首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is controversial whether the accessory human immunodeficiency virus type 1 (HIV-1) Nef protein inhibits or enhances apoptosis. To address this issue, we investigated the effect of Nef on programmed cell death with vectors or proviral HIV-1 constructs coexpressing Nef and green fluorescent protein from single bicistronic RNAs. This approach allows us to readily identify transfected or infected cells and to correlate cell death directly with Nef expression levels. We demonstrate that Nef does not significantly affect apoptosis in transfected or HIV-1-infected Jurkat T cells or primary human peripheral blood mononuclear cells. Unexpectedly, however, both nef+ and nef-defective HIV-1 infection blocked apoptosis in cells treated with UV light or etoposide but not cell death induced by CD95 antibody, TRAIL, Ly294002, or serum starvation. Our results show that HIV-1 infection inhibits DNA damage-induced but not death receptor-dependent cell death by a Nef-independent mechanism.  相似文献   

2.
3.
Cell survival and death-inducing signals are tightly associated with each other, and the decision as to whether a cell survives or dies is determined by controlling the relationship between these signals. However, the mechanism underlying the reciprocal regulation of such signals remains unclear. In this study, we reveal a functional association between PDK1 (3-phosphoinositide-dependent protein kinase 1), a critical mediator of cell survival, and ASK1 (apoptosis signal-regulating kinase 1), an apoptotic stress-activated MAPKKK. The physical association between PDK1 and ASK1 is mediated through the pleckstrin homology domain of PDK1 and the C-terminal regulatory domain of ASK1 and is decreased by ASK1-activating stimuli, such as H2O2, tumor necrosis factor α, thapsigargin, and ionomycin, as well as insulin, a PDK1 stimulator. Wild-type PDK1, but not kinase-dead PDK1, negatively regulates ASK1 activity by phosphorylating Ser967, a binding site for 14-3-3 protein, on ASK1. PDK1 functionally suppresses ASK1-mediated AP-1 transactivation and H2O2-mediated apoptosis in a kinase-dependent manner. On the other hand, ASK1 has been shown to inhibit PDK1 functions, including PDK1-mediated regulation of apoptosis and cell growth, by phosphorylating PDK1 at Ser394 and Ser398, indicating that these putative phosphorylation sites are involved in the negative regulation of PDK1 activity. These results provide evidence that PDK1 and ASK1 directly interact and phosphorylate each other and act as negative regulators of their respective kinases in resting cells.  相似文献   

4.
Human immunodeficiency virus type 1 (HIV-1) infection is characterized by progressive depletion of CD4+ T lymphocytes and dysfunction of the immune system. The numbers of CD4+ T lymphocytes in the human body are maintained constantly by homeostatic mechanisms that failed during HIV-1 infection, resulting in progressive loss of CD4+ T cells mainly via apoptosis. Recently, a non-apoptotic form of necrotic programmed cell death, named necroptosis, has been investigated in many biological and pathological processes. We then determine whether HIV-1-infected cells also undergo necroptosis. In this report, we demonstrate that HIV-1 not only induces apoptosis, but also mediates necroptosis in the infected primary CD4+ T lymphocytes and CD4+ T-cell lines. Necroptosis-dependent cytopathic effects are significantly increased in HIV-1-infected Jurkat cells that is lack of Fas-associated protein-containing death domain (FADD), indicating that necroptosis occurs as an alternative cell death mechanism in the absence of apoptosis. Unlike apoptosis, necroptosis mainly occurs in HIV-infected cells and spares bystander damage. Treatment with necrostatin-1(Nec-1), a RIP1 inhibitor that specifically blocks the necroptosis pathway, potently restrains HIV-1-induced cytopathic effect and interestingly, inhibits the formation of HIV-induced syncytia in CD4+ T-cell lines. This suggests that syncytia formation is mediated, at least partially, by necroptosis-related processes. Furthermore, we also found that the HIV-1 infection-augmented tumor necrosis factor-alpha (TNF-α) plays a key role in inducing necroptosis and HIV-1 Envelope and Tat proteins function as its co-factors. Taken together,necroptosis can function as an alternative cell death pathway in lieu of apoptosis during HIV-1 infection, thereby also contributing to HIV-1-induced cytopathic effects. Our results reveal that in addition to apoptosis, necroptosis also plays an important role in HIV-1-induced pathogenesis.  相似文献   

5.

Background

The Nef protein can be detected in plasma of HIV-1-infected patients and plays a role in the pathogenesis of HIV-1. Nef produced during the early stages of infection is fundamental in creating the ideal environment for viral replication, e.g. by reducing the ability of infected cells to induce an immune response.

Aim

Based on previous experience showing that both Tat and gp41 of HIV-1 are potent chemotactic factors for basophils and mast cells, and gp120 is a powerful stimulus for the release of histamine and cytokines (IL-4 and IL-13) from basophils, in this study we aimed to verify if the HIV Nef protein can exert some effects on basophils and mast cells purified from healthy volunteers through the interaction with the CXCL12 receptor, CXCR4.

Methods

Basophils purified from peripheral blood cells of 30 healthy volunteers and mast cells obtained from lung tissue of ten healthy volunteers were tested by flow cytometric analysis, chemotaxis and chemokine production by ELISA assays.

Results

Nef is a potent chemoattractant for basophils and lung mast cells obtained from healthy, HIV-1 and HIV-2 seronegative individuals. Incubation of basophils and mast cells with Nef induces the release of chemokines (CXCL8/IL-8 and CCL3/MIP-1α). The chemotactic activity of Nef on basophils and mast cells is mediated by the interaction with CXCR4 receptors, being blocked by preincubation of FcεRI+ cells with an anti-CXCR4 Ab. Stimulation with Nef or CXCL12/SDF-1α, a CXCR4 ligand, desensitizes basophils to a subsequent challenge with an autologous or heterologous stimulus.

Conclusions

These results indicate that Nef, a HIV-1-encoded α-chemokine homolog protein, plays a direct role in basophils and mast cell recruitment and activation at sites of HIV-1 replication, by promoting directional migration of human FcεRI+ cells and the release of chemokines from these cells. Together with our previous results, these data suggest that FcεRI+ cells contribute to the dysregulation of the immune system in HIV-1 infection.
  相似文献   

6.
Human immunodeficiency virus-1 (HIV-1) impairs tumor necrosis factor-α (TNF-α)-mediated macrophage apoptosis induced by Mycobacterium tuberculosis (Mtb). HIV Nef protein plays an important role in the pathogenesis of AIDS. We have tested the hypothesis that exogenous Nef is a factor that inhibits TNF-α production/apoptosis in macrophages infected with Mtb. We demonstrate that Mtb and Nef individually trigger TNF-α production in macrophages. However, TNF-α production is dampened when the two are present simultaneously, probably through cross-regulation of the individual signaling pathways leading to activation of the TNF-α promoter. Mtb-induced TNF-α production is abrogated upon mutation of the Ets, Egr, Sp1, CRE, or AP1 binding sites on the TNF-α promoter, whereas Nef-mediated promoter activation depends only on the CRE and AP1 binding sites, pointing to differences in the mechanisms of activation of the promoter. Mtb-dependent promoter activation depends on the mitogen-activated kinase (MAPK) kinase kinase ASK1 and on MEK/ERK signaling. Nef inhibits ASK1/p38 MAPK-dependent Mtb-induced TNF-α production probably by inhibiting binding of ATF2 to the TNF-α promoter. It also inhibits MEK/ERK-dependent Mtb-induced binding of FosB to the promoter. Nef-driven TNF-α production occurs in an ASK1-independent, Rac1/PAK1/p38 MAPK-dependent, and MEK/ERK-independent manner. The signaling pathways used by Mtb and Nef to trigger TNF-α production are therefore distinctly different. In addition to attenuating Mtb-dependent TNF-α promoter activation, Nef also reduces Mtb-dependent TNF-α mRNA stability probably through its ability to inhibit ASK1/p38 MAPK signaling. These results provide new insight into how HIV Nef probably exacerbates tuberculosis infection by virtue of its ability to dampen Mtb-induced TNF-α production.  相似文献   

7.
HIV-1 Nef protein has key roles at almost all stages of the viral life cycle. We assessed the role of Nef and of the translation elongation factor eEF1A in primary human macrophages. Nuclear retention experiments and inhibition of the exportin-t (Exp-t) pathway suggested that cytoplasmic relocalization of eEF1A, mediated by Exp-t occurs in Nef-treated monocyte-derived macrophages (MDMs). We observed the presence of tRNA in the Nef/eEF1A complexes. Nucleocytoplasmic relocalization of the Nef/eEF1A complexes prevented stress-induced apoptosis of MDMs treated with brefeldin A. Blockade of stress-induced apoptosis of MDMs treated with HIV-1 Nef resulted from enhanced nucleocytoplasmic transport of eEF1A with decreased release of mitochondrial cytochrome c, and from increased tRNA binding to cytochrome c, ultimately leading to an inhibition of caspase activation. Our results indicate that HIV-1 Nef, through the nucleocytoplasmic relocalization of eEF1A and tRNAs, enhances resistance to stress-induced apoptosis in primary human macrophages.  相似文献   

8.
HIV-1 Nef protein has key roles at almost all stages of the viral life cycle. We assessed the role of the Nef/eEF1A (eukaryotic translation elongation factor 1-alpha) complex in nucleocytoplasmic shuttling in primary human macrophages. Nuclear retention experiments and inhibition of the exportin-t (Exp-t) pathway suggested that cytoplasmic relocalization of eEF1A, mediated by Exp-t, occurs in Nef-treated monocyte-derived macrophages (MDMs). We observed the presence of tRNA in the Nef/eEF1A complexes. Nucleocytoplasmic relocalization of the Nef/eEF1A complexes prevented stress-induced apoptosis of MDMs treated with brefeldin-A. Blockade of stress-induced apoptosis of MDMs treated with HIV-1 Nef resulted from enhanced nucleocytoplasmic transport of eEF1A with decreased release of mitochondrial cytochrome c, and from increased tRNA binding to cytochrome c, ultimately leading to an inhibition of caspase activation. Our results indicate that HIV-1 Nef, through the nucleocytoplasmic relocalization of eEF1A and tRNAs, enhances resistance to stress-induced apoptosis in primary human macrophages.  相似文献   

9.
Serine-threonine kinase receptor-associated protein (STRAP) interacts with transforming growth factor β (TGF-β) receptors and inhibits TGF-β signaling. Here, we identify STRAP as an interacting partner of ASK1 (apoptosis signal-regulating kinase 1). The association between ASK1 and STRAP is mediated through the C-terminal domain of ASK1 and the fourth and sixth WD40 repeats of STRAP. Using cysteine-to-serine amino acid substitution mutants of ASK1 (C1005S, C1351S, C1360S, and C1351S/C1360S) and STRAP (C152S, C270S, and C152S/C270S), we demonstrated that Cys1351 and Cys1360 of ASK1 and Cys152 and Cys270 of STRAP are required for ASK1-STRAP binding. ASK1 phosphorylated STRAP at Thr175 and Ser179, suggesting a potential role for STRAP phosphorylation in ASK1 activity regulation. Expression of wild-type STRAP, but not STRAP mutants (C152S/C270S and T175A/S179A), inhibited ASK1-mediated signaling to both JNK and p38 kinases by stabilizing complex formation between ASK1 and its negative regulators, thioredoxin and 14-3-3, or decreasing complex formation between ASK1 and its substrate MKK3. In addition, STRAP suppressed H2O2-mediated apoptosis in a dose-dependent manner by inhibiting ASK1 activity through direct interaction. These results suggest that STRAP can act as a negative regulator of ASK1.  相似文献   

10.
11.
Prolonged immune activation drives the upregulation of multiple checkpoint receptors on the surface of virus-specific T cells, inducing their exhaustion. Reversing HIV-1-induced T cell exhaustion is imperative for efficient virus clearance; however, viral mediators of checkpoint receptor upregulation remain largely unknown. The enrichment of checkpoint receptors on T cells upon HIV-1 infection severely constrains the generation of an efficient immune response. Herein, we examined the role of HIV-1 Nef in mediating the upregulation of checkpoint receptors on peripheral blood mononuclear cells. We demonstrate that the HIV-1 accessory protein Nef upregulates cell surface levels of the checkpoint receptor T-cell immunoglobulin mucin domain-3 (Tim-3) and that this is dependent on Nef''s dileucine motif LL164/165. Furthermore, we used a bimolecular fluorescence complementation assay to demonstrate that Nef and Tim-3 form a complex within cells that is abrogated upon mutation of the Nef dileucine motif. We also provide evidence that Nef moderately promotes Tim-3 shedding from the cell surface in a dileucine motif–dependent manner. Treating HIV-1-infected CD4+ T cells with a matrix metalloprotease inhibitor enhanced cell surface Tim-3 levels and reduced Tim-3 shedding. Finally, Tim-3-expressing CD4+ T cells displayed a higher propensity to release the proinflammatory cytokine interferon-gamma. Collectively, our findings uncover a novel mechanism by which HIV-1 directly increases the levels of a checkpoint receptor on the surface of infected CD4+ T cells.  相似文献   

12.

Background

Failure to regulate the levels of Cdc25A phosphatase during the cell cycle or during a checkpoint response causes bypass of DNA damage and replication checkpoints resulting in genomic instability and cancer. During G1 and S and in cellular response to DNA damage, Cdc25A is targeted for degradation through the Skp1-cullin-β-TrCP (SCFβ-TrCP) complex. This complex binds to the Cdc25A DSG motif which contains serine residues at positions 82 and 88. Phosphorylation of one or both residues is necessary for the binding and degradation to occur.

Results

We now show that mutation of serine 88 to phenylalanine, which is a cancer-predisposing polymorphic variant in humans, leads to early embryonic lethality in mice. The mutant protein retains its phosphatase activity both in vitro and in cultured cells. It fails to interact with the apoptosis signal-regulating kinase 1 (ASK1), however, and therefore does not suppress ASK1-mediated apoptosis.

Conclusions

These data suggest that the DSG motif, in addition to its function in Cdc25A-mediated degradation, plays a role in cell survival during early embyogenesis through suppression of ASK1-mediated apoptosis.
  相似文献   

13.
The lentiviral protein Nef plays a major role in the pathogenesis of human immunodeficiency virus type I (HIV-1) infection. Although the exact mechanisms of its actions are not fully understood, Nef has been shown to be essential for the maintenance of high-titer viral replication and disease pathogenesis in in vivo models of simian immunodeficiency virus infection of monkeys. Nef has also been suggested to play a pivotal role in the depletion of T cells by promoting apoptosis in bystander cells. In this context, we investigated the ability of extracellular and endogenously expressed HIV-1 Nef to induce apoptosis in primary human brain microvascular endothelial cells (MVECs). Human brain MVECs were exposed to baculovirus-expressed HIV-1 Nef protein, an HIV-1-based vector expressing Nef, spleen necrosis virus (SNV)-Nef virus (i.e., SNV vector expressing HIV-1 Nef as a transgene), and the HIV-1 strain ADA and its Nef deletion mutant, ADADeltaNef. We observed that ADA Nef, the HIV-1 vector expressing Nef, and SNV-Nef were able to induce apoptosis in a dose-dependent manner. The mutant virus with a deletion in Nef was able to induce apoptosis in MVECs to modest levels, but the effects were not as pronounced as with the wild-type HIV-1 strain, ADA, the HIV-1-based vector expressing Nef, or SNV-Nef viruses. We also demonstrated that relatively high concentrations of exogenous HIV-1 Nef protein were able to induce apoptosis in MVECs. Gene microarray analyses showed increases in the expression of several specific proapoptotic genes. Western blot analyses revealed that the various caspases involved with Nef-induced apoptosis are processed into cleavage products, which occur only during programmed cell death. The results of this study demonstrate that Nef likely contributes to the neuroinvasion and neuropathogenesis of HIV-1, through its effects on select cellular processes, including various apoptotic cascades.  相似文献   

14.
A Greenway  A Azad  J Mills    D McPhee 《Journal of virology》1996,70(10):6701-6708
It is now well established that human immunodeficiency virus type I (HIV-1) Nef contributes substantially to disease pathogenesis by augmenting virus replication and markedly perturbing T-cell function. The effect of Nef on host cell activation could be explained in part by its interaction with specific cellular proteins involved in signal transduction, including at least a member of the src family kinase, Lck, and the serine/threonine kinase, mitogen-activated protein kinase (MAPK). Recombinant Nef directly interacted with purified Lck and MAPK in coprecipitation experiments and binding assays. A proline-rich repeat sequence [(Pxx)4] in Nef occurring between amino acid residues 69 to 78 is highly conserved and bears strong resemblance to a defined consensus sequence identified as an SH3 binding domain present in several proteins which can interact with the SH3 domain of various signalling and cytoskeletal proteins. Binding and coprecipitation assays with short synthetic peptides corresponding to the proline-rich repeat sequence [(Pxx)4] of Nef and the SH2, SH3, or SH2 and SH3 domains of Lck revealed that the interaction between these two proteins is at least in part mediated by the proline repeat sequence of Nef and the SH3 domain of Lck. In addition to direct binding to full-length Nef, MAPK was also shown to bind the same proline repeat motif. Nef protein significantly decreased the in vitro kinase activity of Lck and MAPK. Inhibition of key members of signalling cascades, including those emanating from the T-cell receptor, by the HIV-1 Nef protein undoubtedly alters the ability of the infected T cell to respond to antigens or cytokines, facilitating HIV-1 replication and contributing to HIV-1-induced disease pathogenesis.  相似文献   

15.
HIV-1 Nef is an accessory protein responsible for inactivation of a number of host cell proteins essential for anti-viral immune responses. In most cases, Nef binds to the target protein and directs it to a degradation pathway. Our previous studies demonstrated that Nef impairs activity of the cellular cholesterol transporter, ABCA1, and that Nef interacts with ABCA1. Mutation of the 2226DDDHLK motif in the C-terminal cytoplasmic tail of ABCA1 disrupted interaction with Nef. Here, we tested Nef interaction with the ABCA1 C-terminal cytoplasmic fragment using yeast 2-hybrid system assay and co-immunoprecipitation analysis in human cells. Surprisingly, analysis in a yeast 2-hybrid system did not reveal any interaction between Nef and the C-terminal cytoplasmic fragment of ABCA1. Using co-immunoprecipitation from HEK 293T cells expressing these polypeptides, only a very weak interaction could be detected. The 2226DDDHLK motif in the C-terminal cytoplasmic tail of ABCA1 found previously to be essential for interaction between ABCA1 and Nef is insufficient to bestow strong binding to Nef. Molecular modeling suggested that interaction with Nef may be mediated by a conformational epitope composed of the sequences within the cytoplasmic loop of ABCA1 and the C-terminal cytoplasmic domain. Studies are now underway to characterize this epitope.  相似文献   

16.
17.
Nef is a multifunctional gene of HIV which can increase virus replication either directly or by modulating the target cell's metabolism. Nevertheless the role of the exogenous Nef protein is not yet well understood. To investigate it, we studied the effects of the recombinant Nef protein on the expression of some antigens of lymphoid T‐cells permissive to HIV‐1 replication, and on their proliferation and on apoptosis induction. For this purpose, we utilised MT‐4 and H9 T‐cell lines. We evaluated FN (fibronectin), CD4 and CD71 expression in uninfected and acutely or chronically infected cells, both untreated and treated with Nef. Our studies showed a significant up‐regulation of FN especially in uninfected cells, with a dose of 2·5 μg ml−1; in contrast, a significant down‐modulation of CD4 and CD71 both in uninfected and in acutely or chronically infected cells, was detected. The proliferation of H9 uninfected cells was significantly reduced 24 h after treatment with Nef protein in a dose‐dependent manner (ranging from 0·02 to 2·5 μg ml−1); likewise a significant inhibition of proliferation of acutely and chronically infected cells was evident with 2·5 μg ml−1. Moreover, we demonstrated a dose‐dependent activity of Nef on inducing apoptosis in H9 uninfected cells and no effects of this protein on modulation of INF α and γ production in peripheral blood mononucleated cells of health donors. Nef appeared to be able to increase the effect of apoptotic stimuli. In conclusion, our data suggest that in our experimental system, the exogenous Nef protein can inhibit cellular synthesis facilitating the metabolic pathway involved in virus replication. In addition it modulates the susceptibility to the HIV‐1 infection and finally, that apoptosis induction or enhancement can facilitate the release of neoformed virions. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
Haller C  Rauch S  Fackler OT 《PloS one》2007,2(11):e1212
The Nef protein acts as critical factor during HIV pathogenesis by increasing HIV replication in vivo via the modulation of host cell vesicle transport and signal transduction processes. Recent studies suggested that Nef alters formation and function of immunological synapses (IS), thereby modulating exogenous T-cell receptor (TCR) stimulation to balance between partial T cell activation required for HIV-1 spread and prevention of activation induced cell death. Alterations of IS function by Nef include interference with cell spreading and actin polymerization upon TCR engagement, a pronounced intracellular accumulation of the Src kinase Lck and its reduced IS recruitment. Here we use a combination of Nef mutagenesis and pharmacological inhibition to analyze the relative contribution of these effects to Nef mediated alterations of IS organization and function on TCR stimulatory surfaces. Inhibition of actin polymerization and IS recruitment of Lck were governed by identical Nef determinants and correlated well with Nef's association with Pak2 kinase activity. In contrast, Nef mediated Lck endosomal accumulation was separable from these effects, occurred independently of Pak2, required integrity of the microtubule rather than the actin filament system and thus represents a distinct Nef activity. Finally, reduction of TCR signal transmission by Nef was linked to altered actin remodeling and Lck IS recruitment but did not require endosomal Lck rerouting. Thus, Nef affects IS function via multiple independent mechanisms to optimize virus replication in the infected host.  相似文献   

19.
Interaction of the human immunodeficiency virus type 1 (HIV-1) Nef protein with p21-activated kinase 2 (PAK2) has been proposed to play a role in T-cell activation, viral replication, apoptosis, and progression to AIDS. However, these hypotheses were based on results obtained using Nef mutants impaired in multiple functions. Recently, it was reported that Nef residue F191 is specifically involved in PAK2 binding. However, only a limited number of Nef activities were investigated in these studies. To further evaluate the role of F191 in Nef function and to elucidate the biological relevance of Nef-PAK2 interaction, we performed a comprehensive analysis of HIV-1 Nef mutants carrying F191H and F191R mutations. We found that the F191H mutation reduces and the F191R mutation disrupts the association of Nef with PAK2. Both mutants upregulated the major histocompatibility complex II (MHC-II)-associated invariant chain and downregulated CD4, MHC-I, and CD28, although with reduced efficiency for the latter. Furthermore, the F191H/R changes neither affected the levels of interleukin-2 receptor expression and apoptosis of HIV-1-infected primary T cells nor reduced Nef-mediated induction of NFAT. Unexpectedly, the F191H change markedly reduced and the F191R mutation disrupted the ability of Nef to enhance virion infectivity in P4-CCR5 indicator cells but not in TZM-bl cells or peripheral blood mononuclear cells. Most importantly, all HIV-1 Nef mutants replicated efficiently and caused CD4+ T-cell depletion in ex vivo-infected human lymphoid tissue. Altogether, our data show that the interaction of Nef with PAK2 does not play a major role in T-cell activation, viral replication, and apoptosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号