首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Understanding mechanisms behind variability in early life survival of marine fishes through modeling efforts can improve predictive capabilities for recruitment success under changing climate conditions. Walleye pollock (Theragra chalcogramma) support the largest single-species commercial fishery in the United States and represent an ecologically important component of the Bering Sea ecosystem. Variability in walleye pollock growth and survival is structured in part by climate-driven bottom-up control of zooplankton composition. We used two modeling approaches, informed by observations, to understand the roles of prey quality, prey composition, and water temperature on juvenile walleye pollock growth: (1) a bioenergetics model that included local predator and prey energy densities, and (2) an individual-based model that included a mechanistic feeding component dependent on larval development and behavior, local prey densities and size, and physical oceanographic conditions. Prey composition in late-summer shifted from predominantly smaller copepod species in the warmer 2005 season to larger species in the cooler 2010 season, reflecting differences in zooplankton composition between years. In 2010, the main prey of juvenile walleye pollock were more abundant, had greater biomass, and higher mean energy density, resulting in better growth conditions. Moreover, spatial patterns in prey composition and water temperature lead to areas of enhanced growth, or growth ‘hot spots’, for juvenile walleye pollock and survival may be enhanced when fish overlap with these areas. This study provides evidence that a spatial mismatch between juvenile walleye pollock and growth ‘hot spots’ in 2005 contributed to poor recruitment while a higher degree of overlap in 2010 resulted in improved recruitment. Our results indicate that climate-driven changes in prey quality and composition can impact growth of juvenile walleye pollock, potentially severely affecting recruitment variability.  相似文献   

2.
The predictive skill of species distribution models depends on the quality and quantity of input information. In addition to the physical environmental variables, prey availability is also one of the main drivers regulating spatial distribution of marine species. However, prey distribution data have rarely been considered in habitat models due to the lack of information on non-commercial prey species. This may lead to an incomplete view of species distributions and biased model predictions. In this study, we developed a new framework of two-phase generalized additive models (GAMs) based on the Tweedie distribution to incorporate the predicted prey abundance as covariates in habitat models, and applied this framework to juvenile slender lizardfish Saurida elongata in Haizhou Bay, China. This study demonstrated that the predictive skill of habitat models could be greatly improved through incorporating prey abundance as explanatory variables. The importance of prey distribution data in the habitat model confirms the essentiality of including prey data while modelling species distribution. Spatial overlap and GAM analysis demonstrated that not all dominant prey can be selected as potential explanatory variables and only those prey species showing high spatiotemporal occurrences with predators should be incorporated. The framework derived in this study could be extended to other marine organisms to improve the predictive skill of habitat models and enhance our understanding of the ecological mechanisms underlying the distribution of marine species.  相似文献   

3.
Predation on the early life history of fish is an important factor regulating year-class strength. Verifying predation events, however, is difficult when analyses rely on visually identifying the remnants of partially digested fish in the stomachs of suspected predators. The objective of this study was to assess the utility of using immunological assays to detect the presence of winter flounder eggs and juveniles (Pseudopleuronectes americanus) in the gut contents of sand shrimp (Crangon septemspinosa) and green crab (Carcinus maenas). After defining assay capabilities, the stomach contents of field-collected shrimp and crabs were examined to determine if these predator-prey relationships occur under natural conditions. Winter flounder-specific antisera developed and used in this study successfully identified homologous antigens (egg or juvenile flounder extracts) without appreciably cross-reacting with antigenic material from predators or nontarget prey. Moreover, antisera detected flounder eggs 10.8-16.4 h after initial feeding by various sized shrimp, and identified juvenile flounder 9.4 and 7.8 h after initial ingestion by shrimp and crabs, respectively. Immuonological dietary analysis of decapod crustaceans collected from Niantic River, Connecticut, revealed that C. septemspinosa and C. maenas are potentially important predators on the early life stages of winter flounder. The temporal trends and magnitude of flounder predator-induced mortality was affected primarily by the spatial and temporal overlap between predator and prey (egg mortality), and the size-dependent relationships underlying crustacean and flatfish predator-prey interactions (juvenile mortality).  相似文献   

4.
As part of its annual bottom-trawl survey program, the Alaska Fisheries Science Center (AFSC) has been collecting and analyzing the stomach contents of groundfish predators since 1981. Between 1981 and 2011, a total of 233,451 fish stomachs were collected and analyzed from the eastern Bering Sea, the Gulf of Alaska, and the Aleutian Islands large marine ecosystems; these data are now available online as AFSC’s Groundfish Trophic Interactions Database. Here, we discuss features of the survey and data to aid in the interpretation and use of this extensive dataset for the Alaska region. The primary fish sampled include walleye pollock (Gadus chalcogrammus), Pacific cod (Gadus macrocephalus), Pacific halibut (Hippoglossus stenolepis), and arrowtooth flounder (Atheresthes stomias), although 159 predator species have been included in the stomach content analysis. Prey length measurements are included for important commercial prey and can identify age or size classes of prey prior to their recruitment into fisheries and most other surveys. With these data, one can track time trends in growth, mortality, and prey composition as ecosystem indicators, and include food web interactions in fish stock assessments for ecosystem-based fisheries management.  相似文献   

5.
Identifying and quantifying the effects of climate change that alter the habitat overlap of marine predators and their prey population distributions is of great importance for the sustainable management of populations. This study uses Bayesian joint models with integrated nested Laplace approximation (INLA) to predict future spatial density distributions in the form of common spatial trends of predator–prey overlap in 2050 under the “business‐as‐usual, worst‐case” climate change scenario. This was done for combinations of six mobile marine predator species (gray seal, harbor seal, harbor porpoise, common guillemot, black‐legged kittiwake, and northern gannet) and two of their common prey species (herring and sandeels). A range of five explanatory variables that cover both physical and biological aspects of critical marine habitat were used as follows: bottom temperature, stratification, depth‐averaged speed, net primary production, and maximum subsurface chlorophyll. Four different methods were explored to quantify relative ecological cost/benefits of climate change to the common spatial trends of predator–prey density distributions. All but one future joint model showed significant decreases in overall spatial percentage change. The most dramatic loss in predator–prey population overlap was shown by harbor seals with large declines in the common spatial trend for both prey species. On the positive side, both gannets and guillemots are projected to have localized regions with increased overlap with sandeels. Most joint predator–prey models showed large changes in centroid location, however the direction of change in centroids was not simply northwards, but mostly ranged from northwest to northeast. This approach can be very useful in informing the design of spatial management policies under climate change by using the potential differences in ecological costs to weigh up the trade‐offs in decisions involving issues of large‐scale spatial use of our oceans, such as marine protected areas, commercial fishing, and large‐scale marine renewable developments.  相似文献   

6.
Comparative analyses of the dynamics of exploited marine ecosystems have led to differing hypotheses regarding the primary causes of observed regime shifts, while many ecosystems have apparently not undergone regime shifts. These varied responses may be partly explained by the decade-old recognition that within-system spatial heterogeneity in key climate and anthropogenic drivers may be important, as recent theoretical examinations have concluded that spatial heterogeneity in environmental characteristics may diminish the tendency for regime shifts. Here, we synthesize recent, empirical within-system spatio-temporal analyses of some temperate and subarctic large marine ecosystems in which regime shifts have (and have not) occurred. Examples from the Baltic Sea, Black Sea, Bengula Current, North Sea, Barents Sea and Eastern Scotian Shelf reveal the largely neglected importance of considering spatial variability in key biotic and abiotic influences and species movements in the context of evaluating and predicting regime shifts. We highlight both the importance of understanding the scale-dependent spatial dynamics of climate influences and key predator–prey interactions to unravel the dynamics of regime shifts, and the utility of spatial downscaling of proposed mechanisms (as evident in the North Sea and Barents Sea) as a means of evaluating hypotheses originally derived from among-system comparisons.  相似文献   

7.
In 1976 the North Pacific climate shifted, resulting in an average increase of the water temperature. In the Gulf of Alaska the climate shift was followed (i.e. early 1980s) by a gradual but dramatic increase in the abundance of groundfish species that typically prey on pre-recruitment stages of walleye pollock. In the present study we used a previously parameterized model to investigate the effect of these climate and biological changes on the recruitment dynamics of walleye pollock in the Gulf of Alaska. Simulations covered the 1970-2000 time frame and emphasized the medium-to-long temporal scale (i.e. about 5-10 years) of environmental variability. Results showed that during periods characterized by high sea surface temperature and high predation on juvenile pollock stages, recruitment variability and magnitude were below average, and recruitment control was delayed to stages older than the 0-group. Opposite dynamics (i.e. high abundance and variability, and early recruitment control) occurred during periods characterized by low temperature and predation. These results are in general agreement with empirical observations, and allowed us to formulate causal explanations for their occurrence. We interpreted the delay of recruitment control and the reduction of variability as an effect of increased constraint on the abundance of post age-0 stages, in turn imposed by high density dependence and predation mortality. On the other hand, low density-dependence and predation favoured post age-0 survival, and allowed for an unconstrained link between larval and recruitment abundance. Our findings demonstrate that the dominant mechanisms of pollock survival change over contrasting climate regimes. Such changes may in turn cause a phase transition of recruitment dynamics with profound implications for the management of the entire stock.  相似文献   

8.
In marine ecosystems top predator populations are shaped by environmental factors affecting their prey abundance. Coupling top predators’ population studies with independent records of prey abundance suggests that prey fluctuations affect fecundity parameters and abundance of their predators. However, prey may be abundant but inaccessible to their predators and a major challenge is to determine the relative importance of prey accessibility in shaping seabird populations. In addition, disentangling the effects of prey abundance and accessibility from the effects of prey removal by fisheries, while accounting for density dependence, remains challenging for marine top predators. Here, we investigate how climate, population density, and the accessibility and removal of prey (the Peruvian anchovy Engraulis ringens) by fisheries influence the population dynamics of the largest sedentary seabird community (≈ 4 million individuals belonging to guanay cormorant Phalacrocorax bougainvillii, Peruvian booby Sula variegata and Peruvian pelican Pelecanus thagus) of the northern Humboldt Current System over the past half‐century. Using Gompertz state–space models we found strong evidence for density dependence in abundance for the three seabird species. After accounting for density dependence, sea surface temperature, prey accessibility (defined by the depth of the upper limit of the subsurface oxygen minimum zone) and prey removal by fisheries were retained as the best predictors of annual population size across species. These factors affected seabird abundance the current year and with year lags, suggesting effects on several demographic parameters including breeding propensity and adult survival. These findings highlight the effects of prey accessibility and fishery removals on seabird populations in marine ecosystems. This will help refine management objectives of marine ecosystems in order to ensure sufficient biomass of forage fish to avoid constraining seabird population dynamics, while taking into account of the effects of environmental variability.  相似文献   

9.
Striking differences in the dispersal of coexisting species have fascinated marine ecologists for decades. Despite widespread attention to the impact of dispersal on individual species dynamics, its role in species interactions has received comparatively little attention. Here, we approach the issue by combining analyses of simple heuristic predator-prey models with different dispersal patterns and data from several predator-prey systems from the Pacific coasts of North and South America. In agreement with model predictions, differences in predator dispersal generated characteristic biogeographic patterns. Predators lacking pelagic larvae tracked geographic variation in prey recruitment but not prey abundance. Prey recruitment rate alone explained more than 80% of the biogeographic variation in predator abundance. In contrast, predators with broadcasting larvae were uncorrelated with prey recruitment or adult prey abundance. Our findings reconcile perplexing results from previous studies and suggest that simple models can capture some of the complexity of life-history diversity in marine communities.  相似文献   

10.
This is the first study on the emergent properties for empirical ecosystem models that have been validated by time series information. Ecosystem models of the western and central Aleutian Islands and Southeast Alaska were used to examine indices of ecosystem status generated from network analysis and incorporated into Ecopath with Ecosim. Dynamic simulations of the two ecosystems over the past 40 years were employed to examine if these indices reflect the dissimilar changes that occurred in the ecosystems. The results showed that the total systems throughput (TST) and ascendancy (A) followed the climate change signature (Pacific decadal oscillation, PDO) in both ecosystems, whereas the redundancy (R) followed the inverse trend. The different trajectories for important species such as Steller sea lions (Eumetopias jubatus), Atka mackerel (Pleurogrammus monopterygius), pollock (Theragra chalcograma), herring (Clupea pallasii), Pacific cod (Gadus macrocephalus) and halibut (Hippoglossus stenolepis) were noticeable in the Finn cycling index (FCI), entropy (H) and average mutual information (AMI): not showing large change during the time that the Stellers sea lions, herring, Pacific cod, halibut and arrowtooth flounder (Atheresthes stomias) increased in Southeast Alaska, but showing large declines during the decline of Steller sea lions, sharks, Atka mackerel and arrowtooth flounder in the Aleutians. On the whole, there was a change in the emergent properties of the Aleutians around 1976 that was not seen in Southeast Alaska. Conversely, the emergent properties of both systems showed a change around 1988, which indicated that both systems were unstable after 1988.  相似文献   

11.
Little is known about the impact of ocean acidification on predator-prey dynamics. Herein, we examined the effect of carbon dioxide (CO(2)) on both prey and predator by letting one predatory reef fish interact for 24 h with eight small or large juvenile damselfishes from four congeneric species. Both prey and predator were exposed to control or elevated levels of CO(2). Mortality rate and predator selectivity were compared across CO(2) treatments, prey size and species. Small juveniles of all species sustained greater mortality at high CO(2) levels, while large recruits were not affected. For large prey, the pattern of prey selectivity by predators was reversed under elevated CO(2). Our results demonstrate both quantitative and qualitative consumptive effects of CO(2) on small and larger damselfish recruits respectively, resulting from CO(2)-induced behavioural changes likely mediated by impaired neurological function. This study highlights the complexity of predicting the effects of climate change on coral reef ecosystems.  相似文献   

12.

Background

Most hypotheses on population limitation of small mammals and their predators come from studies carried out in northern latitudes, mainly in boreal ecosystems. In such regions, many predators specialize on voles and predator-prey systems are simpler compared to southern ecosystems where predator communities are made up mostly of generalists and predator-prey systems are more complex. Determining food limitation in generalist predators is difficult due to their capacity to switch to alternative prey when the basic prey becomes scarce.

Methodology

We monitored the population density of a generalist raptor, the Eurasian kestrel Falco tinnunculus over 15 years in a mountainous Mediterranean area. In addition, we have recorded over 11 years the inter-annual variation in the abundance of two main prey species of kestrels, the common vole Microtus arvalis and the eyed lizard Lacerta lepida and a third species scarcely represented in kestrel diet, the great white-toothed shrew Crocidura russula. We estimated the per capita growth rate (PCGR) to analyse population dynamics of kestrel and predator species.

Principal Findings

Multimodel inference determined that the PCGR of kestrels was better explained by a model containing the population density of only one prey species (the common vole) than a model using a combination of the densities of the three prey species. The PCGR of voles was explained by kestrel abundance in combination with annual rainfall and mean annual temperature. In the case of shrews, growth rate was also affected by kestrel abundance and temperature. Finally, we did not find any correlation between kestrel and lizard abundances.

Significance

Our study showed for the first time vertebrate predator-prey relationships at southern latitudes and determined that only one prey species has the capacity to modulate population dynamics of generalist predators and reveals the importance of climatic factors in the dynamics of micromammal species and lizards in the Mediterranean region.  相似文献   

13.
Spatial coherence between predators and prey has rarely been observed in pelagic marine ecosystems. We used measures of the environment, prey abundance, prey quality, and prey distribution to explain the observed distributions of three co-occurring predator species breeding on islands in the southeastern Bering Sea: black-legged kittiwakes (Rissa tridactyla), thick-billed murres (Uria lomvia), and northern fur seals (Callorhinus ursinus). Predictions of statistical models were tested using movement patterns obtained from satellite-tracked individual animals. With the most commonly used measures to quantify prey distributions - areal biomass, density, and numerical abundance - we were unable to find a spatial relationship between predators and their prey. We instead found that habitat use by all three predators was predicted most strongly by prey patch characteristics such as depth and local density within spatial aggregations. Additional prey patch characteristics and physical habitat also contributed significantly to characterizing predator patterns. Our results indicate that the small-scale prey patch characteristics are critical to how predators perceive the quality of their food supply and the mechanisms they use to exploit it, regardless of time of day, sampling year, or source colony. The three focal predator species had different constraints and employed different foraging strategies – a shallow diver that makes trips of moderate distance (kittiwakes), a deep diver that makes trip of short distances (murres), and a deep diver that makes extensive trips (fur seals). However, all three were similarly linked by patchiness of prey rather than by the distribution of overall biomass. This supports the hypothesis that patchiness may be critical for understanding predator-prey relationships in pelagic marine systems more generally.  相似文献   

14.
Mean juvenile fish abundance and fish frequency in a large lowland river during low discharge largely differed among the unvegetated and three morphologically contrasted macrophyte habitats. Single separate models revealed that juvenile fish distribution was largely influenced by trophic variables. With the exception of Leuciscus cephalus , which responded mainly to physical variables (depth and substratum), multiple regression models emphasized the importance of trophic variables for fish distribution. For Blicca bjoerkna , L. cephalus and Lepomis gibbosus , habitat shifts with respect to prey size were apparent; small juvenile fishes mainly responded to small zooplankton abundance, whereas large individuals were more influenced by the abundance of large zooplankton. Whatever the species, predictions from multiple regression models were always better for large individuals. Small juvenile fishes appeared to be less affected by the habitat variables measured, and exhibited more uniform spatial distribution. The relative importance of trophic resources and habitat physical structure among macrophyte types for fish-habitat relationships is discussed, and the necessity of quantifying habitat structural complexity is emphasized.  相似文献   

15.
Changing climate is forcing many terrestrial and marine species to extend their ranges poleward to stay within the bounds of their thermal tolerances. However, when such species enter higher latitude ecosystems, they engage in novel interactions with local species, such as altered predator–prey dynamics and competition for food. Here, we evaluate the trophic overlap between range‐extending and local fish species along the east coast of temperate Australia, a hotspot for ocean warming and species range extensions. Stable isotope ratios (δ15N and δ13C) of muscle tissue and stomach content analysis were used to quantify overlap of trophic niche space between vagrant tropical and local temperate fish communities along a 730 km (6°) latitudinal gradient. Our study shows that in recipient temperate ecosystems, sympatric tropical and temperate species do not overlap significantly in their diet—even though they forage on broadly similar prey groups—and are therefore unlikely to compete for trophic niche space. The tropical and temperate species we studied, which are commonly found in shallow‐water coastal environments, exhibited moderately broad niche breadths and local‐scale dietary plasticity, indicating trophic generalism. We posit that because these species are generalists, they can co‐exist under current climate change, facilitating the existence of novel community structures.  相似文献   

16.
The effect of varying habitat dimensionality on the dynamics of a model predator-prey system is examined using an individual-based simulation. The general results are that in one dimension fluctuations in abundance of prey and predators occur over a large range of spatial scales (extinctions occur over many spatial scales). In two dimensions (and low mobilities of prey and predators) the dynamics become more predictably periodic at local scales and constant at larger scales due to statistical stabilization. In three dimensions, the model can become “phase-locked” with prey and predators displaying oscillations in abundance over large spatial scales.  相似文献   

17.
A hierarchy of scales is introduced to the spatially heterogeneous Lotka-Volterra predator-prey diffusion model, and its effects on the model's spatial and temporal behavior are studied. When predators move on a large scale relative to prey, local coupling of the predator-prey interaction is replaced by global coupling. Prey with low dispersal ability become narrowly confined to the most productive habitats, strongly amplifying the underlying spatial pattern of the environment. As prey diffusion rate increases, the prey distribution spreads out and predator abundance declines. The model retains neutrally stable Lotka-Volterra temporal dynamics: different scales of predator and prey dispersal do not stabilize the interaction. The model predicts that, for prey populations that are limited by widely ranging predators, species with low dispersal ability should be restricted to discrete high density patches, and those with greater mobility should be more uniformly distributed at lower density.  相似文献   

18.
Juvenile reef fish communities represent an essential component of coral reef ecosystems in the current focus of fish population dynamics and coral reef resilience. Juvenile fish survival depends on habitat characteristics and is, following settlement, the first determinant of the number of individuals within adult populations. The goal of this study was to provide methods for mapping juvenile fish species richness and abundance into spatial domains suitable for micro and meso-scale analysis and management decisions. Generalized Linear Models predicting juvenile fish species richness and abundance were developed according to spatial and temporal environmental variables measured from 10 m up to 10 km in the southwest lagoon of New Caledonia. The statistical model was further spatially generalized using a 1.5-m resolution, independently created, remotely sensed, habitat map. This procedure revealed that : (1) spatial factors at 10 to 100-m scale explained up to 71% of variability in juvenile species richness, (2) a small improvement (75%) was gained when a combination of environmental variables at different spatial and temporal scales was used and (3) the coupling of remotely sensed data, geographical information system tools and point-based ecological data showed that the highest species richness and abundance were predicted along a narrow margin overlapping the coral reef flat and adjacent seagrass beds. Spatially explicit models of species distribution may be relevant for the management of reef communities when strong relationships exist between faunistic and environmental variables and when models are built at appropriate scales.  相似文献   

19.
In most shallow water marine systems, fluid movements vary on scales that may influence local community dynamics both directly, through changes in the abundance of species, and indirectly, by modifying important behaviors of organisms. We examined how differences in current speed affect the outcome of predator-prey interactions for two species of marine benthic predators (knobbed whelks, Busycon carica, and blue crabs, Callinectes sapidus) foraging on two common prey species (bay scallops, Argopecten irradians, and hard clams, Mercenaria mercenaria). The predators differ in their foraging strategies and prey in their potential escape responses. Predation by blue crabs, highly mobile predators/scavengers that rely upon chemical odors transported in the water column to locate prey, could be strongly affected by changes in current speed and turbulent mixing because their foraging strategy relies on a high degree of spatial integration of prey odor plumes. Whelks, slow moving, predatory gastropods that often forage with their bodies buried in the sediment, may be less susceptible to flow-induced distortion of prey odor plumes because their sluggish movements result in a high degree of temporal integration of prey odors. Bay scallops, relatively mobile bivalves capable of rapid short-distance swimming burst, and hard clams, sedentary bivalves, have been shown to respond to varying degrees to predator odors that are dispersed in the water column. Flow regime for the predator-prey experiments was manipulated in situ using large channels. Predation by blue crabs on both juvenile hard clams and bay scallops decreased with increases in water flow (0-12 vs. 0-30 cm s−1). Whelk predation on bay scallops increased with increases in water flow, whereas predation by whelks on hard clams did not differ between flow regimes. For blue crabs movement decreased at periods of high water flow. Because blue crabs locate prey through chemolocation of water-borne cues, which are diluted rapidly at higher flows, decreases in foraging may result from the inability to successfully detect prey at enhanced flows. Differences in predation by whelks could not be explained by a similar mechanism. Visual observations of foraging whelks revealed no differences in whelk behavior between the two flow regimes. The pattern of higher whelk predation on scallops at enhanced flow is likely to be related to a flow-inhibiting ability of scallops to detect predator approach. Thus, flow enhancement interferes with three of the predator-prey systems but the effect on predator success depends on whether the predator or prey is most affected.  相似文献   

20.
Recruitment variability in North Atlantic cod and match-mismatch dynamics   总被引:1,自引:0,他引:1  

Background

Fisheries exploitation, habitat destruction, and climate are important drivers of variability in recruitment success. Understanding variability in recruitment can reveal mechanisms behind widespread decline in the abundance of key species in marine and terrestrial ecosystems. For fish populations, the match-mismatch theory hypothesizes that successful recruitment is a function of the timing and duration of larval fish abundance and prey availability. However, the underlying mechanisms of match-mismatch dynamics and the factors driving spatial differences between high and low recruitment remain poorly understood.

Methodology/Principal Findings

We used empirical observations of larval fish abundance, a mechanistic individual-based model, and a reanalysis of ocean temperature data from 1960 to 2002 to estimate the survival of larval cod (Gadus morhua). From the model, we quantified how survival rates changed during the warmest and coldest years at four important cod spawning sites in the North Atlantic. The modeled difference in survival probability was not large for any given month between cold or warm years. However, the cumulative effect of higher growth rates and survival through the entire spawning season in warm years was substantial with 308%, 385%, 154%, and 175% increases in survival for Georges Bank, Iceland, North Sea, and Lofoten cod stocks, respectively. We also found that the importance of match-mismatch dynamics generally increased with latitude.

Conclusions/Significance

Our analyses indicate that a key factor for enhancing survival is the duration of the overlap between larval and prey abundance and not the actual timing of the peak abundance. During warm years, the duration of the overlap between larval fish and their prey is prolonged due to an early onset of the spring bloom. This prolonged season enhances cumulative growth and survival, leading to a greater number of large individuals with enhanced potential for survival to recruitment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号