the issue of scale do so by comparing local and regional scales. Our results show that efforts to conserve plant communities should take into account scale dependence when analyzing species richness–environment relationships, even at much finer resolutions than local vs. regional. In addition, conserving heterogeneity in woody vegetation structure at multiple scales is a key to conserving diverse herbaceous communities.  相似文献   

18.

Background and Aims

Ecosystem recovery following disturbance requires the reestablishment of key soil biogeochemical processes. This long-term 7 year study describes effects of organic material, moisture, and vegetation on soil microbial community development in the Athabasca Oil Sands Region of Western Canada.

Methods

Phospholipid fatty acid analysis was used to characterize and compare soil microbial community composition and development on reclaimed and natural forest sites. Additionally, we conducted a laboratory moisture manipulation experiment.

Results

The use of forest floor material as an organic amendment resulted in a greater percent cover of upland vegetation and placed the soil microbial community on a faster trajectory towards ecosystem recovery than did the use of a peat amendment. The soil microbial composition within the reclaimed sites exhibited a greater response to changes in moisture than did the soil microbial communities from natural sites.

Conclusion

Our research shows that the use of native organic amendment (forest floor) on reclaimed sites, and the associated establishment of native vegetation promote the development of soil microbial communities more similar to those found on natural forest sites. Additionally, soil microbial communities from natural sites may be more resistant to changes in soil moisture than those found on reclaimed sites.  相似文献   

19.

Environmental gradients are known to drive changes in mean trait values, but changes in the trait integration strength across local communities are less well understood, particularly with regard to possible links with species richness variation. Here, we tested if climate, soil, and topography gradients drive species richness indirectly via constraints on trait integration in the Atlantic Forest of South America. We evaluated seven traits (from leaf, wood, seed, and plant size) of 1456 species occurring across 84 local communities. Generalized least square models and a path model were applied to test direct and indirect relationships. Correlations were higher between leaf traits (average r?=?0.28) and lower when other traits were included (average r?=?0.16). In line with this result, species richness was related to a multivariate index of interspecific trait integration (ITI) computed for leaf traits, but not to the ITI for all the seven traits. Abiotic gradients influenced species richness both directly and indirectly through the leaf trait integration. A total of 33% and 26% of the variation in species richness and ITI, respectively, were explained by the models, with climatic conditions showing higher contribution than topographic and edaphic factors. These results support a significant but reduced environmental selection role behind the trait-based community assembly and may suggest that other processes are involved in the constrain of trait integration at larger spatial scales. In addition, different directional trends in trait–trait relationships across local communities suggest that global trait relationships may not necessarily hold at local contexts.

  相似文献   

20.
以内蒙古克鲁伦河流域呼伦贝尔典型草原为对象,设置了轻度、中度和重度退化3种类型样地,研究不同程度退化草原的物种组成、地上生物量、土壤理化性状、土壤微生物数量和酶活性,以及微生物生物量的变化.结果表明: 中度退化样地的群落物种丰富度最大,轻度退化样地的地上生物量显著高于重度退化样地.退化样地的土壤水分、养分(有机质、全氮),微生物量碳、氮,以及微生物数量和酶活性显著下降,土壤容重显著增加.退化样地的土壤微生物生物量碳、氮在128~185和5.6~13.6 g·kg-1,土壤脱氢酶和脲酶活性均与土壤容重呈显著负相关,与土壤全氮、有机质、微生物数量以及微生物生物量碳、氮呈显著正相关,地上生物量与土壤细菌和真菌数量呈不同程度的正相关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号