首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We previously found that daidzein decreased food intake in female rats. The present study aimed to elucidate the relationship between dynamics of appetite-mediated neuropeptides and the anorectic effect of daidzein. We examined appetite-mediated gene expression in the hypothalamus and small intestine during the 3 meals per day feeding method. Daidzein had an anorectic effect specifically at the second feeding. Neuropeptide-Y (NPY) and galanin mRNA levels in the hypothalamus were significantly higher after feeding in the control but not in the daidzein group, suggesting that daidzein attenuated the postprandial increase in NPY and galanin expression. The daidzein group had higher corticotrophin-releasing hormone (CRH) mRNA levels in the hypothalamus after feeding, and increased cholelcystokinin (CCK) mRNA levels in the small intestine, suggesting that CCK is involved in the hypothalamic regulation of this anorectic effect. Therefore, daidzein may induce anorexia by suppressing expression of NPY and galanin and increasing expression of CRH in the hypothalamus.  相似文献   

3.
Leptin and ghrelin are known to be main hormones involved in the control of food intake, with opposing effects. Here we have explored whether changes in the leptin and ghrelin system are involved in the long-term effects of high-fat (HF) diet feeding in rats and whether sex-associated differences exist. Male and female Wistar rats were fed until the age of 6 months with a normal-fat (NF) or an HF-diet. Food intake and body weight were followed. Gastric and serum levels of leptin and ghrelin, and mRNA levels of leptin (in stomach and adipose tissue), ghrelin (in stomach), and NPY, POMC, and leptin and ghrelin receptors (OB-Rb and GHS-R) (in the hypothalamus) were measured. In both males and females, total caloric intake and body weight were greater under the HF-diet feeding. In females, circulating ghrelin levels and leptin mRNA expression in the stomach were higher under HF-diet. HF-diet feeding also resulted in higher hypothalamic NPY/POMC mRNA levels, more marked in females, and in lower OB-Rb mRNA levels, more marked in males. In addition, in females, serum ghrelin levels correlated positively with hypothalamic NPY mRNA levels, and these with caloric intake. In males, hypothalamic OB-Rb mRNA levels correlated positively with POMC mRNA levels and these correlated negatively with caloric intake and with body weight. These data reflect differences between sexes in the effects of HF-diet feeding on food intake control systems, suggesting an impairment of the anorexigenic leptin-POMC system in males and an over-stimulation of the orexigenic ghrelin-NPY system in females.  相似文献   

4.
Otsuka Long-Evans Tokushima Fatty (OLETF) rats lacking CCK-A receptors are hyperphagic, obese, and diabetic. We have previously demonstrated that these rats have a peripheral satiety deficit resulting in increased meal size. To examine the potential role of hypothalamic pathways in the hyperphagia and obesity of OLETF rats, we compared patterns of hypothalamic neuropeptide Y (NPY), proopiomelanocortin (POMC), and leptin receptor mRNA expression in ad libitum-fed Long-Evans Tokushima (LETO) and OLETF rats and food-restricted OLETF rats that were pair-fed to the intake of LETO controls. Pair feeding OLETF rats prevented their increased body weight and elevated levels of plasma insulin and leptin and normalized their elevated POMC and decreased NPY mRNA expression in the arcuate nucleus. In contrast, NPY expression was upregulated in the dorsomedial hypothalamus (DMH) in pair-fed OLETF rats. A similar DMH NPY overexpression was evident in 5-wk-old preobese OLETF rats. These findings suggest a role for DMH NPY upregulation in the etiology of OLETF hyperphagia and obesity.  相似文献   

5.
β-Endorphin was measured using a radioimmunoassay (RIA) in plasma, pituitary lobes and hypothalamus of rats following treatment with the opiate agonist morphine and the antagonist naloxone. β-Endorphine-like immunoreactivity (β-ELI) in plasma was found to be increased after high doses of morphine (50 mg/kg i.p.). A high increase of β-ELI in plasma was further observed in morphine tolerant/dependent rats after precipitated withdrawal by naloxone. This release of β-ELI into plasma was accompanied by a significant reduction of β-ELI content in the anterior lobe of the pituitary and the hypothalamus but not in the intermediate/posterior lobe of pituitary. Chronic treatment of the rats by the s.c. implantation of morphine pellets (each containing 75 mg morphine; 6 within 10 days) did not alter β-ELI levels in plasma and in the pituitary lobes. A long term administration of morphine (21 pellets within 1 month), however, causes a significant reduction of the β-ELI content of anterior lobe and intermediate/posterior lobe of pituitary without changing the β-ELI levels in plasma.  相似文献   

6.
7.
Morphine withdrawal stimulates the hypothalamic-pituitary-adrenocortical axis activity by activation of nucleus tractus solitarius (NTS)/ventrolateral medulla (VLM) noradrenergic pathways innervating the hypothalamic paraventricular nucleus (PVN). We investigated whether cAMP-dependent protein kinase (PKA) plays a role in this process by estimating changes in PKA immunoreactivity and the influence of inhibition of PKA on Fos protein expression and tyrosine hydroxylase (TH) immunoreactivity levels in the PVN and NTS/VLM during morphine withdrawal. Dependence on morphine was induced by a 7-day s.c. implantation of morphine pellets. Morphine withdrawal was precipitated on day 8 by an injection of naloxone (5 mg/kg s.c.). When opioid withdrawal was precipitated, an increase in PKA immunoreactivity levels was observed 90 min after naloxone administration in the PVN and NTS/VLM areas. Morphine withdrawal induced expression of Fos in the PVN and NTS/VLM, indicating an activation of neurones in those nuclei. TH immunoreactivity in NTS/VLM was increased 90 min after induction of morphine withdrawal, whereas there was a decrease in TH levels in the PVN at the same time point. When the selective PKA inhibitor HA-1004 was infused it greatly diminished the Fos expression observed in morphine-withdrawn rats. Furthermore, the changes in TH immunoreactivity were significantly modified by infusion of HA-1004. The present findings suggest that an up-regulated PKA-dependent transduction pathway might contribute to the activation of the hypothalamic-pituitary-adrenocortical axis in response to morphine withdrawal.  相似文献   

8.
9.
Both the hypothalamus-pituitary-adrenal (HPA) axis and the extrahypothalamic brain stress system are key elements of the neural circuitry that regulates the negative states during abstinence from chronic drug exposure. Orexins have recently been hypothesized to modulate the extended amygdala and to contribute to the negative emotional state associated with dependence. This study examined the impact of chronic morphine and withdrawal on the lateral hypothalamic (LH) orexin A (OXA) gene expression and activity as well as OXA involvement in the brain stress response to morphine abstinence. Male Wistar rats received chronic morphine followed by naloxone to precipitate withdrawal. The selective OX1R antagonist SB334867 was used to examine whether orexins' activity is related to somatic symptoms of opiate withdrawal and alterations in HPA axis and extended amygdala in rats dependent on morphine. OXA mRNA was induced in the hypothalamus during morphine withdrawal, which was accompanied by activation of OXA neurons in the LH. Importantly, SB334867 attenuated the somatic symptoms of withdrawal, and reduced morphine withdrawal-induced c-Fos expression in the nucleus accumbens (NAc) shell, bed nucleus of stria terminalis, central amygdala and hypothalamic paraventricular nucleus, but did not modify the HPA axis activity. These results highlight a critical role of OXA signalling, via OX1R, in activation of brain stress system to morphine withdrawal and suggest that all orexinergic subpopulations in the lateral hypothalamic area contribute in this response.  相似文献   

10.
11.
We have examined corticotropin releasing hormone (CRH), arginine vasopressin (AVP) and somatostatin (SOM) mRNA expression and peptide content in the rat hypothalamus from day 20 of fetal life (F20) to the fifteenth day of postnatal life (P15). During this time, hypothalamic CRH mRNA levels did not change significantly, whereas there was a gradual six-fold rise in CRH peptide levels. AVP mRNA levels fell three-fold between F20 and P1 and increased six-fold between P1 and P15. AVP peptide levels increased three-fold, with most of the rise occurring between P1 and P15. From F20 to P15, SOM mRNA and peptide levels rose four- and eight-fold, respectively. The changes in the levels of these three hypothalamic gene products correlate with the previously described alterations in the responsiveness of the HPA axis observed in fetal and early postnatal rats, suggesting a role for these neuropeptides in the modulation of the HPA axis during this developmental period.  相似文献   

12.
13.
The present study demonstrates that prenatal morphine exposure on gestation days 11-18 differentially alters proopiomelanocortin (POMC) and proenkephalin (pENK) mRNA in the hypothalamus and limbic system of adult male and female rats. In adult, prenatally morphine-exposed male rats POMC mRNA levels are decreased in the arcuate nucleus of the hypothalamus (ARC), while the pENK mRNA levels are increased in the paraventricular nucleus of the hypothalamus (PVN) and in the ventrolateral subdivision of the ventromedial nucleus of the hypothalamus (VMH), specifically in the ventrolateral subdivision of the VMH. In adult, prenatally morphine-exposed female rats, POMC mRNA levels in the ARC are increased in ovariectomized (OVX) but not in OVX, estradiol benzoate- (EB) or EB- and progesterone- (P) treated females. In contrast, pENK mRNA levels are decreased in the VMH of morphine-exposed, OVX females and increased in EB-treated females. Further, prenatal morphine exposure decreases pENK mRNA in the ARC and increases it in the medial pre-optic area independently of female gonadal hormones. Finally, POMC mRNA levels are increased in the ARC of saline-exposed, EB- or EB- and P-treated females but not in OVX females. Thus, the present study suggests that prenatal morphine exposure sex and brain region specifically alters the level of POMC and pENK mRNA.  相似文献   

14.
The intermediate portion of the lateral septum (LSi) contains high levels of urocortin (UCN) peptide and type 2 corticotropin-releasing hormone (CRH) receptor (CRHR2) and has anatomic and functional connections with the lateral hypothalamus (LH). We tested the effect of UCN in the LSi on feeding. Injection of 10 or 30 pmol UCN into LSi significantly decreased feeding in food-deprived rats for 24 h without producing conditioned taste aversion (CTA). Pretreatment with a CRH receptor antagonist, alpha-helical CRH (alpha-hCRH), blocked the inhibitory effect of UCN on deprivation-induced feeding at 1 and 2 h postinjection. Furthermore, UCN in the LSi significantly decreased feeding induced by LH-injected orexin A at 2 and 4 h postinjection, and addition of alpha-hCRH blocked the inhibitory effect of UCN on orexin A-induced feeding. In conclusion, UCN significantly inhibits feeding induced by deprivation and LH-injected orexin A without producing a CTA, an effect that is mediated by CRHR2. These data define the LSi as an important site for UCN-induced anorexia and indicate that LSi UCN may influence orexin A feeding signals in the LH.  相似文献   

15.
Inflammatory and infectious processes evoke neuroendocrine and behavioral changes known as acute-phase response that includes activation of the hypothalamo-pituitary-adrenal (HPA) axis and reduction of food intake. Besides its action as the most important ACTH secretagogue, corticotrophin-releasing factor (CRF), synthesized in the paraventricular nucleus (PVN), is also involved in the control of food intake. Alpha-melanocyte stimulating hormone (α-MSH) in the arcuate nucleus also plays a role in the energy homeostasis, possessing anorexigenic effects. To investigate the participation of neuropeptides involved in the regulation of food intake during endotoxemia, we administrated lipopolysaccharide (LPS) in sham-operated and adrenalectomized (ADX) male Wistar rats to evaluate food intake, hormone responses and Fos-CRF and Fos-α-MSH immunoreactivity in the PVN and arcuate nucleus, as well as CRF and POMC mRNA expression in these hypothalamic nuclei. In sham-operated rats, treatment with LPS (100 µg/kg) showed lower food intake, higher plasma ACTH and corticosterone levels, as well as an increase in Fos-CRF double labeled neurons and CRF mRNA expression in the PVN, with no changes in Fos-α-MSH immunoreactivity and POMC mRNA expression in the arcuate nucleus, compared to saline treated rats. After LPS treatment, ADX rats showed further increase in plasma ACTH levels, marked decrease of food intake, higher Fos-CRF immunoreactive neurons in the PVN and CRF mRNA expression, as well as an increase in Fos-α-MSH immunoreactivity and POMC mRNA expression in the arcuate nucleus, compared to sham-operated rats treated with LPS. In conclusion, the present data indicate that the marked hypophagia during endotoxemia following ADX is associated with an increased activation of CRF and POMC neurons in the hypothalamus and an increased mRNA expression of these neuropeptides.  相似文献   

16.
To examine the role of the brain stem melanocortin system in long-term energy regulation, we assessed the effects of overproduction of proopiomelanocortin (POMC) in the caudal brain stem of F344xBN rats with adult-onset obesity. Recombinant adeno-associated viral vector encoding POMC gene was delivered to the nucleus of solitary tract (NTS) in the hindbrain, and food intake, body weight, glucose and fat metabolism, brown adipose tissue thermogenesis, and mRNA levels of neuropeptides and melanocortin receptors were assessed. POMC delivery resulted in sustained reduction in food intake and body weight over 42 days and improved insulin sensitivity. At death, in recombinant adeno-associated viral vector-POMC-treated rats vs. control rats, alpha-melanocyte-stimulating hormone in NTS increased nearly 21-fold, whereas hypothalamic alpha-melanocyte-stimulating hormone remained unchanged. Visceral adiposity decreased by 37%; tissue triglyceride content diminished by 26% and 47% in liver and muscle, respectively; serum triglyceride and nonesterified fatty acids were reduced by 35% and 34%, respectively; phosphorylation of acetyl-CoA carboxylase was elevated by 63% in soleus muscle; brown adipose tissue uncoupling protein 1 increased by 30%; and melanocortin 3 receptor expression declined by 60%, whereas neuropeptide Y, agouti-related protein, and MC4 receptor mRNA levels were unchanged in the NTS. In conclusion, POMC overexpression in the NTS produces a characteristic unabated hypophagia that is uniquely different from the anorexic tachyphylaxis following POMC overexpression in the hypothalamus. The sustained anorectic response may result from absence of compensatory elements in the NTS, such as increased agouti-related protein expression, suggesting melanocortin activation of the brain stem may be a viable strategy to alleviate obesity.  相似文献   

17.
Torri C  Pedrazzi P  Leo G  Müller EE  Cocchi D  Agnati LF  Zoli M 《Peptides》2002,23(6):1063-1068
Hypothalamic mRNA and peptide levels of pro-opio-melanocortin (POMC) and other neuropeptides were studied in rats that either develop obesity (diet-induced obese, DIO), when fed a palatable and hypercaloric diet (cafeteria diet, caf) or do not develop obesity (diet resistant, DR), when fed the same diet. cafDIO rats showed a significant increase in POMC, but not in melanin concentrating hormone, mRNA levels as determined by semiquantitative in situ hybridization. cafDR and cafDIO rats showed no change in POMC-derived peptide levels, whereas neuropeptide Y immunoreactivity was significantly increased in cafDR rats. POMC mRNA levels were also studied in high-fat diet-fed rats but no significant change was observed. Altered hypothalamic transmission by POMC-derived peptides may contribute to the susceptibility of cafDIO rats to the weight promoting action of caf diet.  相似文献   

18.
Neuropeptides,food intake and body weight regulation: a hypothalamic focus   总被引:7,自引:0,他引:7  
Hillebrand JJ  de Wied D  Adan RA 《Peptides》2002,23(12):2283-2306
Energy homeostasis is controlled by a complex neuroendocrine system consisting of peripheral signals like leptin and central signals, in particular, neuropeptides. Several neuropeptides with anorexigenic (POMC, CART, and CRH) as well as orexigenic (NPY, AgRP, and MCH) actions are involved in this complex (partly redundant) controlling system. Starvation as well as overfeeding lead to changes in expression levels of these neuropeptides, which act downstream of leptin, resulting in a physiological response. In this review the role of several anorexigenic and orexigenic (hypothalamic) neuropeptides on food intake and body weight regulation is summarized.  相似文献   

19.
20.
Constant light exposure is widespread in the intensive care unit (ICU) and could increase the rate of brain dysfunction as delirium and sleep disorders in critical patients. And the activation of hypothalamic neuropeptides is proved to play a crucial role in regulating hypercatabolism, especially skeletal muscle wasting in critical patients, which could lead to serious complications and poor prognosis. Here we investigated the hypothesis that constant light exposure could aggravate skeletal muscle wasting in endotoxemia rats and whether it was associated with alterations of circadian clock and hypothalamic proopiomelanocortin(POMC) expression. Fifty-four adult male Sprague-Dawley rats were intraperitoneally injected with lipopolysaccharide(LPS) or saline, subjected to constant light or a 12:12?h light-dark cycle for 7 days. On day 8, rats were sacrificed across six time points in 24?h and hypothalamus tissues and skeletal muscle were obtained. Rates of muscle wasting were measured by 3-methylhistidine(3-MH) and tyrosine release as well as expression of two muscle atrophic genes, muscle ring finger 1(MuRF-1) and muscle atrophy F-box(MAFbx). The expression of circadian clock genes, silent information regulator 1(SIRT1), POMC and hypothalamic inflammatory cytokines were also detected. Results showed that LPS administration significantly increased hypothalamic POMC expression, inflammatory cytokine levels and muscle wasting rates. Meanwhile constant light exposure disrupted the circadian rhythm, declined the expression of SIRT1 as well as aggravated hypothalamic POMC overexpression and skeletal muscle wasting in rats with endotoxemia. Taken together, the results demonstrated that constant light exposure could aggravate POMC-mediated skeletal muscle wasting in endotoxemia rats, which is associated with alteration of circadian clocks and SIRT1 in the hypothalamus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号