首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

A replication defective influenza A vaccine virus (delNS1 virus) was developed. Its attenuation is due to potent stimulation of the innate immune system by the virus. Since the innate immune system can also target cancer cells, we reasoned that delNS1 virus induced immune-stimulation should also lead to the induction of innate cytotoxic effects towards cancer cells.

Methodology/Principal Findings

Peripheral blood mononuclear cells (PBMCs), isolated CD56+, CD3+, CD14+ and CD19+ subsets and different combinations of the above subsets were stimulated by delNS1, wild type (wt) virus or heat inactivated virus and co-cultured with tumor cell lines in the presence or absence of antibodies against the interferon system. Stimulation of PBMCs by the delNS1 virus effectively induced cytotoxicity against different cancer cell lines. Surprisingly, virus induced cytotoxicity was exerted by all major subtypes of PBMCs including CD56+, CD3+, CD14+ and CD19+ cells. Virus induced cytotoxicity in CD3+, CD14+ and CD19+ cells was dependent on virus replication, whereas virus induced cytotoxicity in CD56+ cells was only dependent on the binding of the virus. Virus induced cytotoxicity of isolated cell cultures of CD14+, CD19+ or CD56+ cells could be partially blocked by antibodies against type I and type II (IFN) interferon. In contrast, virus induced cytotoxicity in the complete PBMC preparation could not be inhibited by blocking type I or type II IFN, indicating a redundant system of activation in whole blood.

Conclusions/Significance

Our data suggest that apart from their well known specialized functions all main subsets of peripheral blood cells also initially exert a cytotoxic effect upon virus stimulation. This closely links the innate immune system to the adaptive immune response and renders delNS1 virus a potential therapeutic tool for viro-immunotherapy of cancer.  相似文献   

2.
T cell immunoglobulin and mucin domain 3 (Tim-3) dampens the response of CD4+ and CD8+ effector T cells via induction of cell death and/or T cell exhaustion and enhances the ability of macrophages to clear pathogens via binding to galectin 9. Here we provide evidence that human Tim-3 is a target of A disintegrin and metalloprotease (ADAM)-mediated ectodomain shedding resulting in a soluble form of Tim-3. We identified ADAM10 and ADAM17 as major sheddases of Tim-3 as shown by ADAM-specific inhibitors and the ADAM10 pro-domain in HEK293 cells and ADAM10/ADAM17-deficient murine embryonic fibroblasts. PMA-induced shedding of Tim-3 was abrogated by deletion of amino acids Glu181–Asp190 of the stalk region and Tim-3 lacking the intracellular domain was not efficiently cleaved after PMA stimulation. Surprisingly, a single lysine residue within the intracellular domain rescues shedding of Tim-3. Shedding of endogenous Tim-3 was found in primary human CD14+ monocytes after PMA and ionomycin stimulation. Importantly, the recently described down-regulation of Tim-3 from Toll-like receptor-activated CD14+ monocytes was caused by ADAM10- and ADAM17-mediated shedding. Inhibition of Tim-3 shedding from lipopolysaccharide-induced monocytes did not influence lipopolysaccharide-induced TNFα and IL-6 but increases IL-12 expression. In summary, we describe Tim-3 as novel target for ADAM-mediated ectodomain shedding and suggest a role of Tim-3 shedding in TLR-mediated immune responses of CD14+ monocytes.  相似文献   

3.
Proteins of the nucleotide-binding domain, leucine-rich repeat (NLR)-containing family recently gained attention as important components of the innate immune system. Although over 20 of these proteins are present in humans, only a few members including the cytosolic pattern recognition receptors NOD1, NOD2, and NLRP3 have been analyzed extensively. These NLRs were shown to be pivotal for mounting innate immune response toward microbial invasion. Here we report on the characterization of human NLRC5 and provide evidence that this NLR has a function in innate immune responses. We found that NLRC5 is a cytosolic protein expressed predominantly in hematopoetic cells. NLRC5 mRNA and protein expression was inducible by the double-stranded RNA analog poly(I·C) and Sendai virus. Overexpression of NLRC5 failed to trigger inflammatory responses such as the NF-κB or interferon pathways in HEK293T cells. However, knockdown of endogenous NLRC5 reduced Sendai virus- and poly(I·C)-mediated type I interferon pathway-dependent responses in THP-1 cells and human primary dermal fibroblasts. Taken together, this defines a function for NLRC5 in anti-viral innate immune responses.  相似文献   

4.
《Phytomedicine》2014,21(5):647-655
In this study, the innate immuno-modulatory effects and anti-cancer action of arabinogalactan (AG), a derivative of a well-known orchid, Anoectochilus formosanus, were investigated. The innate immuno-modulatory effects of AG were determined in vitro using RAW 264.7 cells for microarray analysis, and in vivo using BALB/c mice administrated with AG at 5 and 15 mg/kg intra-peritoneally for 3 weeks. The anti-cancer activity of AG was evaluated by CT26 colon cancer-bearing BALB/c mice. The microarray analysis was performed to evaluate the innate immunity and demonstrated that AG significantly induced the expression of cytokines, chemokines, and co-stimulatory receptors, such as IL-1α, CXCL2, and CD69. An intraperitoneal injection of AG in mice increased the spleen weight, but not the body weight. The treatment of mitogen, LPS significantly stimulated splenocyte proliferation in AG treated groups. The AG treatment also promoted splenocyte cytotoxicity against YAC-1 cells and increased the percentage of CD3+CD8+ cytotoxic T cells in innate immunity test. Our experiments revealed that AG significantly decreased both tumour size and tumour weight. Besides, AG increased the percentage of DC, CD3+CD8+ T cells, CD49b+CD3 NK cells among splenocytes, and cytotoxicity activity in tumour-bearing mice. In addition, the immunohistochemistry of the tumour demonstrated that the AG treatments increased the tumour-filtrating NK and cytotoxic T-cell. These results demonstrated that AG, a polysaccharide derived from a plant source, has potent innate immuno-modulatory and anti-cancer activity. AG may therefore be used for cancer immunotherapy.  相似文献   

5.
Cytokine-induced killer (CIK) cells and T cells expanded by co-stimulation with beads presenting anti-CD3 and -CD28 antibodies are both polyclonal T cells under intensive laboratory and clinical studies, but there has not been any direct comparison between both. We compared the expansion, memory T cell subsets and cytotoxicity for T cells expanded in parallel by the two methods. Bead-stimulated T cells showed superior expansion as compared to CIK cells on D14 of culture. Bead-stimulated T cells consisted of a significantly higher CD4+ subset and significantly lower CD8+ subset as compared to CIK cells, as well as a higher proportion of less terminally differentiated T cells and a higher proportion of homing molecules. On the other hand, CIK cells exhibited significantly superior cytotoxicity against two myelomonocytic leukemia cell lines (THP-1 and U937) and two RCC cell lines (786.0 and CaKi-2). The cytotoxicity on D14 against THP-1 was 58.1 % for CIK cells and 8.3 % for bead-stimulated T cells at E:T of 10:1 (p < 0.01). Cytotoxicity correlated positively with the proportion of the CD8 subset in the culture and was independent of NKG2D recognition of susceptible targets. Polyclonal T cells expanded by different methods exhibit different characteristics which may define the specific role of each in different clinical scenario. We postulate that the more potent CIK cells may offer short term benefit while bead-stimulated T cells may offer a more sustained immune response.  相似文献   

6.
The mitochondrial NAD pool is particularly important for the maintenance of vital cellular functions. Although at least in some fungi and plants, mitochondrial NAD is imported from the cytosol by carrier proteins, in mammals, the mechanism of how this organellar pool is generated has remained obscure. A transporter mediating NAD import into mammalian mitochondria has not been identified. In contrast, human recombinant NMNAT3 localizes to the mitochondrial matrix and is able to catalyze NAD+ biosynthesis in vitro. However, whether the endogenous NMNAT3 protein is functionally effective at generating NAD+ in mitochondria of intact human cells still remains to be demonstrated. To modulate mitochondrial NAD+ content, we have expressed plant and yeast mitochondrial NAD+ carriers in human cells and observed a profound increase in mitochondrial NAD+. None of the closest human homologs of these carriers had any detectable effect on mitochondrial NAD+ content. Surprisingly, constitutive redistribution of NAD+ from the cytosol to the mitochondria by stable expression of the Arabidopsis thaliana mitochondrial NAD+ transporter NDT2 in HEK293 cells resulted in dramatic growth retardation and a metabolic shift from oxidative phosphorylation to glycolysis, despite the elevated mitochondrial NAD+ levels. These results suggest that a mitochondrial NAD+ transporter, similar to the known one from A. thaliana, is likely absent and could even be harmful in human cells. We provide further support for the alternative possibility, namely intramitochondrial NAD+ synthesis, by demonstrating the presence of endogenous NMNAT3 in the mitochondria of human cells.  相似文献   

7.
Many commercially available recombinant proteins are produced in Escherichia coli, and most suppliers guarantee contamination levels of less than 1 endotoxin unit (EU). When we analysed commercially available proteins for their endotoxin content, we found contamination levels in the same range as generally stated in the data sheets, but also some that were higher. To analyse whether these low levels of contamination have an effect on immune cells, we stimulated the monocytic cell line THP-1, primary human monocytes, in vitro differentiated human monocyte-derived dendritic cells, and primary human CD1c+ dendritic cells (DCs) with very low concentrations of lipopolysaccharide (LPS; ranging from 0.002–2 ng/ml). We show that CD1c+ DCs especially can be activated by minimal amounts of LPS, equivalent to the levels of endotoxin contamination we detected in some commercially available proteins. Notably, the enhanced endotoxin sensitivity of CD1c+ DCs was closely correlated with high CD14 expression levels observed in CD1c+ DCs that had been maintained in cell culture medium for 24 hours. When working with cells that are particularly sensitive to LPS, even low endotoxin contamination may generate erroneous data. We therefore recommend that recombinant proteins be thoroughly screened for endotoxin contamination using the limulus amebocyte lysate test, fluorescence-based assays, or a luciferase based NF-κB reporter assay involving highly LPS-sensitive cells overexpressing TLR4, MD-2 and CD14.  相似文献   

8.
Two critical functions of dendritic cells (DC) are to activate and functionally polarize T cells. Activated T cells can, in turn, influence DC maturation, although their effect on de novo DC development is poorly understood. Here we report that activation of T cells in mice, with either an anti-CD3 antibody or super antigen, drives the rapid formation of CD209+CD11b+CD11c+ MHC II+ DC from monocytic precursors (Mo-DC). GM-CSF is produced by T cells following activation, but surprisingly, it is not required for the formation of CD209+ Mo-DC. CD40L, however, is critical for the full induction of Mo-DC following T cell activation. T cell induced CD209+ Mo-DC are comparable to conventional CD209- DC in their ability to stimulate T cell proliferation. However, in contrast to conventional CD209- DC, CD209+ Mo-DC fail to effectively polarize T cells, as indicated by a paucity of T cell cytokine production. The inability of CD209+ Mo-DC to polarize T cells is partly explained by increased expression of PDL-2, since blockade of this molecule restores some polarizing capacity to the Mo-DC. These findings expand the range of signals capable of driving Mo-DC differentiation in vivo beyond exogenous microbial factors to include endogenous factors produced following T cell activation.  相似文献   

9.
Natural killer (NK) cells trigger cytotoxicity and interferon (IFN)‐γ secretion on engagement of the natural‐killer group (NKG)2D receptor or members of the natural cytotoxicity receptor (NCR) family, such as NKp46, by ligands expressed on tumour cells. However, it remains unknown whether T cells can regulate NK cell‐mediated anti‐tumour responses. Here, we investigated the early events occurring during T cell–tumour cell interactions, and their impact on NK cell functions. We observed that on co‐culture with some melanomas, activated CD4+ T cells promoted degranulation, and NKG2D‐ and NKp46‐dependent IFN‐γ secretion by NK cells, probably owing to the capture of NKG2D and NKp46 ligands from the tumour‐cell surface (trogocytosis). This effect was observed in CD4+, CD8+ and resting T cells, which showed substantial amounts of cell surface major histocompatibility complex class I chain‐related protein A on co‐culture with tumour cells. Our findings identify a new, so far, unrecognized mechanism by which effector T cells support NK cell function through the capture of specific tumour ligands with profound implications at the crossroad of innate and adaptive immunity.  相似文献   

10.
Secretion of the proinflammatory cytokine Interleukin-17A (IL-17A) is the hallmark of a unique lineage of CD4 T cells designated Th17 cells, which may play a crucial role in the pathogenesis of rheumatoid arthritis (RA) and many autoimmune diseases. Recently, IL-17-producing cells other than T cells have been described, including diverse innate immune cells. Here, we show that the cellular sources of IL-17A in RA include a significant number of non-T cells. Multicolour fluorescence analysis of IL-17-expressing peripheral blood mononuclear cells (PBMC) revealed larger proportions of IL-17+CD3- non-T cells in RA patients than in healthy controls (constitutive, 13.6% vs. 8.4%, and after stimulation with PMA/ionomycin 17.4% vs. 7.9% p < 0.001 in both cases). The source of IL-17 included CD3-CD56+ NK cells, CD3-CD14+ myeloid cells as well as the expected CD3+CD4+ Th17 cells and surprisingly a substantial number of CD3-CD19+ B cells. The presence of IL-17A-expressing B cells was confirmed by specific PCR of peripheral MACS-sorted CD19+ B cells, as well as by the analysis of different EBV-transformed B cell lines. Here we report for the first time that in addition to Th17 cells and different innate immune cells B cells also contribute to the IL-17A found in RA patients and healthy controls.  相似文献   

11.

Background

Type-I interferons (IFNs) are used to treat certain inflammatory diseases. Moreover, activation of type-I IFN-signaling in immune cells inhibits the production of proinflammatory cytokines and activation of inflammasomes. However, the molecular mechanisms remain largely unknown. Upon sensing cytosolic double-stranded DNA, the AIM2 protein forms the AIM2-ASC inflammasome, resulting in activation of caspase-1. Given that the IFI16 and AIM2 proteins are IFN-inducible and can heterodimerize with each other, we investigated the regulation of IFI16, AIM2, and inflammasome proteins by type-I and type-II IFNs and explored whether the IFI16 protein could negatively regulate the activation of the AIM2 (or other) inflammasome.

Methodology/ Principal Findings

We found that basal levels of the IFI16 and AIM2 proteins were relatively low in peripheral blood monocytes (CD14+) and in the THP-1 monocytic cell line. However, treatment of THP-1 cells with type-I (IFN-α or β) or type-II (IFN-γ) IFN induced the expression levels of IFI16, AIM2, ASC and CASP1 proteins. The induced levels of IFI16 and AIM2 proteins were detected primarily in the cytoplasm. Accordingly, relatively more IFI16 protein bound with the AIM2 protein in the cytoplasmic fraction. Notably, increased expression of IFI16 protein in transfected HEK-293 cells inhibited activation of caspase-1 by the AIM2-ASC inflammasome. Moreover, the constitutive knockdown of the IFI16 expression in THP-1 cells increased the basal and induced [induced by poly(dA:dT) or alum] activation of the caspase-1 by the AIM2 and NLRP3 inflammasomes.

Conclusions/Significance

Our observations revealed that the type-I and type-II IFNs induce the expression of IFI16, AIM2, and inflammasome proteins to various extents in THP-1 cells and the expression of IFI16 protein in THP-1 cells suppresses the activation of caspase-1 by the AIM2 and NLRP3 inflammasomes. Thus, our observations identify the IFI16 protein as a mediator of the anti-inflammatory actions of the type-I IFNs.  相似文献   

12.
NK cells play important roles in innate immunity against tumors and infections of the host. Studies show that CD107a (LAMP-1) may be a marker for degranulation of NK and activated CD8+ T cells. In our study, the relationship between the expression of CD107a, cytokine secretion and cytotoxic activity in CD56+ NK, CD8+ T cells and lymphocytes has been determined after various stimuli. Effector cells from PBMCs of healthy subjects were isolated and K562 cell line was used as target of cytotoxicity. IL-2 stimulation resulted in a significant increase of CD107a expression in CD56+ NK, CD8+ T cells and lymphocytes. Increased expression of CD107a after IL-2 stimulation of NK cells was parallel to the increase of cytotoxicity. Our results suggest that CD107a expression may be a sensitive marker for the cytotoxic activity determination.  相似文献   

13.
The present study focused on whether it is possible to expand monocytic cells from CD34+ progenitor cells by using macrophage colony-stimulating factor (M-CSF) in the absence and presence of mast cell growth factor (MGF) and IL-6. It was demonstrated that CD34+ cells differentiate without expansion to functional mature monocytic cells in the presence of M-CSF or combinations of M-CSF plus IL-6 and MGF. A different response pattern was observed for the number of clonogenic cells. The addition of IL-6 or both IL-6 and MGF to M-CSF containing cultures resulted in significant higher numbers of colony-forming unit-macrophage (CFU-M) as tested in clonogenic and3H-thymidine assays. Furthermore, M-CSF plus both IL-6 and MGF appeared to be the most potent combination to preserve the monocytic precursor in cell suspension culture assays. These results indicate that IL-6 and MGF in conjunction with M-CSF affect CD34+ cells especially at precursor level without distinct effect on the more mature stages. Secondly we studied whether M-CSF is only critical for the monocytic lineage or also affects dendritic cell (DC) development. Indeed, we were able to culture CD83+ DC from CD34+ progenitor cells in the presence of M-CSF in conjunction with TNF-α, IL-4, and MGF although their absolute number is almost threefold lower than the number of CD83+ cells yielded from GM-CSF plus TNF-α, IL-4, and MGF stimulated CD34+ cells.  相似文献   

14.
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells that regulate immune responses in cancer and various pathological conditions. However, the phenotypic and functional heterogeneity of human MDSCs represents a major hurdle for the development of therapeutic strategies targeting or regulating MDSCs in tumor progression, inflammation, and graft-versus-host disease (GVHD). We previously shown that circulating HLA-DR-CD14+ monocytic MDSCs are a major contributor to clinical outcomes after allogeneic hematopoietic stem cell transplantation (allo-HSCT). In this study, we identified, using high-throughput screening, a set of surface markers that are strongly expressed in HLA-DR-CD14+ monocytic MDSCs isolated from the peripheral blood (PB) of patients receiving allo-HSCT. Subsequent experiments showed the consistent dominant expression of CD1d in monocytic MDSCs of allo-HSCT PB in comparison with granulocytic MDSCs. In addition, CD1d-expressing cells isolated from PB of allo-HSCT patients showed the suppressive activity of T cell proliferation and higher expression of MyD88 and IDO compared with CD1d? cells. Our results suggest that CD1d could be a valuable marker for further therapeutic evaluation of human monocytic MDSCs for immune-related diseases, including GVHD.  相似文献   

15.
Summary Chronic myelogenous leukemia (CML) patients in chronic phase display compromised lymphokine-activated killer (LAK) cell induction, which is partly restored after therapy with interferon . However, the relative resistance of the leukemic cells from these patients to autologous or allogeneic LAK lysis is not affected by this treatment. In an attempt to render CML cells more susceptible to lysis or cytostasis, they were precultured in serum-free medium with or without recombinant growth factors. In eight patients studied, interleukin-3 (IL-3) significantly enhanced the spontaneous short-term (6-day) proliferation of CML cells, with retention of ability to form colonies in methylcellulose. Culture in either medium alone or IL-3 led to a significant enrichment of CD14+ and CD33+ cells but to a reduction in CD34+ cells. In contrast, culture of the same cells in IL-2 (to generate autologous LAK activity) resulted in a loss of CD14+ and CD33+ as well as CD34+ cells but in a significant increase in CD3+ and CD56+ cells. Despite similarities in their phenotypes, IL-3 cultured cells but not those cultured in medium alone acquired susceptibility to lysis by the IL-2-cultured autologous LAK cells. These results may have significance for the design of novel combination immunotherapy in CML.This work was supported in part by the Deutsche Forschungsgemeinschaft (SFB 120)  相似文献   

16.
Background aimsCytokine-induced killer (CIK) cells may serve as an alternative approach to adoptive donor lymphocyte infusions (DLI) for patients with acute leukemia relapsing after haplo-identical hematopoietic stem cell transplantation (HSCT). We investigated the feasibility of enhancing CIK cell-mediated cytotoxicity by interleukin (IL)-15 against acute myeloid and lymphoblastic leukemia/lymphoma cells.MethodsCIK cells were activated using IL-2 (CIKIL-2) or IL-15 (CIKIL-15) and phenotypically analyzed by fluorescence-activated cell sorting (FACS). Cytotoxic potential was measured by europium release assay.ResultsCIKIL-2 cells showed potent cytotoxicity against the T-lymphoma cell line H9, T-cell acute lymphoblastic leukemia (T-ALL) cell line MOLT-4 and subtype M4 acute myeloid leukemia (AML) cell line THP-1, but low cytotoxicity against the precursor B (pB)-cell ALL cell line Tanoue. IL-15 stimulation resulted in a significant enhancement of CIK cell-mediated cytotoxicity against acute lymphoblastic leukemia/lymphoma cell lines as well as against primary acute myeloid and defined lymphoblastic leukemia cells. However, the alloreactive potential of CIKIL-15 cells remained low. Further analysis of CIKIL-15 cells demonstrated that the NKG2D receptor is apparently involved in the recognition of target cells whereas killer-cell immunoglobulin-like receptor (KIR)-HLA mismatches contributed to a lesser extent to the CIKIL-15 cell-mediated cytotoxicity. In this context, CD3 + CD8 + CD25 + CD56? CIKIL-15 cell subpopulations were more effective in the lysis of AML cells, in contrast with CD56 + CIKIL-15 cells, which showed the highest cytotoxic potential against ALL cells.ConclusionsThis study provides the first evidence that CIKIL-15 cells may offer a therapeutic option for patients with refractory or relapsed leukemia following haplo-identical HSCT.  相似文献   

17.
 Injection of the superantigen staphylococcal enterotoxin A (SEA) activates both CD4+ and CD8+ T cells expressing certain families of T cell receptor (TCR) variable-region β (Vβ) chain. T cells respond with profound cytokine production and induction of cytotoxicity. Repeated injections, however, cause deletion and anergy of both CD4+ and CD8+ T cells, resulting in reduced frequency of SEA-responsive cells TCR-Vβ11+ as well as reduced cytokine levels in serum upon challenge with SEA. Exogenous interleukin-2 (IL-2) in vivo rescued SEA-responsive CD4+ and CD8+ cells from SEA-induced deletion and/or increase expansion of SEA-primed cells as well as preventing down-regulation of endogenous IL-2 production in vivo. Combined treatment with SEA and IL-2 also superinduced production of important cytokines for the cytotoxic function of T cells, tumour necrosis factor α, interferon γ and IL-6, on a cellular level. These studies show that continuous stimulation with IL-2 in vivo could be useful for superantigen-based immunotherapy by induction of excessive T cell activation and by prevention of the development of T cell deletion and anergy. Received: 29 August 1996 / Accepted: 16 January 1997  相似文献   

18.
Theiler''s virus-induced demyelinating disease has been extensively investigated as a model for persistent viral infection and multiple sclerosis (MS). However, the role of CD8+ T cells in the development of disease remains unclear. To assess the role of virus-specific CD8+ T cells in the pathogenesis of demyelinating disease, a single amino acid substitution was introduced into the predominant viral epitope (VP3 from residues 159 to 166 [VP3159-166]) and/or a subdominant viral epitope (VP3173-181) of susceptible SJL/J mice by site-directed mutagenesis. The resulting variant viruses (N160V, P179A, and N160V/P179A) failed to induce CD8+ T cell responses to the respective epitopes. Surprisingly, mice infected with N160V or N160V/P179A virus, which lacks CD8+ T cells against VP3159-166, did not develop demyelinating disease, in contrast to wild-type virus or P179A virus lacking VP3173-181-specific CD8+ T cells. Our findings clearly show that the presence of VP3159-166-specific CD8+ T cells, rather than viral persistence itself, is strongly correlated with disease development. VP3173-181-specific CD8+ T cells in the central nervous system (CNS) of these virus-infected mice expressed higher levels of transforming growth factor β, forkhead box P3, interleukin-22 (IL-22), and IL-17 mRNA but caused minimal cytotoxicity compared to that caused by VP3159-166-specific CD8+ T cells. VP3159-166-specific CD8+ T cells exhibited high functional avidity for gamma interferon production, whereas VP3173-181-specific CD8+ T cells showed low avidity. To our knowledge, this is the first report indicating that the induction of the IL-17-producing CD8+ T cell type is largely epitope specific and that this specificity apparently plays a differential role in the pathogenicity of virus-induced demyelinating disease. These results strongly advocate for the careful consideration of CD8+ T cell-mediated intervention of virus-induced inflammatory diseases.  相似文献   

19.
 Unlike monoclonal antibodies, clinical application of bispecific antibodies has so far lagged behind because of difficult, low-yield production techniques as well as considerable toxicity attributed to bispecific antibody preparations containing immunoglobulin-Fc parts and anti-CD3 homodimers [10, 2]. These difficulties were overcome by recombinant generation of a bispecific single-chain antibody (bscAb) joining two single-chain Fv fragments via a five-amino-acid glycine-serine linker. The anti-CD3 specificity directed against human T cells was combined with another specificity against the epithelial 17-1A antigen. The following domain arrangement was critical in this individual case to obtain a fully functional bscAb: VL17-1A-VH17-1A-VHCD3-VLCD3. The bscAb was expressed in chinese hamster ovary cells with a yield of 15 mg/l culture supernatant whereas numerous attempts to obtain a functional protein expression in Escherichia coli failed. The low-molecular-mass bispecific construct (60 kDa) could easily be purified by its C-terminal histidine tail. The antigen-binding properties are indistinguishable from those of the corresponding univalent single-chain Fv fragments as shown by enzyme immunoassay and flow cytometry. We could show that the bscAb, which lacks Fc parts and anti-CD3 homodimers is highly cytotoxic for 17-1A positive tumor cells in nanomolar concentrations and in the presence of human T cells. Most remarkably, it does not stimulate T lymphocyte proliferation in the absence of tumor cells and, moreover, does not induce CD25 up-regulation and the secretion of potentially toxic lymphokines such as tumor necrosis factor α, interleukin-6 and interferon γ. Maximal cytotoxicity (51Cr release) was achieved without notable costimulation and was not further enhanced by adding costimulatory signals such as those delivered by anti-CD28 antibodies. CD8+ as well as CD4+ T cell subpopulations were recruited to exert cytotoxicity against tumor cells with different kinetics. CD8+ cells induced high 51Cr release within 4 h while CD4+ cells required a 20-h incubation. The systemic application of the 17-1A/CD3-bscAb could be a major improvement in therapy against disseminated micrometastatic tumor cells. A prospective, randomized clinical trial showing that an anti-17-1A monoclonal antibody could prolong survival of colorectal cancer patients after 5 and 7 years, warrants an assessment of the clinical efficacy of this bscAb exhibiting a 1000-fold higher specific cytotoxicity against tumor cells in virto. Accepted: 14 October 1997  相似文献   

20.
Human cytomegalovirus (HCMV) is a significant human pathogen that achieves lifelong persistence by establishing latent infections in undifferentiated cells of the myeloid lineage, such as CD34+ hematopoietic progenitor cells. When latency is established, viral lytic gene expression is silenced in part by a cellular intrinsic defense consisting of Daxx and histone deacetylases (HDACs) because pp71, the tegument transactivator that travels to the nucleus and inactivates this defense at the start of a lytic infection in differentiated cells, remains in the cytoplasm. Because the current in vitro and ex vivo latency models have physiological and practical limitations, we evaluated two CD34+ myeloblastic cell lines, KG-1 and Kasumi-3, for their ability to establish, maintain, and reactivate HCMV experimental latent infections. Tegument protein pp71 was cytoplasmic, and immediate-early (IE) genes were silenced as in primary CD34+ cells. However, in contrast to what occurs in primary CD34+ cells ex vivo or in NT2 and THP-1 in vitro model systems, viral IE gene expression from the laboratory-adapted AD169 genome was not induced in the presence of HDAC inhibitors in either KG-1 or Kasumi-3 cells. Furthermore, while the clinical strain FIX was able to reactivate from Kasumi-3 cells, AD169 was not, and neither strain reactivated from KG-1 cells. Thus, KG-1 and Kasumi-3 experimental latent infections differ in important parameters from those in primary CD34+ cell populations. Aspects of latency illuminated through the use of these myeloblastoid cell lines should not be considered independently but integrated with results obtained in primary cell systems when paradigms for HCMV latency are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号