首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bryozoan genus Scrupocellaria comprises about 80 species in the family Candidae. We propose a hypothesis for the phylogenetic relationships among species assigned to Scrupocellaria to serve as framework for a phylogenetic classification using 35 morphological characters. Our results suggest that the genus Scrupocellaria is polyphyletic. Scrupocellaria s. str. is redefined according to four morphological features: vibracular chamber with a curved setal groove, ooecium with a single ectooecial fenestra, two axillary vibracula, and a membranous operculum with a distinct distal rim. Thus, the genus includes only 11 species: Scrupocellaria aegeensis, Scrupocellaria delilii, Scrupocellaria harmeri, Scrupocellaria incurvata, Scrupocellaria inermis, Scrupocellaria intermedia, Scrupocellaria jullieni, Scrupocellaria minuta, Scrupocellaria puelcha, Scrupocellaria scrupea, and Scrupocellaria scruposa. The monophyly of Cradoscrupocellaria is supported and five new genera are erected: Aquiloniella n. gen., Aspiscellaria n. gen., Paralicornia n. gen., Pomocellaria n. gen. and Scrupocaberea n. gen. Two other new genera, Bathycellaria n. gen. and Sinocellaria n. gen., are erected to accommodate two poorly known species, Scrupocellaria profundis Osburn and Scrupocellaria uniseriata Liu, respectively. Scrupocellaria congesta is tentatively assigned to Tricellaria. Fifteen species are reassigned to Licornia: Licornia cookie n. comb., Licornia micheli n. comb., Licornia milneri n. comb., Licornia curvata n. comb., Licornia diegensis n. comb., Licornia drachi n. comb., Licornia mexicana n. comb., Licornia pugnax n. comb., Licornia raigadensis n. comb., Licornia regularis n. comb., Licornia resseri n. comb., Licornia securifera n. comb., Licornia spinigera n. comb., Licornia tridentata n. comb., and Licornia wasinensis n. comb. Notoplites americanus n. name is proposed as a replacement name for Scrupocellaria clausa Canu & Bassler. Three fossil species are reassigned to Canda: Canda rathbuni n. comb., Canda triangulata n. comb. and Canda williardi n. comb. A species is reassigned to Notoplites, Notoplites elegantissima n. comb. The generic assignment of eleven species of Scrupocellaria, including Scrupocellaria macandrei, remains uncertain.  相似文献   

2.
A new Early Eocene tapiromorph, Meridiolophus expansus gen. et sp. nov., from the Sanshui Basin, Guangdong Province, China, is described and discussed. It is the first reported Eocene mammal from the basin. The new taxon, represented by a left fragmentary mandible, is characterized by an expanded anterior symphyseal region, a long diastema between c1 and p1, a rather short diastema between p1 and p2, smaller premolars relative to molars, an incipient metaconid appressed to the protoconid on p3, a prominent entoconid on p4, molar metaconid not twinned, cristid obliqua extending mesially and slightly lingually from the hypoconid, inclined metalophid and hypolophid, and small hypoconulid on the lower preultimate molars. Meridiolophus is morphologically intermediate between basal Homogalax-like taxa and derived tapiromorphs (such as Heptodon). Phylogenetic analysis indicates Equidae is more closely related to Tapiromorpha than to Palaeotheriidae, although the latter is only represented by a single species Pachynolophus eulaliensis. ‘Isectolophidae’, with exception of Meridiolophus and Karagalax, has the closest affinity with Chalicotherioidea. Furthermore, the majority rule consensus tree shows that Meridiolophus is closer to Karagalax than to any other ‘isectolophid’, and both genera represent stem taxa to crown group Ceratomorpha.  相似文献   

3.
New coleoid cephalopods, assignable to the order Sepiida, are recorded from the Selandian/Thanetian boundary interval (Middle to Upper Paleocene transition, c. 59.2 Ma) along the southeastern margin (Toshka Lakes) of the Western Desert in Egypt. The two genera recognised, Aegyptosaepia n. gen. and ?Anomalosaepia Weaver and Ciampaglio, are placed in the families Belosaepiidae and ?Anomalosaepiidae, respectively. They constitute the oldest record to date of sepiids with a ‘rostrum-like’ prong. In addition, a third, generically and specifically indeterminate coleoid is represented by a single rostrum-like find. The taxonomic assignment of the material is based on apical parts (as preserved), i.e., guard, apical prong (or ‘rostrum-like’ structure), phragmocone and (remains of) protoconch, plus shell mineralogy. We here confirm the shell of early sepiids to have been bimineralic, i.e., composed of both calcite and aragonite. Aegyptosaepia lugeri n. gen., n. sp. reveals some similarities to later species of Belosaepia, in particular the possession of a distinct prong. General features of the phragmocone and protoconch of the new form are similar to both Belocurta (Middle Danian [Lower Paleocene]) and Belosaepia (Eocene). However, breviconic coiling and the presence of a longer ventral conotheca indicate closer ties with late Maastrichtian–Middle Danian Ceratisepia. In this respect, Aegyptosaepia n. gen. constitutes a link between Ceratisepia and the Eocene Belosaepia. The occurrence of the new genus near the Selandian/Thanetian boundary suggests an earlier origin of belosaepiids, during the early to Middle Paleocene. These earliest known belosaepiids may have originated in the Tethyan Realm. From northeast Africa, they subsequently spread to western India, the Arabian Plate and, probably via the Mediterranean region, to Europe and North America.  相似文献   

4.
This synopsis provides an identification key to the genera of Tribe Lachnophorini of the Western and Eastern Hemispheres including five genera previously misplaced in carabid classifications. The genus Asklepia Liebke, 1938 is revised with 23 new species added and four species reassigned from Eucaerus LeConte, 1853 to Asklepia Liebke, 1938. In addition, a new genus is added herein to the Tribe: Peruphorticus gen. n. with its type species P. gulliveri sp. n. from Perú. Five taxa previously assigned to other tribes have adult attributes that make them candidates for classification in the Lachnophorini: Homethes Newman, Aeolodermus Andrewes, Stenocheila Laporte de Castelnau, Diplacanthogaster Liebke, and Selina Motschulsky are now considered to belong to the Lachnophorini as genera incertae sedis. Three higher level groups are proposed to contain the 18 recognized genera: the Lachnophorina, Eucaerina, and incertae sedis.Twenty-three new species of the genus Asklepia are described and four new combinations are presented. They are listed with their type localities as follows: (geminata species group) Asklepia geminata (Bates, 1871), comb. n, Santarém, Rio Tapajós, Brazil; (hilaris species group) Asklepia campbellorum Zamorano & Erwin, sp. n., 20 km SW Manaus, Brazil, Asklepia demiti Erwin & Zamorano, sp. n., circa Rio Demiti, Brazil, Asklepia duofos Zamorano & Erwin, sp. n., 20 km SW Manaus, Brazil, Asklepia hilaris (Bates, 1871), comb. n, São Paulo de Olivença, Brazil, Asklepia grammechrysea Zamorano & Erwin, sp. n., circa Pithecia, Cocha Shinguito, Perú, Asklepia lebioides (Bates, 1871), comb. n, Santarém, Rio Tapajós, Brazil, Asklepia laetitia Zamorano & Erwin, sp. n., Leticia, Colombia, Asklepia matomena Zamorano & Erwin, sp.n., 20 km SW Manaus, Brazil; (pulchripennis species group) Asklepia adisi Erwin & Zamorano, sp. n., Ilha de Marchantaria, Lago Camaleão, Brazil, Asklepia asuncionensis Erwin & Zamorano, sp. n., Asunción, Río Paraguay, Paraguay, Asklepia biolat Erwin & Zamorano, sp. n., BIOLAT Biological Station, Pakitza, Perú, Asklepia bracheia Zamorano & Erwin, sp. n., circa Explornapo Camp, Río Napo, Cocha Shimagai, Perú, Asklepia cuiabaensis Erwin & Zamorano, sp. n., Cuiabá, Brazil, Asklepia ecuadoriana Erwin & Zamorano, sp. n., Limoncocha, Ecuador, Asklepia kathleenae Erwin & Zamorano, sp. n., Belém, Brazil, Asklepia macrops Erwin & Zamorano, sp. n., Concordia, Río Uruguay, Argentina, Asklepia marchantaria Erwin & Zamorano, sp. n., Ilha de Marchantaria, Lago Camaleão, Brazil, Asklepia marituba Zamorano & Erwin, sp. n., Marituba, Ananindeua, Brazil, Asklepia paraguayensis Zamorano & Erwin, sp. n., San Lorenzo, Rio Paraguay, Paraguay, Asklepia pakitza Erwin & Zamorano, sp. n., BIOLAT Biological Station, Pakitza, Perú, Asklepia pulchripennis (Bates, 1871), comb. n, Santarém, Rio Tapajós, Brazil, Asklepia samiriaensis Zamorano & Erwin, sp. n., Boca del Río Samiria, Perú, Asklepia stalametlitos Zamorano & Erwin, sp. n., Guayamer, Río Mamoré, Bolivia, Asklepia strandi Liebke, 1938, Guyana, Asklepia surinamensis Zamorano & Erwin, sp. n., l’Hermitage, Surinam River, Surinam, Asklepia vigilante Erwin & Zamorano, sp. n., Boca del Río Samiria, Perú. Images of adults of all 18 genera are provided.  相似文献   

5.
Two North American species of green lacewings have undergone a number of changes in their generic assignments and are currently classified as incertae sedis. Here we demonstrate that adults (both sexes) and larvae of these species share a set of features that distinguishes them from currently described genera. Thus, to promote nomenclatural stability in Chrysopidae, we describe Kymachrysa, a gen. n. that contains the two species – Kymachrysa intacta (Navás), comb. n. and Kymachrysa placita (Banks), comb. n.. Also, we present modifications for the current generic-level key, illustrations, as well as biological information for identifying the genus and its known species.  相似文献   

6.
Recent discoveries reveal that southern China’s karsts hold the most diverse and morphologically modified subterranean trechine beetles in the world, albeit the first troglobitic blind beetle was only reported in the early 1990’s. In total, 110 species belonging to 43 genera of cavernicolous trechines have hitherto been recorded from the karsts of southern China, including the following five new genera proposed below: Shiqianaphaenops Tian, gen. n., to contain two species: Shiqianaphaenops majusculus (Uéno, 1999) (= Shenaphaenops majusculus Uéno, 1999, comb. n.), the type species from Cave Feng Dong, Shiqian, Guizhou, and Shiqianaphaenops cursor (Uéno, 1999) (= Shenaphaenops cursor Uéno, 1999, comb. n.), from Cave Shenxian Dong, Shiqian, Guizhou; and the monotypic Dianotrechus Tian, gen. n. (the type species: Dianotrechus gueorguievi Tian, sp. n., from Cave Dashi Dong, Kunming, Yunnan), Tianeotrechus Tian & Tang, gen. n. (the type species: Tianeotrechus trisetosus Tian & Tang, sp. n., from Cave Bahao Dong, Tian’e County, Guangxi), Huoyanodytes Tian & Huang, gen. n. (the type species: Huoyanodytes tujiaphilus Tian & Huang, sp. n., from Longshan, Hunan) and Wanhuaphaenops Tian & Wang, gen. n. (the type species: Wanhuaphaenops zhangi Tian & Wang, sp. n., from Cave Songjia Dong, Chenzhou, Hunan).  相似文献   

7.
A new genus and five new species belonging to the family Tetrablemmidae are described from caves in Southwest China, i.e., Sinammaoxycera gen. & sp. n., Singaporemma banxiaoensis sp. n., Singaporemma wulongensis sp. n., Tetrablemma ziyaoensis sp. n. andTetrablemma menglaensis sp. n. The following new combination is proposed: Sinamma sanya (Lin & Li, 2010), comb. n. ex. Shearella Lehtinen, 1981. The relationships of the Sinamma gen. n. with other genera are discussed. Diagnoses and illustrations for all new taxa are given.  相似文献   

8.
The European black fly Simulium (Simulium) colombaschense (Scopoli), once responsible for as many as 22,000 livestock deaths per year, is chromosomally mapped, permitting its evolutionary relationships and pest drivers to be inferred. The species is 12 fixed inversions removed from the standard sequence of the subgenus Simulium. Three of these fixed inversions, 38 autosomal polymorphisms, and a complex set of 12 X and 6 Y chromosomes in 29 zygotic combinations uniquely characterize S. colombaschense and reveal 5 cytoforms: ‘A’ in the Danube watershed, ‘B’ in Italy’s Adige River, ‘C’ in the Aliakmonas River of Greece, ‘D’ in the Aoös drainage in Greece, and ‘E’ in the Belá River of Slovakia. ‘C’ and ‘D’ are reproductively isolated from one another, and ‘B’ is considered a cytotype of ‘A,’ the probable name bearer of colombaschense. The species status of ‘E’ cannot be determined without additional collections. Three derived polytene sequences, based on outgroup comparisons, place S. colombaschense in a clade of species composed of the S. jenningsi, S. malyschevi, and S. reptans species groups. Only cytoforms ‘A’ and ‘B’ are pests. Within the Simuliidae, pest status is reached through one of two principal pathways, both of which promote the production of large populations of blood-seeking flies: (1) colonization of the world’s largest rivers (habitat specialization) or (2) colonization of multiple habitat types (habitat generalization). Evolutionary acquisition of the ability to colonize large rivers by an ancestor of the S. jenningsi-malyschevi-reptans clade set the scene for the pest status of S. colombaschense and other big-river members of the clade. In an ironic twist, the macrogenome of S. colombaschense reveals that the name associated with history’s worst simuliid pest represents a complex of species, two or more of which are nonpests potentially vulnerable to loss of their limited habitat.  相似文献   

9.
10.
Anaplasmosis, caused by infection with bacteria of the genus Anaplasma, is an important veterinary and zoonotic disease. Transmission by ticks has been characterized but little is known about non-tick vectors of livestock anaplasmosis. This study investigated the presence of Anaplasma spp. in camels in northern Kenya and whether the hematophagous camel ked, Hippobosca camelina, acts as a vector. Camels (n = 976) and > 10,000 keds were sampled over a three-year study period and the presence of Anaplasma species was determined by PCR-based assays targeting the Anaplasmataceae 16S rRNA gene. Camels were infected by a single species of Anaplasma, ‘Candidatus Anaplasma camelii, with infection rates ranging from 63–78% during the dry (September 2017), wet (June-July 2018), and late wet seasons (July-August 2019). 10–29% of camel keds harbored ‘Ca. Anaplasma camelii’ acquired from infected camels during blood feeding. We determined that Anaplasma-positive camel keds could transmit ‘Ca. Anaplasma camelii’ to mice and rabbits via blood-feeding. We show competence in pathogen transmission and subsequent infection in mice and rabbits by microscopic observation in blood smears and by PCR. Transmission of ‘Ca. Anaplasma camelii’ to mice (8–47%) and rabbits (25%) occurred readily after ked bites. Hence, we demonstrate, for the first time, the potential of H. camelina as a vector of anaplasmosis. This key finding provides the rationale for establishing ked control programmes for improvement of livestock and human health.  相似文献   

11.
The new Neotropical doryctine genus Doryctopambolus gen. n. is erected to contain Doryctopambolus pilcomayensis (van Achterberg & Braet, 2004), comb. n., which was previously placed within Pambolus (Pambolinae), as well as three new species, Doryctopambolus clebschi sp. n., Doryctopambolus dominicanus sp. n. and Doryctopambolus sarochensis sp. n. Members of this new genus are mainly characterised by the presence of at least one pair of conspicuous propodeal apico-lateral projections, which are similar to those present in all members of Pambolinae and in species of three Australasian doryctine genera. We generated DNA barcoding sequences for the three newly described species. We discuss the morphological similarity between species of the Australasian Echinodoryctes Belokobylskij, Iqbal & Austin and Doryctopambolus. A key for the described species of Doryctopambolus is provided.  相似文献   

12.
John T. Huber 《ZooKeys》2013,(345):47-72
The monotypic genus Mymarilla Westwood is known only from St. Helena, a remote island in the South Atlantic Ocean. The peculiar species M. wollastoni Westwood (Mymaridae) is redescribed and illustrated from non-type material. Mymarilla is compared with Cremnomymar Ogloblinspp. from the Juan Fernández Islands in the South Pacific Ocean. Stephanodes Enock is shown to be the most likely sister genus to Mymarilla. Nesopolynema Ogloblin, syn. n., Oncomymar Ogloblin, syn. n., Scolopsopteron Ogloblin, syn. n., are placed in synonymy under Cremnomymar and their species transferred as Cremnomymar caudatum (Ogloblin 1952), comb. n., C. dipteron (Ogloblin 1957), comb. n., and C. kuscheli (Ogloblin 1952), comb. n. Wing shape and wing reductions in Mymaridae are discussed in relation to biogeography, particularly with respect island faunas and to four genera, Cremnomymar, Mymarilla, Parapolynema Fidalgo, and Richteria Girault, some or all of whose species have more or less convex fore wings.  相似文献   

13.
14.
Understanding rooting dynamics using the minirhizotron technique is useful for cultivar selection and to quantify nematode damage to roots. A 2-yr microplot study including five bermudagrass (‘Tifway’, Belonolaimus longicaudatus susceptible; two commercial cultivars [TifSport and Celebration] and two genotypes [‘BA132’ and ‘PI 291590’], which have been reported to be tolerant to B. longicaudatus) and two St. Augustinegrass (‘FX 313’, susceptible, and ‘Floratam’ that was reported as tolerant to B. longicaudatus) genotypes in a 5 x 2 and 2 x 2 factorial design with four replications, respectively, was initiated in 2012. Two treatments included were uninoculated and B. longicaudatus inoculated. In situ root images were captured each month using a minirhizotron camera system from April to September of 2013 and 2014. Mixed models analysis and comparison of least squares means indicated significant differences in root parameters studied across the genotypes and soil depths of both grass species. ‘Celebration’, ‘TifSport’ and ‘PI 291590’ bermudagrass, and ‘Floratam’ St. Augustinegrass had significantly different root parameters compared to the corresponding susceptible genotypes (P ≤ 0.05). Only ‘TifSport’ had no significant root loss when infested with B. longicaudatus compared to non-infested. ‘Celebration’ and ‘PI 291590’ had significant root loss but retained significantly greater root densities than ‘Tifway’ in B. longicaudatus-infested conditions (P ≤ 0.05). Root lengths were greater at the 0 to 5 cm depth followed by 5 to 10 and 10 to 15 cm of vertical soil depth for both grass species (P ≤ 0.05). ‘Celebration’, ‘TifSport’, and ‘PI 291590’ had better root vigor against B. longicaudatus compared to Tifway.  相似文献   

15.
Members of the Mycobacterium abscessus complex are rapidly growing mycobacteria that are emerging as human pathogens. The M. abscessus complex was previously composed of three species, namely M. abscessus sensu stricto, ‘M. massiliense’, and ‘M. bolletii’. In 2011, ‘M. massiliense’ and ‘M. bolletii’ were united and reclassified as a single subspecies within M. abscessus: M. abscessus subsp. bolletii. However, the placement of ‘M. massiliense’ within the boundary of M. abscessus subsp. bolletii remains highly controversial with regard to clinical aspects. In this study, we revisited the taxonomic status of members of the M. abscessus complex based on comparative analysis of the whole-genome sequences of 53 strains. The genome sequence of the previous type strain of ‘Mycobacterium massiliense’ (CIP 108297) was determined using next-generation sequencing. The genome tree based on average nucleotide identity (ANI) values supported the differentiation of ‘M. bolletii’ and ‘M. massiliense’ at the subspecies level. The genome tree also clearly illustrated that ‘M. bolletii’ and ‘M. massiliense’ form a distinct phylogenetic clade within the radiation of the M. abscessus complex. The genomic distances observed in this study suggest that the current M. abscessus subsp. bolletii taxon should be divided into two subspecies, M. abscessus subsp. massiliense subsp. nov. and M. abscessus subsp. bolletii, to correspondingly accommodate the previously known ‘M. massiliense’ and ‘M. bolletii’ strains.  相似文献   

16.
Ten genera of Physoderina from the Oriental Region are diagnosed and described, and twenty six species representing eight genera (Paraphaea Bates, Anchista Nietner, Metallanchista gen. n., Diamella nom. n., Allocota Motschulsky, Orionella Jedlička, Endynomena Chaudoir and Dasiosoma Britton (Oriental species only)) are revised. Keys to genera and species are provided, along with distribution maps, habitus images, photographs of the name-bearing types, and illustrations of male and female genitalia of available species. The female internal reproductive system is illustrated for fourteen species. Two genera, Anchista and Taicona, previously placed in Calleidina, are moved into Physoderina. One new genus is described: Metallanchista, gen. n. (type species Metallanchista laticollis, sp. n.). Two new generic synonyms are proposed: Taicona Bates, 1873, junior synonym of Allocota Motschulsky, 1859; Teradaia Habu, 1979a, junior synonym of Dasiosoma Britton, 1937. A new generic replacement name is proposed: Diamella, nom. n. for Diamella Jedlička, 1952 (junior homonym of Diamella Gude, 1913). The status of Paraphaea Bates, 1873 is resurrected from synonym of Anchista Nietner, 1856. Five new species are described: Paraphaea minor Shi & Liang, sp. n. (Hoa-Binh, Tonkin, Vietnam), Anchista pilosa Shi & Liang, sp. n. (Chikkangalur, Bangalore, India), Metallanchista laticollis Shi & Liang, sp. n. (PhaTo env., Chumphon prov., Thailand), Allocota bicolor Shi & Liang, sp. n. (Dengga to Mafengshan, Ruili, Yunnan, China), Dasiosoma quadraticolle Shi & Liang, sp. n. (Menglun Botanical Garden, Yunnan, China). Fourteen new combinations are proposed: Paraphaea binotata (Dejean, 1825), comb. n. from Anchista; Paraphaea formosana (Jedlička, 1946), comb. n. from Anchista; Paraphaea philippinensis (Jedlička, 1935b), comb. n. from Allocota; Metallanchista perlaeta (Kirschenhofer, 1994), comb. n. from Allocota; Physodera andrewesi (Jedlička, 1934), comb. n. from Allocota; Diamella cupreomicans (Oberthür, 1883), comb. n. from Physodera; Diamella arrowi (Jedlička, 1935a), comb. n. from Allocota; Allocota aurata (Bates, 1873), comb. n. from Taicona; Dasiosoma bellum (Habu, 1979a), comb. n. from Teradaia; Dasiosoma indicum (Kirschenhofer, 2011), comb. n. from Diamella; Dasiosoma maindroni (Tian & Deuve, 2001), comb. n. from Lachnoderma; Dasiosoma hirsutum (Bates, 1873), comb. n. from Lachnoderma; Orionella discoidalis (Bates, 1892), comb. n. from Anchista; Orionella kathmanduensis (Kirschenhofer, 1994), comb. n. from Lachnoderma. Five names are newly placed as junior synonyms: Paraphaea eurydera (Chaudoir, 1877), junior synonym of Paraphaea binotata (Dejean, 1825); Anchista glabra Chaudoir, 1877, and Anchista nepalensis Kirschenhofer, 1994, junior synonyms of Anchista fenestrata (Schmidt-Göbel, 1846); Allocota caerulea Andrewes, 1933, junior synonym of Allocota viridipennis Motschulsky, 1859; Allocota perroti (Jedlička, 1963), junior synonym of Allocota aurata (Bates, 1873). One new replacement name is proposed: Dasiosoma basilewskyi, nom. n. for Dasiosoma hirsutum Basilewsky, 1949 (secondary junior homonym of Dasiosoma hirsutum (Bates, 1892)). One species is downgraded to subspecies rank: Anchista fenestrata subpubescens Chaudoir, 1877, new rank.  相似文献   

17.
The species of the subfamily Opiinae (Hymenoptera: Braconidae) from Hunan (Oriental China) are revised and illustrated. Thirty-six new species are described: Apodesmia bruniclypealis Li & van Achterberg, sp. n., Apodesmia melliclypealis Li & van Achterberg, sp. n., Areotetes albiferus Li & van Achterberg, sp. n., Areotetes carinuliferus Li & van Achterberg, sp. n., Areotetes striatiferus Li & van Achterberg, sp. n., Coleopioides diversinotum Li & van Achterberg, sp. n., Coleopioides postpectalis Li & van Achterberg, sp. n., Fopius dorsopiferus Li, van Achterberg & Tan, sp. n., Indiopius chenae Li & van Achterberg, sp. n., Opiognathus aulaciferus Li & van Achterberg, sp. n., Opiognathus brevibasalis Li & van Achterberg, sp. n., Opius crenuliferus Li & van Achterberg, sp. n., Opius malarator Li, van Achterberg & Tan, sp. n., Opius monilipalpis Li & van Achterberg, sp. n., Opius pachymerus Li & van Achterberg, sp. n., Opius songi Li & van Achterberg, sp. n., Opius youi Li & van Achterberg, sp. n., Opius zengi Li & van Achterberg, sp. n., Phaedrotoma acuticlypeata Li & van Achterberg, sp. n., Phaedrotoma angiclypeata Li & van Achterberg, sp. n., Phaedrotoma antenervalis Li & van Achterberg, sp. n., Phaedrotoma depressiclypealis Li & van Achterberg, sp. n., Phaedrotoma flavisoma Li & van Achterberg, sp. n., Phaedrotoma nigrisoma Li & van Achterberg, sp. n., Phaedrotoma protuberator Li & van Achterberg, sp. n., Phaedrotoma rugulifera Li & van Achterberg, sp. n., Li & van Achterberg,Phaedrotoma striatinota Li & van Achterberg, sp. n., Phaedrotoma vermiculifera Li & van Achterberg, sp. n., Rhogadopsis latipennis Li & van Achterberg, sp. n., Rhogadopsis longicaudifera Li & van Achterberg, sp. n., Rhogadopsis maculosa Li, van Achterberg & Tan, sp. n., Rhogadopsis obliqua Li & van Achterberg, sp. n., Rhogadopsis sculpturator Li & van Achterberg, sp. n., Utetes longicarinatus Li & van Achterberg, sp. n. and Xynobius notauliferus Li & van Achterberg, sp. n. Areotetes van Achterberg & Li, gen. n. (type species: Areotetes carinuliferus sp. n.) and Coleopioides van Achterberg & Li, gen. n. (type species: Coleopioides postpectalis sp. n. are described. All species are illustrated and keyed. In total 30 species of Opiinae are sequenced and the cladograms are presented. Neopius Gahan, 1917, Opiognathus Fischer, 1972, Opiostomus Fischer, 1972, and Rhogadopsis Brèthes, 1913, are treated as a valid genera based on molecular and morphological differences. Opius vittata Chen & Weng, 2005 (not Opius vittatus Ruschka, 1915), Opius ambiguus Weng & Chen, 2005 (not Wesmael, 1835) and Opius mitis Chen & Weng, 2005 (not Fischer, 1963) are primary homonymsandarerenamed into Phaedrotoma depressa Li & van Achterberg, nom. n., Opius cheni Li & van Achterberg, nom. n. andOpius wengi Li & van Achterberg, nom. n., respectively. Phaedrotoma terga (Chen & Weng, 2005) comb. n.,Diachasmimorpha longicaudata (Ashmead, 1905) and Biosteres pavitita Chen & Weng, 2005, are reported new for Hunan, Opiostomus aureliae (Fischer, 1957) comb. n. is new for China and Hunan; Xynobius maculipennis(Enderlein, 1912) comb. n. is new for Hunan and continental China and Rhogadopsis longuria (Chen & Weng, 2005) comb. n. is new for Hunan. The following new combinations are given: Apodesmia puncta (Weng & Chen, 2005) comb. n., Apodesmia tracta (Weng & Chen, 2005) comb. n., Areotetes laevigatus (Weng & Chen, 2005) comb. n., Phaedrotoma dimidia (Chen & Weng, 2005) comb. n., Phaedrotoma improcera (Weng & Chen, 2005) comb. n., Phaedrotoma amputata (Weng & Chen, 2005) comb. n., Phaedrotoma larga (Weng & Chen, 2005) comb. n., Phaedrotoma osculas (Weng & Chen, 2005) comb. n., Phaedrotoma postuma (Chen & Weng, 2005) comb. n., Phaedrotoma rugulosa (Chen & Weng, 2005) comb. n., Phaedrotoma tabularis (Weng & Chen, 2005) comb. n., Rhogadopsis apii (Chen & Weng, 2005) comb. n., Rhogadopsis dimidia (Chen & Weng, 2005) comb. n., Rhogadopsis diutia (Chen & Weng, 2005) comb. n., Rhogadopsis longuria (Chen & Weng, 2005) comb. n., Rhogadopsis pratellae(Weng & Chen, 2005) comb. n., Rhogadopsis pratensis (Weng & Chen, 2005) comb. n., Rhogadopsis sculpta (Chen & Weng, 2005) comb. n., Rhogadopsis sulcifer (Fischer, 1975) comb. n., Rhogadopsis tabidula(Weng & Chen, 2005) comb. n., Xynobius complexus (Weng & Chen, 2005) comb. n., Xynobius indagatrix (Weng & Chen, 2005) comb. n., Xynobius multiarculatus (Chen & Weng, 2005) comb. n.The following (sub)genera are synonymised: Snoflakopius Fischer, 1972, Jucundopius Fischer, 1984, Opiotenes Fischer, 1998, and Oetztalotenes Fischer, 1998, with Opiostomus Fischer, 1971; Xynobiotenes Fischer, 1998, with Xynobius Foerster, 1862; Allotypus Foerster, 1862, Lemnaphilopius Fischer, 1972, Agnopius Fischer, 1982, and Cryptognathopius Fischer, 1984, with Apodesmia Foerster, 1862; Nosopoea Foerster, 1862, Tolbia Cameron, 1907, Brachycentrus Szépligeti, 1907, Baeocentrum Schulz, 1911, Hexaulax Cameron, 1910, Coeloreuteus Roman, 1910, Neodiospilus Szépligeti, 1911, Euopius Fischer, 1967, Gerius Fischer, 1972, Grimnirus Fischer, 1972, Hoenirus Fischer, 1972, Mimirus Fischer, 1972, Gastrosema Fischer, 1972, Merotrachys Fischer, 1972, Phlebosema Fischer, 1972, Neoephedrus Samanta, Tamili, Saha & Raychaudhuri, 1983, Adontopius Fischer, 1984, Kainopaeopius Fischer, 1986, Millenniopius Fischer, 1996, and Neotropopius Fischer, 1999, with Phaedrotoma Foerster, 1862.  相似文献   

18.
The new genus Groveromyia gen. n. was described from the Late Eocene Rovno amber. The genus includes 4 species: G. occlusa sp. n., G. digna sp. n., G. astrosa sp. n., and G. concinna (Fedotova, 2005) comb. n. (Bryocrypta). Some changes in the biometric parameters of the genera and species were revealed relative to those in the recent and the Late Eocene Stomatosematidi. Keys to the recent and fossil genera of the tribe Stomatosematidi and the species of the genus Groveromyia are given.  相似文献   

19.
Rice blast caused by Magnaporthe oryzae is the most devastating disease of rice and poses a serious threat to world food security. In this study, the distribution and effectiveness of 18 R genes in 277 accessions were investigated based on pathogenicity assays and molecular markers. The results showed that most of the accessions exhibited some degree of resistance (resistance frequency, RF >50%). Accordingly, most of the accessions were observed to harbor two or more R genes, and the number of R genes harbored in accessions was significantly positively correlated with RF. Some R genes were demonstrated to be specifically distributed in the genomes of rice sub-species, such as Pigm, Pi9, Pi5 and Pi1, which were only detected in indica-type accessions, and Pik and Piz, which were just harbored in japonica-type accessions. By analyzing the relationship between R genes and RF using a multiple stepwise regression model, the R genes Pid3, Pi5, Pi9, Pi54, Pigm and Pit were found to show the main effects against M. oryzae in indica-type accessions, while Pita, Pb1, Pik, Pizt and Pia were indicated to exhibit the main effects against M. oryzae in japonica-type accessions. Principal component analysis (PCA) and cluster analysis revealed that combination patterns of major R genes were the main factors determining the resistance of rice varieties to M. oryzae, such as ‘Pi9+Pi54’, ‘Pid3+Pigm’, ‘Pi5+Pid3+Pigm’, ‘Pi5+Pi54+Pid3+Pigm’, ‘Pi5+Pid3’ and ‘Pi5+Pit+Pid3’ in indica-type accessions and ‘Pik+Pib’, ‘Pik+Pita’, ‘Pik+Pb1’, ‘Pizt+Pia’ and ‘Pizt+Pita’ in japonica-type accessions, which were able to confer effective resistance against M. oryzae. The above results provide good theoretical support for the rational utilization of combinations of major R genes in developing rice cultivars with broad-spectrum resistance.  相似文献   

20.
Three new non-ascosporic, ascomycetous yeast genera are proposed based on their isolation from currently described species and genera. Phylogenetic placement of the genera was determined from analysis of nuclear gene sequences for D1/D2 large subunit rRNA, small subunit rRNA, translation elongation factor-1α and RNA polymerase II, subunits B1 and B2. The new taxa are: Deakozyma gen. nov., type species Deakozyma indianensis sp. nov. (type strain NRRL YB-1937, CBS 12903); Danielozyma gen. nov., type species Danielozyma ontarioensis comb. nov. (type strain NRRL YB-1246, CBS 8502); D. litseae comb. nov. (type strain NRRL YB-3246, CBS 8799); Middelhovenomyces gen. nov., type species Middelhovenomyces tepae comb. nov. (type strain NRRL Y-17670, CBS 5115) and M. petrohuensis comb. nov. (type strain NRRL Y-17663, CBS 8173).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号