首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
We develop “autologous bone marrow cell infusion (ABMi) therapy” for the treatment of human decompensated liver cirrhosis and confirm the efficacy and safety of this treatment in multicenter clinical studies. With the goal of further expanding the applications of ABMi, we first cultured human bone marrow cells and then determined whether a cell fraction found to be effective in improving liver fibrosis can be amplified. Cells harvested after two passages (P2 cells) consistently contained approximately 94 % mesenchymal stem cells (MSCs); conversely, the cells harvested after only medium change (P0 cells) contained many macrophages. MSCs (2.8?×?108) in P2 cells were harvested from 3.8?×?108 bone marrow-derived mononuclear cells after 22 days. DNA-chip analysis also showed during the culturing step that bone marrow-derived cells decreased with macrophage phenotype. The infused 5?×?105 P2 cells significantly improved liver fibrosis in the nonobese diabetic/severe combined immunodeficient (NOD-SCID) mouse carbon tetrachloride (CCl4) liver cirrhosis model and induced the expression of matrix metalloproteinase (MMP)-9 and suppressed expressions of alpha smooth muscle actin (αSMA), tumor necrosis factor alpha (TNFα) and transforming growth factor beta (TGFβ) in the liver. Cultured human bone marrow-derived cells (P2 cells) significantly inhibited liver fibrosis. The increase of MMP-9 and suppressed activation of hepatic stellate cells (HSCs) through the regulation of humoral factors (TNFα and TGFβ) contribute to the improvement of liver fibrosis by MSCs comprising about 94 % of P2 cells. MSCs in cultured human bone marrow-derived mono-nuclear cells (BM-MNCs) proliferate sufficiently in cell therapy, so we believe our cultured bone marrow-derived cell therapy can lead to expanded clinical applications and enable outpatient therapy.  相似文献   

2.

Background

Mycobacterium tuberculosis phoP mutant SO2 derived from a clinical isolate was shown to be attenuated in mouse bone marrow-derived macrophages and in vivo mouse infection model and has demonstrated a high potential as attenuated vaccine candidate against tuberculosis.

Methodology/Principal Findings

In this study, we analyze the adhesion and the intracellular growth and trafficking of SO2 in human macrophages. Our results indicate an enhanced adhesion to phagocitic cells and impaired intracellular replication of SO2 in both monocyte-derived macrophages and human cell line THP-1 in comparison with the wild type strain, consistent with murine model. Intracellular trafficking analysis in human THP-1 cells suggest that attenuation of SO2 within macrophages could be due to an impaired ability to block phagosome-lysosome fusion compared with the parental M. tuberculosis strain. No differences were found between SO2 and the wild-type strains in the release and mycobacterial susceptibility to nitric oxide (NO) produced by infected macrophages.

Conclusions/Significance

SO2 has enhanced ability to bind human macrophages and differs in intracellular trafficking as to wild-type M. tuberculosis. The altered lipid profile expression of the phoP mutant SO2 and its inability to secrete ESAT-6 is discussed.  相似文献   

3.
Repressor activator protein 1 (Rap1) is essential for maintaining telomere length and structural integrity, but it also exerts other non-telomeric functions. The present study tested the hypothesis that Rap1 is released into the cytoplasm and induces production of pro-inflammatory cytokines via nuclear factor kappa B (NFκB) signaling in macrophages, a cell type involved in the development and progression of atherosclerotic lesions. Western blotting analysis confirmed that Rap1 was present in the cytoplasm of differentiated human monocytic leukemia cells (THP-1, a macrophage-like cell line). Co-immunoprecipitation assay revealed a direct interaction between Rap1 and I kappa B kinase (IKK). Knockdown of Rap1 suppressed lipopolysaccharide-mediated activation of NFκB, and phosphorylation of inhibitor of kappa B α (IκBα) and p65 in THP-1 macrophages. The reduction of NFκB activity was paralleled by a decreased production of NFκB-dependent pro-inflammatory cytokines and an increased expression of IκBα (native NFκB inhibitor) in various macrophage models with pro-inflammatory phenotype, including THP-1, mouse peritoneal macrophages and bone marrow-derived M1 macrophages. These changes were observed selectively in pro-inflammatory macrophages but not in bone marrow-derived M2 macrophages (with an anti-inflammatory phenotype), mouse lung endothelial cells, human umbilical vein endothelial cells or human aortic smooth muscle cells. Immunostaining revealed that Rap1 was localized mainly in macrophage-rich areas in human atherosclerotic plaques and that the presence of Rap1 was positively correlated with the advancement of the disease process. In pro-inflammatory macrophages, Rap1 promotes cytokine production via NFκB activation favoring a pro-inflammatory environment which may contribute to the development and progression of atherosclerosis.  相似文献   

4.
Myelomonocytic cells are sufficient for therapeutic cell fusion in liver   总被引:21,自引:0,他引:21  
Liver repopulation with bone marrow-derived hepatocytes (BMHs) can cure the genetic liver disease fumarylacetoacetate hydrolase (Fah) deficiency. BMHs emerge from fusion between donor bone marrow-derived cells and host hepatocytes. To use such in vivo cell fusion efficiently for therapy requires knowing the nature of the hematopoietic cells that fuse with hepatocytes. Here we show that the transplantation into Fah(-/-) mice of hematopoietic stem cells (HSCs) from lymphocyte-deficient Rag1(-/-) mice, lineage-committed granulocyte-macrophage progenitors (GMPs) or bone marrow-derived macrophages (BMMs) results in the robust production of BMHs. These results provide direct evidence that committed myelomonocytic cells such as macrophages can produce functional epithelial cells by in vivo fusion. Because stable bone marrow engraftment or HSCs are not required for this process, macrophages or their highly proliferative progenitors provide potential for targeted and well-tolerated cell therapy aimed at organ regeneration.  相似文献   

5.
Ju  Wen  Sun  Tiantian  Lu  Wenyi  Smith  Alhaji Osman  Bao  Yurong  Adzraku  Seyram Yao  Qi  Kunming  Xu  Kailin  Qiao  Jianlin  Zeng  Lingyu 《Molecular biology reports》2020,47(4):2735-2748
Molecular Biology Reports - Murine bone marrow-derived macrophages (M0) and M1- and M2-polarized macrophages are being widely used as a laboratory model for polarized macrophages related molecular...  相似文献   

6.
Nonresolving inflammatory response from macrophages is a major characteristic of atherosclerosis. Macrophage ABCA1 has been previously shown to suppress the secretion of proinflammatory cytokine. In the present study, we demonstrate that ABCA1 also promotes the secretion of IL-10, an anti-inflammatory cytokine critical for inflammation resolution. ABCA1+/+ bone marrow-derived macrophages secrete more IL-10 but less proinflammatory cytokines than ABCA1−/− bone marrow-derived macrophages, similar to alternatively activated (M2) macrophages. We present evidence that ABCA1 activates PKA and that this elevated PKA activity contributes to M2-like inflammatory response from ABCA1+/+ bone marrow-derived macrophages. Furthermore, cholesterol lowering by statins, methyl-β-cyclodextrin, or filipin also activates PKA and, consequently, transforms macrophages toward M2-like phenotype. Conversely, cholesterol enrichment suppresses PKA activity and promotes M1-like inflammatory response. As the primary function of ABCA1 is cholesterol removal, our results suggest that ABCA1 activates PKA by regulating cholesterol. Indeed, forced cholesterol enrichment in ABCA1-expressing macrophages suppresses PKA activation and elicits M1-like response. Collectively, these findings reveal a novel protective process by ABCA1-activated PKA in macrophages. They also suggest cholesterol lowering in extra-hepatic tissues by statins as an anti-inflammation strategy.  相似文献   

7.
Macrophages play a key role in the innate immune system. Macrophages are thought to originate from hematopoietic precursors or the yolk sac. Here, we describe the in vitro establishment of self-renewable GM-CSF-dependent immature macrophages (GM-IMs) from murine bone marrow (BM). GM-IMs grow continuously in vitro in conditioned medium containing GM-CSF. The immunophenotype of GM-IMs is F4/80high CD11bhigh CD11clow Ly6Clow. By comparing gene expression in GM-IMs and BM dendritic cells, we found that GM-IMs expressed lower levels of chemokines, cytokines and their receptors. GM-IMs are round in shape, attach loosely to non-coated culture dishes and have a marked phagocytic capacity. These results indicate that GM-IMs are macrophage precursor cells. Following stimulation with LPS, monocyte-like GM-IMs converted to flat macrophage-like cells that tightly adhered to non-coated culture dishes and produced pro-inflammatory cytokines TNFα, IL-6 and IL-1β. These results indicated that GM-IMs differentiated to M1 pro-inflammatory macrophages. This was confirmed by stimulation of GM-IMs with IFNγ, an inducer of M1 markers. GM-IMs showed enhanced expression of M2 macrophage markers such as Arg1 and Retnla following stimulation by Th2 cytokines IL-4 and IL-13. When GM-IMs were injected into mice at sites of wounding, wound repair was enhanced. These results indicate that GM-IMs can differentiate to M2 macrophages. When GM-IMs were injected into clodronate-treated mice, they induced resident macrophage proliferation by producing M-CSF. In conclusion we have established self-renewable GM-CSF-dependent immature macrophages in vitro from murine BM, which differentiate to M1 or M2 macrophages.  相似文献   

8.
Liposomes are frequently used in cancer therapy to encapsulate and apply anticancer drugs. Here, we show that a systemic treatment of mice bearing skin tumors with empty phosphatidylcholine liposomes (PCL) resulted in inhibition of tumor growth, which was similar to that observed with the synthetic bacterial lipoprotein and TLR1/2 agonist Pam3CSK4 (BLP). Both compounds led to a substantial decrease of macrophages in spleen and in the tumor-bearing skin. Furthermore, both treatments induced the expression of typical macrophage markers in the tumor-bearing tissue. As expected, BLP induced the expression of the M1 marker genes Cxcl10 and iNOS, whereas PCL, besides inducing iNOS, also increased the M2 marker genes Arg1 and Trem2. In vitro experiments demonstrated that neither PCL nor BLP influenced proliferation or survival of tumor cells, whereas both compounds inhibited proliferation and survival and increased the migratory capacity of bone marrow-derived macrophages (BMDM). However, in contrast to BLP, PCL did not activate cytokine secretion and induced a different BMDM phenotype. Together, the data suggest that similar to BLP, PCL induce an antitumor response by influencing the tumor microenvironment, in particular by functional alterations of macrophages, however, in a distinct manner from those induced by BLP.  相似文献   

9.
Ninjurin1 is a homotypic adhesion molecule that contributes to leukocyte trafficking in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. However, in vivo gene deficiency animal studies have not yet been done. Here, we constructed Ninjurin1 knock-out (KO) mice and investigated the role of Ninjurin1 on leukocyte trafficking under inflammation conditions such as EAE and endotoxin-induced uveitis. Ninjurin1 KO mice attenuated EAE susceptibility by reducing leukocyte recruitment into the injury regions of the spinal cord and showed less adhesion of leukocytes on inflamed retinal vessels in endotoxin-induced uveitis mice. Moreover, the administration of a custom-made antibody (Ab26–37) targeting the Ninjurin1 binding domain ameliorated the EAE symptoms, showing the contribution of its adhesion activity to leukocyte trafficking. In addition, we addressed the transendothelial migration (TEM) activity of bone marrow-derived macrophages and Raw264.7 cells according to the expression level of Ninjurin1. TEM activity was decreased in Ninjurin1 KO bone marrow-derived macrophages and siNinj1 Raw264.7 cells. Consistent with this, GFP-tagged mNinj1-overexpressing Raw264.7 cells increased their TEM activity. Taken together, we have clarified the contribution of Ninjurin1 to leukocyte trafficking in vivo and delineated its direct functions to TEM, emphasizing Ninjurin1 as a beneficial therapeutic target against inflammatory diseases such as multiple sclerosis.  相似文献   

10.
Regulator of G protein signaling 10 (RGS10), a GTPase accelerating protein (GAP) for G alpha subunits, is a negative regulator of NF-κB in microglia. Here, we investigated the role of RGS10 in macrophages, a closely related myeloid-derived cell type. Features of classical versus alternative activation were assessed in Rgs10-/- peritoneal and bone marrow-derived macrophages upon LPS or IL-4 treatments, respectively. Our results showed that Rgs10-/- macrophages produced higher levels of pro-inflammatory cytokines including TNF, IL-1β and IL-12p70 in response to LPS treatment and exerted higher cytotoxicity on dopaminergic MN9D neuroblastoma cells. We also found that Rgs10-/- macrophages displayed a blunted M2 phenotype upon IL-4 priming. Specifically, Rgs10-/- macrophages displayed lower YM1 and Fizz1 mRNA levels as measured by QPCR compared to wild type macrophages upon IL-4 treatment and this response was not attributable to differences in IL-4 receptor expression. Importantly, phagocytic activities of Rgs10-/- macrophages were blunted in response to IL-4 priming and/or LPS treatments. However, there was no difference in chemotaxis between Rgs10-/- and WT macrophages. Our data indicate that Rgs10-/- macrophages displayed dysregulated M1 responses along with blunted M2 alternative activation responses, suggesting that RGS10 plays an important role in determining macrophage activation responses.  相似文献   

11.
Extracellular nucleotides act as danger signals that orchestrate inflammation by purinergic receptor activation. The expression pattern of different purinergic receptors may correlate with a pro- or anti-inflammatory phenotype. Macrophages function as pro-inflammatory M1 macrophages (M1) or anti-inflammatory M2 macrophages (M2). The present study found that murine bone marrow-derived macrophages express a unique purinergic receptor profile during in vitro polarization. As assessed by real-time polymerase chain reaction (PCR), Gαs-coupled P1 receptors A2A and A2B are upregulated in M1 and M2 compared to M0, but A2A 15 times higher in M1. The ionotropic P2 receptor P2X5 is selectively upregulated in M1- and M2-polarized macrophages. P2X7 is temporarily expressed in M1 macrophages. Metabotropic P2Y receptors showed a distinct expression profile in M1 and M2-polarized macrophages: Gαq coupled P2Y1 and P2Y6 are exclusively upregulated in M2, whereas Gαi P2Y13 and P2Y14 are overexpressed in M1. This consequently leads to functional differences between M1 and M2 in response to adenosine di-phosphate stimulation (ADP): In contrast to M1, M2 showed increased cytoplasmatic calcium after ADP stimulation. In the present study we show that bone marrow-derived macrophages express a unique repertoire of purinergic receptors. We show for the first time that the repertoire of purinergic receptors is highly flexible and quickly adapts upon pro- and anti-inflammatory macrophage differentiation with functional consequences to nucleotide stimulation.  相似文献   

12.

Background

Macrophages play a pivotal role in atherosclerotic plaque development. Recent evidence has suggested the glucagon-like peptide-1 receptor (GLP-1R) agonist, liraglutide, can attenuate pro-inflammatory responses in macrophages. We hypothesized that liraglutide could limit atherosclerosis progression in vivo via modulation of the inflammatory response.

Methods

Human THP-1 macrophages and bone marrow-derived macrophages, from both wild-type C57BL/6 (WT) and apolipoprotein E null mice (ApoE?/?) were used to investigate the effect of liraglutide on the inflammatory response in vitro. In parallel, ApoE?/? mice were fed a high-fat (60% calories from fat) high-cholesterol (1%) diet for 8 weeks to induce atherosclerotic disease progression with/without daily 300 μg/kg liraglutide administration for the final 6 weeks. Macrophages were analysed for MΦ1 and MΦ2 macrophage markers by Western blotting, RT-qPCR, ELISA and flow cytometry. Atherosclerotic lesions in aortae from ApoE?/? mice were analysed by en face staining and monocyte and macrophage populations from bone marrow derived cells analysed by flow cytometry.

Results

Liraglutide decreased atherosclerotic lesion formation in ApoE?/? mice coincident with a reduction in pro-inflammatory and increased anti-inflammatory monocyte/macrophage populations in vivo. Liraglutide decreased IL-1beta in MΦ0 THP-1 macrophages and bone marrow-derived macrophages from WT mice and induced a significant increase in the MΦ2 surface marker mannose receptor in both MΦ0 and MΦ2 macrophages. Significant reduction in total lesion development was found with once daily 300 μg/kg liraglutide treatment in ApoE?/? mice. Interestingly, liraglutide inhibited disease progression at the iliac bifurcation suggesting that it retards the initiation and development of disease. These results corresponded to attenuated MΦ1 markers (CCR7, IL-6 and TNF-alpha), augmented MΦ2 cell markers (Arg-1, IL-10 and CD163) and finally decreased MΦ1-like monocytes and macrophages from bone marrow-derived cells.

Conclusions

This data supports a therapeutic role for liraglutide as an atheroprotective agent via modulating macrophage cell fate towards MΦ2 pro-resolving macrophages.
  相似文献   

13.
Interferon Regulatory Factor (IRF) 6, a member of the IRF family, is essential for epidermal and orofacial embryonic development. Irf6 is strongly expressed in keratinocytes, in which it regulates epidermal proliferation, differentiation, and migration. A recent role for Irf6 in Toll-like receptor 2-dependent chemokine gene expression was also reported in an epithelial cell line. However, a function for Irf6 in innate immune cells was not previously reported. In the present study, we investigated the expression and function of Irf6 in bone marrow-derived neutrophils and macrophages. We show here, using a conditional knockout of Irf6 in lysosymeM expressing cells, that Irf6 is required for resistance to LPS-induced endotoxic shock. In addition, Irf6-deficient bone marrow-derived neutrophils exhibited increased chemotactic index and velocity compared with wild-type cells in vitro. TLR4-specific KC and IL6 secretions were upregulated in Irf6-deficient bone marrow-derived macrophages in vitro. These cells also exhibited an increased level of phosphorylated IkBa. Collectively, our findings suggest a role for Irf6 in the resistance to endotoxic shock due to NFk-B-mediated alteration of cytokine production.  相似文献   

14.
15.
Pathological angiogenesis promotes tumor growth, metastasis, and atherosclerotic plaque rupture. Macrophages are key players in these processes. However, whether these macrophages differentiate from bone marrow-derived monocytes or from local vascular wall-resident stem and progenitor cells (VW-SCs) is an unresolved issue of angiogenesis. To answer this question, we analyzed vascular sprouting and alterations in aortic cell populations in mouse aortic ring assays (ARA). ARA culture leads to the generation of large numbers of macrophages, especially within the aortic adventitia. Using immunohistochemical fate-mapping and genetic in vivo-labeling approaches we show that 60% of these macrophages differentiate from bone marrow-independent Ly6c+/Sca-1+ adventitial progenitor cells. Analysis of the NCX−/− mouse model that genetically lacks embryonic circulation and yolk sac perfusion indicates that at least some of those progenitor cells arise yolk sac-independent. Macrophages represent the main source of VEGF in ARA that vice versa promotes the generation of additional macrophages thereby creating a pro-angiogenetic feedforward loop. Additionally, macrophage-derived VEGF activates CD34+ progenitor cells within the adventitial vasculogenic zone to differentiate into CD31+ endothelial cells. Consequently, depletion of macrophages and VEGFR2 antagonism drastically reduce vascular sprouting activity in ARA. In summary, we show that angiogenic activation induces differentiation of macrophages from bone marrow-derived as well as from bone marrow-independent VW-SCs. The latter ones are at least partially yolk sac-independent, too. Those VW-SC-derived macrophages critically contribute to angiogenesis, making them an attractive target to interfere with pathological angiogenesis in cancer and atherosclerosis as well as with regenerative angiogenesis in ischemic cardiovascular disorders.Subject terms: Stem-cell differentiation, Stem-cell niche, Adult stem cells, Cell signalling  相似文献   

16.
17.
Our group have demonstrated that splenic B cells contributed to the CD4+CD25 naive T cells conversion into CD4+CD25+Foxp3 regulatory T cells without adding appended cytokines, named Treg-of-B cells which were potent suppressors of adaptive immunity. We like to investigate whether Treg-of-B cells could promote alternatively activated macrophage (M2 macrophages) polarization and alleviate inflammatory disease, psoriasis. In this study, we co-cultured the bone marrow-derived macrophages (BMDMs) with Treg-of-B cells under LPS/IFN-γ stimulation and analyzed the M2-associated gene and protein using qPCR, western blotting, and immunofluorescence staining. We also examined the therapeutic effect of Treg-of-B cell-induced M2 macrophage for skin inflammation using imiquimod (IMQ)-induced psoriatic mouse model. Our results showed that BMDMs co-cultured with Treg-of-B cells upregulated typical M2-associated molecules, including Arg-1, IL-10, Pdcd1lg2, MGL-1, IL-4, YM1/2 and CD206. In an inflammatory environment, TNF-α and IL-6 production by macrophages co-cultured with Treg-of-B cells was decreased significantly. The molecular mechanism revealed that Treg-of-B cells promoted M2 macrophage polarization via STAT6 activation in a cell contact-dependent manner. Moreover, the treatment with Treg-of-B cell-induced M2 macrophages attenuated the clinical manifestations of psoriasis, such as scaling, erythema and thickening in the IMQ-induced psoriatic mouse model. T cell activation in draining lymph nodes was decreased in the Treg-of-B cell-induced M2 macrophage group after IMQ application. In conclusion, our findings suggested that Foxp3 Treg-of-B cells could induce alternatively activated M2 macrophages through STAT6 activation, providing a cell-based therapeutic strategy for psoriasis.  相似文献   

18.
19.
Macrophages occur along a continuum of functional states between M1-type polarized macrophages with antiangiogenic and antitumor activity and M2-type polarized macrophages, which have been implicated to promote angiogenesis and tumor growth. Proangiogenic M2-type macrophages promote various pathologic conditions, including choroidal neovascularization in models of neovascular age-related macular degeneration, or certain cancers, such as glioblastoma multiforme. Thus, a potential novel therapeutic approach to target pathological angiogenesis in these conditions would be to inhibit the polarization of macrophages toward the proangiogenic M2-type. However, no pharmacological inhibitors of M2-type macrophage polarization have been identified yet. Here we performed an unbiased pharmacological and small chemical screen to identify drugs that inhibit proangiogenic M2-type macrophage polarization and block pathologic macrophage-driven neovascularization. We identified the well tolerated and commonly used antibiotic doxycycline as a potent inhibitor of M2-type polarization of macrophages. Doxycycline inhibited, in a dose-dependent manner, M2-type polarization of human and bone marrow-derived mouse macrophages without affecting cell viability. Furthermore, doxycycline inhibited M2-type macrophage polarization and subsequent neovascularization in vivo in a laser injury model of choroidal neovascularization. Thus, doxycycline could be used to enhance current antiangiogenic treatment approaches in various conditions that are promoted by proangiogenic M2-type macrophages, including neovascular age-related macular degeneration and certain cancers.  相似文献   

20.
Interleukin 31 receptor α (IL-31RA) is a novel Type I cytokine receptor that pairs with oncostatin M receptor to mediate IL-31 signaling. Binding of IL-31 to its receptor results in the phosphorylation and activation of STATs, MAPK, and JNK signaling pathways. IL-31 plays a pathogenic role in tissue inflammation, particularly in allergic diseases. Recent studies demonstrate IL-31RA expression and signaling in non-hematopoietic cells, but this receptor is poorly studied in immune cells. Macrophages are key immune-effector cells that play a critical role in Th2-cytokine-mediated allergic diseases. Here, we demonstrate that Th2 cytokines IL-4 and IL-13 are capable of up-regulating IL-31RA expression on both peritoneal and bone marrow-derived macrophages from mice. Our data also demonstrate that IL-4Rα-driven IL-31RA expression is STAT6 dependent in macrophages. Notably, the inflammation-associated genes Fizz1 and serum amyloid A (SAA) are significantly up-regulated in M2 macrophages stimulated with IL-31, but not in IL-4 receptor-deficient macrophages. Furthermore, the absence of Type II IL-4 receptor signaling is sufficient to attenuate the expression of IL-31RA in vivo during allergic asthma induced by soluble egg antigen, which may suggest a role for IL-31 signaling in Th2 cytokine-driven inflammation and allergic responses. Our study reveals an important counter-regulatory role between Th2 cytokine and IL-31 signaling involved in allergic diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号