首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Navarro A  Yin P  Monsivais D  Lin SM  Du P  Wei JJ  Bulun SE 《PloS one》2012,7(3):e33284

Background

Uterine leiomyomas, or fibroids, represent the most common benign tumor of the female reproductive tract. Fibroids become symptomatic in 30% of all women and up to 70% of African American women of reproductive age. Epigenetic dysregulation of individual genes has been demonstrated in leiomyoma cells; however, the in vivo genome-wide distribution of such epigenetic abnormalities remains unknown.

Principal Findings

We characterized and compared genome-wide DNA methylation and mRNA expression profiles in uterine leiomyoma and matched adjacent normal myometrial tissues from 18 African American women. We found 55 genes with differential promoter methylation and concominant differences in mRNA expression in uterine leiomyoma versus normal myometrium. Eighty percent of the identified genes showed an inverse relationship between DNA methylation status and mRNA expression in uterine leiomyoma tissues, and the majority of genes (62%) displayed hypermethylation associated with gene silencing. We selected three genes, the known tumor suppressors KLF11, DLEC1, and KRT19 and verified promoter hypermethylation, mRNA repression and protein expression using bisulfite sequencing, real-time PCR and western blot. Incubation of primary leiomyoma smooth muscle cells with a DNA methyltransferase inhibitor restored KLF11, DLEC1 and KRT19 mRNA levels.

Conclusions

These results suggest a possible functional role of promoter DNA methylation-mediated gene silencing in the pathogenesis of uterine leiomyoma in African American women.  相似文献   

2.
3.

Background

Human induced pluripotent stem cells (iPSCs) have a wide range of applications throughout the fields of basic research, disease modeling and drug screening. Epigenetic instable iPSCs with aberrant DNA methylation may divide and differentiate into cancer cells. Unfortunately, little effort has been taken to compare the epigenetic variation in iPSCs with that in differentiated cells. Here, we developed an analytical procedure to decipher the DNA methylation heterogeneity of mixed cells and further exploited it to quantitatively assess the DNA methylation variation in the methylomes of adipose-derived stem cells (ADS), mature adipocytes differentiated from ADS cells (ADS-adipose) and iPSCs reprogrammed from ADS cells (ADS-iPSCs).

Results

We observed that the degree of DNA methylation variation varies across distinct genomic regions with promoter and 5’UTR regions exhibiting low methylation variation and Satellite showing high methylation variation. Compared with differentiated cells, ADS-iPSCs possess globally decreased methylation variation, in particular in repetitive elements. Interestingly, DNA methylation variation decreases in promoter regions during differentiation but increases during reprogramming. Methylation variation in promoter regions is negatively correlated with gene expression. In addition, genes showing a bipolar methylation pattern, with both completely methylated and completely unmethylated reads, are related to the carbohydrate metabolic process, cellular development, cellular growth, proliferation, etc.

Conclusions

This study delivers a way to detect cell-subset specific methylation genes in a mixed cell population and provides a better understanding of methylation dynamics during stem cell differentiation and reprogramming.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-978) contains supplementary material, which is available to authorized users.  相似文献   

4.

Background

Cancer cells typically exhibit large-scale aberrant methylation of gene promoters. Some of the genes with promoter methylation alterations play “driver” roles in tumorigenesis, whereas others are only “passengers”.

Results

Based on the assumption that promoter methylation alteration of a driver gene may lead to expression alternation of a set of genes associated with cancer pathways, we developed a computational framework for integrating promoter methylation and gene expression data to identify driver methylation aberrations of cancer. Applying this approach to breast cancer data, we identified many novel cancer driver genes and found that some of the identified driver genes were subtype-specific for basal-like, luminal-A and HER2+ subtypes of breast cancer.

Conclusion

The proposed framework proved effective in identifying cancer driver genes from genome-wide gene methylation and expression data of cancer. These results may provide new molecular targets for potential targeted and selective epigenetic therapy.  相似文献   

5.

Background

Status of DNA methylation is one of the most common molecular alterations in human neoplasia. Because it is possible to detect these epigenetic alterations in the bloodstream of patients, we investigated the aberrant DNA methylation status of estrogen receptor alpha (ERα) in patient pretherapeutic sera and tissue.

Materials and methods

In this case control study the patient series consisted of 120 sporadic primary breast cancer cases and 100 patients with benign breast lesion. ER3, ER4, and ER5 primers were used for methylation-specific polymerase chain reaction (MSP) to analyze the CpG methylation of promoter region of ERα gene. Correlation between ER3, ER4, and ER5 methylation and clinicopathological characteristics of the patients was investigated.

Result

The methylation status of ER3, ER4 and ER5 was 65%, 26.7% and 61.7% in tissue respectively and 57.5%, 21.7% and 55.8% in serum respectively. The concordance between tumor and serum DNA methylation was 80%, 72% and 92% for ER3, ER4 and ER5 respectively.

Conclusions

This study demonstrated the potential utility of serum DNA methylation of ERα gene promoter as a non-invasive diagnostic and/or prognostic marker in patients with breast cancer.  相似文献   

6.
7.

Background

Aberrant promoter DNA methylation has been shown to play a role in acute myeloid leukemia (AML) pathophysiology. However, further studies to discuss the prognostic value and the relationship of the epigenetic signatures with defined genomic rearrangements in acute myeloid leukemia are required.

Methodology/Principal Findings

We carried out high-throughput methylation profiling on 116 de novo AML cases and we validated the significant biomarkers in an independent cohort of 244 AML cases. Methylation signatures were associated with the presence of a specific cytogenetic status. In normal karyotype cases, aberrant methylation of the promoter of DBC1 was validated as a predictor of the disease-free and overall survival. Furthermore, DBC1 expression was significantly silenced in the aberrantly methylated samples. Patients with chromosome rearrangements showed distinct methylation signatures. To establish the role of fusion proteins in the epigenetic profiles, 20 additional samples of human hematopoietic stem/progenitor cells (HSPC) transduced with common fusion genes were studied and compared with patient samples carrying the same rearrangements. The presence of MLL rearrangements in HSPC induced the methylation profile observed in the MLL-positive primary samples. In contrast, fusion genes such as AML1/ETO or CBFB/MYH11 failed to reproduce the epigenetic signature observed in the patients.

Conclusions/Significance

Our study provides a comprehensive epigenetic profiling of AML, identifies new clinical markers for cases with a normal karyotype, and reveals relevant biological information related to the role of fusion proteins on the methylation signature.  相似文献   

8.

Background

Gene silencing due to aberrant DNA methylation is a frequent event in hepatocellular carcinoma (HCC) and also in hepatocellular adenoma (HCA). However, very little is known about epigenetic defects in fibrolamellar carcinoma (FLC), a rare variant of hepatocellular carcinoma that displays distinct clinical and morphological features.

Methodology/Principal Findings

We analyzed the methylation status of the APC, CDH1, cyclinD2, GSTπ1, hsa-mir-9-1, hsa-mir-9-2, and RASSF1A gene in a series of 15 FLC and paired normal liver tissue specimens by quantitative high-resolution pyrosequencing. Results were compared with common HCC arising in non-cirrhotic liver (n = 10). Frequent aberrant hypermethylation was found for the cyclinD2 (19%) and the RASSF1A (38%) gene as well as for the microRNA genes mir-9-1 (13%) and mir-9-2 (33%). In contrast to common HCC the APC and CDH1 (E-cadherin) genes were found devoid of any DNA methylation in FLC, whereas the GSTπ1 gene showed comparable DNA methylation in tumor and surrounding tissue at a moderate level. Changes in global DNA methylation level were measured by analyzing methylation status of the highly repetitive LINE-1 sequences. No evidence of global hypomethylation could be found in FLCs, whereas HCCs without cirrhosis showed a significant reduction in global methylation level as described previously.

Conclusions

FLCs display frequent and distinct gene-specific hypermethylation in the absence of significant global hypomethylation indicating that these two epigenetic aberrations are induced by different pathways and that full-blown malignancy can develop in the absence of global loss of DNA methylation. Only quantitative DNA methylation detection methodology was able to identify these differences.  相似文献   

9.
Environmental exposures during sensitive windows of development can reprogram normal physiologic responses and alter disease susceptibility later in life in a process known as developmental reprogramming. For example, exposure to the xenoestrogen diethylstilbestrol during reproductive tract development can reprogram estrogen-responsive gene expression in the myometrium, resulting in hyperresponsiveness to hormone in the adult uterus and promotion of hormone-dependent uterine leiomyoma. We show here that the environmental estrogens genistein, a soy phytoestrogen, and the plasticizer bisphenol A, differ in their pattern of developmental reprogramming and promotion of tumorigenesis (leiomyomas) in the uterus. Whereas both genistein and bisphenol A induce genomic estrogen receptor (ER) signaling in the developing uterus, only genistein induced phosphoinositide 3-kinase (PI3K)/AKT nongenomic ER signaling to the histone methyltransferase enhancer of zeste homolog 2 (EZH2). As a result, this pregenomic signaling phosphorylates and represses EZH2 and reduces levels of H3K27me3 repressive mark in chromatin. Furthermore, only genistein caused estrogen-responsive genes in the adult myometrium to become hyperresponsive to hormone; estrogen-responsive genes were repressed in bisphenol A-exposed uteri. Importantly, this pattern of EZH2 engagement to decrease versus increase H3K27 methylation correlated with the effect of these xenoestrogens on tumorigenesis. Developmental reprogramming by genistein promoted development of uterine leiomyomas, increasing tumor incidence and multiplicity, whereas bisphenol A did not. These data show that environmental estrogens have distinct nongenomic effects in the developing uterus that determines their ability to engage the epigenetic regulator EZH2, decrease levels of the repressive epigenetic histone H3K27 methyl mark in chromatin during developmental reprogramming, and promote uterine tumorigenesis.  相似文献   

10.

Background

Small RNAs generated by RNA polymerase IV (Pol IV) are the most abundant class of small RNAs in flowering plants. In Arabidopsis thaliana Pol IV-dependent short interfering (p4-si)RNAs are imprinted and accumulate specifically from maternal chromosomes in the developing seeds. Imprinted expression of protein-coding genes is controlled by differential DNA or histone methylation placed in gametes. To identify epigenetic factors required for maternal-specific expression of p4-siRNAs we analyzed the effect of a series of candidate mutations, including those required for genomic imprinting of protein-coding genes, on uniparental expression of a representative p4-siRNA locus.

Results

Paternal alleles of imprinted genes are marked by DNA or histone methylation placed by DNA METHYLTRANSFERASE 1 or the Polycomb Repressive Complex 2. Here we demonstrate that repression of paternal p4-siRNA expression at locus 08002 is not controlled by either of these mechanisms. Similarly, loss of several chromatin modification enzymes, including a histone acetyltransferase, a histone methyltransferase, and two nucleosome remodeling proteins, does not affect maternal expression of locus 08002. Maternal alleles of imprinted genes are hypomethylated by DEMETER DNA glycosylase, yet expression of p4-siRNAs occurs irrespective of demethylation by DEMETER or related glycosylases.

Conclusions

Differential DNA methylation and other chromatin modifications associated with epigenetic silencing are not required for maternal-specific expression of p4-siRNAs at locus 08002. These data indicate that there is an as yet unknown epigenetic mechanism causing maternal-specific p4-siRNA expression that is distinct from the well-characterized mechanisms associated with DNA methylation or the Polycomb Repressive Complex 2.  相似文献   

11.

Background

Patient-derived tumour xenografts are an attractive model for preclinical testing of anti-cancer drugs. Insights into tumour biology and biomarkers predictive of responses to chemotherapeutic drugs can also be gained from investigating xenograft models. As a first step towards examining the equivalence of epigenetic profiles between xenografts and primary tumours in paediatric leukaemia, we performed genome-scale DNA methylation and gene expression profiling on a panel of 10 paediatric B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) tumours that were stratified by prednisolone response.

Results

We found high correlations in DNA methylation and gene expression profiles between matching primary and xenograft tumour samples with Pearson’s correlation coefficients ranging between 0.85 and 0.98. In order to demonstrate the potential utility of epigenetic analyses in BCP-ALL xenografts, we identified DNA methylation biomarkers that correlated with prednisolone responsiveness of the original tumour samples. Differential methylation of CAPS2, ARHGAP21, ARX and HOXB6 were confirmed by locus specific analysis. We identified 20 genes showing an inverse relationship between DNA methylation and gene expression in association with prednisolone response. Pathway analysis of these genes implicated apoptosis, cell signalling and cell structure networks in prednisolone responsiveness.

Conclusions

The findings of this study confirm the stability of epigenetic and gene expression profiles of paediatric BCP-ALL propagated in mouse xenograft models. Further, our preliminary investigation of prednisolone sensitivity highlights the utility of mouse xenograft models for preclinical development of novel drug regimens with parallel investigation of underlying gene expression and epigenetic responses associated with novel drug responses.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-416) contains supplementary material, which is available to authorized users.  相似文献   

12.
13.

Background

Male-factor infertility is a common condition, and etiology is unknown for a high proportion of cases. Abnormal epigenetic programming of the germline is proposed as a possible mechanism compromising spermatogenesis of some men currently diagnosed with idiopathic infertility. During germ cell maturation and gametogenesis, cells of the germ line undergo extensive epigenetic reprogramming. This process involves widespread erasure of somatic-like patterns of DNA methylation followed by establishment of sex-specific patterns by de novo DNA methylation. Incomplete reprogramming of the male germ line could, in theory, result in both altered sperm DNA methylation and compromised spermatogenesis.

Methodology/Principal Finding

We determined concentration, motility and morphology of sperm in semen samples collected by male members of couples attending an infertility clinic. Using MethyLight and Illumina assays we measured methylation of DNA isolated from purified sperm from the same samples. Methylation at numerous sequences was elevated in DNA from poor quality sperm.

Conclusions

This is the first report of a broad epigenetic defect associated with abnormal semen parameters. Our results suggest that the underlying mechanism for these epigenetic changes may be improper erasure of DNA methylation during epigenetic reprogramming of the male germ line.  相似文献   

14.

Background

Accumulating evidence indicates aberrant DNA methylation is involved in gastric tumourigenesis, suggesting it may be a useful clinical biomarker for the disease. The aim of this study was to consolidate and summarize published data on the potential of methylation in gastric cancer (GC) risk prediction, prognostication and prediction of treatment response.

Methods

Relevant studies were identified from PubMed using a systematic search approach. Results were summarized by meta-analysis. Mantel-Haenszel odds ratios were computed for each methylation event assuming the random-effects model.

Results

A review of 589 retrieved publications identified 415 relevant articles, including 143 case-control studies on gene methylation of 142 individual genes in GC clinical samples. A total of 77 genes were significantly differentially methylated between tumour and normal gastric tissue from GC subjects, of which data on 62 was derived from single studies. Methylation of 15, 4 and 7 genes in normal gastric tissue, plasma and serum respectively was significantly different in frequency between GC and non-cancer subjects. A prognostic significance was reported for 18 genes and predictive significance was reported for p16 methylation, although many inconsistent findings were also observed. No bias due to assay, use of fixed tissue or CpG sites analysed was detected, however a slight bias towards publication of positive findings was observed.

Conclusions

DNA methylation is a promising biomarker for GC risk prediction and prognostication. Further focused validation of candidate methylation markers in independent cohorts is required to develop its clinical potential.  相似文献   

15.
Yao C  Li H  Shen X  He Z  He L  Guo Z 《PloS one》2012,7(1):e29686

Background

Hundreds of genes with differential DNA methylation of promoters have been identified for various cancers. However, the reproducibility of differential DNA methylation discoveries for cancer and the relationship between DNA methylation and aberrant gene expression have not been systematically analysed.

Methodology/Principal Findings

Using array data for seven types of cancers, we first evaluated the effects of experimental batches on differential DNA methylation detection. Second, we compared the directions of DNA methylation changes detected from different datasets for the same cancer. Third, we evaluated the concordance between methylation and gene expression changes. Finally, we compared DNA methylation changes in different cancers. For a given cancer, the directions of methylation and expression changes detected from different datasets, excluding potential batch effects, were highly consistent. In different cancers, DNA hypermethylation was highly inversely correlated with the down-regulation of gene expression, whereas hypomethylation was only weakly correlated with the up-regulation of genes. Finally, we found that genes commonly hypomethylated in different cancers primarily performed functions associated with chronic inflammation, such as ‘keratinization’, ‘chemotaxis’ and ‘immune response’.

Conclusions

Batch effects could greatly affect the discovery of DNA methylation biomarkers. For a particular cancer, both differential DNA methylation and gene expression can be reproducibly detected from different studies with no batch effects. While DNA hypermethylation is significantly linked to gene down-regulation, hypomethylation is only weakly correlated with gene up-regulation and is likely to be linked to chronic inflammation.  相似文献   

16.
17.

Background

The contribution of aberrant DNA methylation in silencing of tumor suppressor genes (TSGs) and microRNAs has been investigated. Since these epigenetic alterations are reversible, it became of interest to determine the effects of the 5-aza-2′-deoxycytidine (DAC) demethylation therapy in breast cancer at different molecular levels.

Methods and Findings

Here we investigate a synoptic model to predict complete DAC treatment effects at the level of genes, microRNAs and proteins for several human breast cancer lines. The present study assessed an effective treatment dosage based on the cell viability, cytotoxicity, apoptosis and methylation assays for the investigated cell lines. A highly aggressive and a non-aggressive cell line were investigated using omics approaches such as MALDI-TOF MS, mRNA- and microRNA expression arrays, 2-D gel electrophoresis and LC-MS-MS. Complete molecular profiles including the biological interaction and possible early and late systematic stable or transient effects of the methylation inhibition were determined. Beside the activation of several epigenetically suppressed TSGs, we also showed significant dysregulation of some important oncogenes, oncomiRs and oncosuppressors miRNAs as well as drug tolerance genes/miRNAs/proteins.

Conclusions

In the present study, the results denote some new molecular DAC targets and pathways based on the chemical modification of DNA methylation in breast cancer. The outlined approach might prove to be useful as an epigenetic treatment model also for other human solid tumors in the management of cancer patients.  相似文献   

18.

Background

The extent to which development- and age-associated epigenetic changes are influenced by genetic, environmental and stochastic factors remains to be discovered. Twins provide an ideal model with which to investigate these influences but previous cross-sectional twin studies provide contradictory evidence of within-pair epigenetic drift over time. Longitudinal twin studies can potentially address this discrepancy.

Results

In a pilot, genome-scale study of DNA from buccal epithelium, a relatively homogeneous tissue, we show that one-third of the CpGs assayed show dynamic methylation between birth and 18 months. Although all classes of annotated genomic regions assessed show an increase in DNA methylation over time, probes located in intragenic regions, enhancers and low-density CpG promoters are significantly over-represented, while CpG islands and high-CpG density promoters are depleted among the most dynamic probes. Comparison of co-twins demonstrated that within-pair drift in DNA methylation in our cohort is specific to a subset of pairs, who show more differences at 18 months. The rest of the pairs show either minimal change in methylation discordance, or more similar, converging methylation profiles at 18 months. As with age-associated regions, sites that change in their level of within-pair discordance between birth and 18 months are enriched in genes involved in development, but the average magnitude of change is smaller than for longitudinal change.

Conclusions

Our findings suggest that DNA methylation in buccal epithelium is influenced by non-shared stochastic and environmental factors that could reflect a degree of epigenetic plasticity within an otherwise constrained developmental program.  相似文献   

19.

Background

Both gastric and colorectal cancers (CRC) are the most frequently occurring malignancies worldwide with the overall survival of these patients remains unsatisfied. Identification of tumor suppressor genes (TSG) silenced by promoter CpG methylation uncovers mechanisms of tumorigenesis and identifies new epigenetic biomarkers for early cancer detection and prognosis assessment. Cystathionine-beta-synthase (CBS) functions in the folate metabolism pathway, which is intricately linked to methylation of genomic DNA. Dysregulation of DNA methylation contributes substantially to cancer development.

Methodology/Principal Findings

To identify potential TSGs silenced by aberrant promoter methylation in CRC, we analyzed tumor and adjacent tissues from CRC cases using the Illumina Human Methylation45 BeadChip. We identified hypermethylation of the CBS gene in CRC samples, compared to adjacent tissues. Methylation and decreased mRNA expression of CBS were detected in most CRC cell lines by methylation-specific PCR and semiquantitative RT-PCR, as well as in gastric cancer. Treatment with 5-aza-2''-deoxycytidine and/or trichostatin A reversed methylation and restored CBS mRNA expression indicating a direct effect. Aberrant methylation was further detected in 31% of primary CRCs (29 of 96) and 55% of gastric tumors (11 of 20). In contrast, methylation was seldom found in normal tissues adjacent to the tumor. CBS methylation was associated with KRAS mutations in primary CRCs (P = 0.04, by χ2-test). However, no association was found between CBS methylation or KRAS mutations with cancer relapse/metastasis in Stage II CRC patients.

Conclusion

A novel finding from this study is that the folate metabolism enzyme CBS mRNA levels are frequently downregulated through CpG methylation of the CBS gene in gastric cancer and CRC, suggesting that CBS functions as a tumor suppressor gene. These findings warrant further study of CBS as an epigenetic biomarker for molecular diagnosis of gastrointestinal cancers.  相似文献   

20.

Background

Environmental challenges during development affect the fetal epigenome, but the period(s) vulnerable to epigenetic dysregulation is(are) not clear. By employing a soy phytoestrogen, genistein, that is known to alter the epigenetic states of the Avy allele during embryogenesis, we have explored the sensitive period for epigenetic regulation. The post-implantation period, when de novo DNA methylation actively proceeds, is amenable to in vitro analysis using a mouse embryonic stem (ES) cell differentiation system.

Methods and Findings

Mouse ES cells were differentiated in the presence or absence of genistein, and DNA methylation patterns on day 10 were compared by microarray-based promoter methylation analysis coupled with a methylation-sensitive endonuclease (HpaII/McrBC)-dependent enrichment procedure. Moderate changes in methylation levels were observed in a subset of promoters following genistein treatment. Detailed investigation of the Ucp1 and Sytl1 promoters further revealed that genistein does not affect de novo methylation occurring between day 0 and day 4, but interferes with subsequent regulatory processes and leads to a decrease in methylation level for both promoters.

Conclusion

Genistein perturbed the methylation pattern of differentiated ES cells after de novo methylation. Our observations suggest that, for a subset of genes, regulation after de novo DNA methylation in the early embryo may be sensitive to genistein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号