首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 294 毫秒
1.
The changes in the intracellular pH (pHi) of sea urchin sperm associated with motility initiation and acrosome reaction were investigated using uptake of two different probes; 9-aminoacridine and methylamine, as a qualitative index. Sperm suspended in Na+-free sea water were immotile and able to concentrate these amines 20-fold or greater indicating that pHi is more acidic than the external medium (pHo = 7.7). This uptake ratio was essentially constant over a wide range of probe and sperm concentrations. Discharge of the pH gradient with specific ionophores (nigericin, monensin, and tetrachlorosalicylanilide) or nonspecifically using low concentration of detergents (Triton X-100 and lysolecithin) all resulted in the release of the probes indicating they are indeed sensing the pH gradient across the sperm membrane. Addition of Na+ to sperm suspended in Na+-free sea water resulted in activation of motility with concomitant efflux of the probes indicating the alkalinization of pHi by 0.4–0.5 pH units. That this pHi change is the causal trigger of motility was suggested by experiments using NH4Cl and nigericin, which increased the pHi and resulted in activation of motility in the absence of Na+. When sperm were directly diluted into artificial sea water (motility activated), a slow reacidification of pHi was observed in one species of sea urchin (L. pictus) but not in the other (S. purpuratus). This acidification could be blocked by mitochondrial inhibitors, verapamil, or the removal of external calcium suggesting that the increase in metabolic activity stimulated by the influx of Ca2+ is responsible for the reacidification. Induction of acrosome reaction further alkalinized the pHi by about 0.16 pH units and was also followed by prolonged reacidification which correlated with the observed increase in Ca2+ uptake. Either mitochondrial agents or the removal of external Ca2+ could also block this pHi change suggesting a similar mechanism is involved.  相似文献   

2.
Summary The dependence of cytoplasmic free [Ca] (Ca i ) on [Na] and pH was assessed in individual parietal cells of intact rabbit gastric glands by microfluorimetry of fura-2. Lowering extracellular [Na] (Na o ) to 20mm or below caused a biphasic Ca i increase which consisted of both release of intracellular Ca stores and Ca entry across the plasma membrane. The Ca increase was not blocked by antagonists of Ca-mobilizing receptors (atropine or cimetidine) and was independent of the replacement cation. Experiments in Ca-free media and in Na-depleted cells indicated that neither phase was due to reversal of Na/Ca exchange. The steep dependence of the Ca i increase on Na o suggested that the response was not due to lowering intracellular [Na] (Na i ). The effects of low Na o on Ca i were also completely independent of changes in intracellular pH (pH i ). Ca i was remarkably stable during changes of pH i of up to 2 pH units, indicating that H and Ca do not share a cytoplasmic buffer system. Such large pH excursions required determination of the pH dependence of fura-2. Because fura-2 was found to decrease its affinity for Ca as pH decreased below 6.7, corrections were applied to experiments in which large pH i changes were observed. In contrast to the relative insensitivity of Ca i to changes in pH i , decreasing extracellular pH (pH o ) to 6.0 or below was found to stimulate release of intracellular Ca stores. Increased Ca entry was not observed in this case. The ability of decreases in Na o and pH o to stimulate release of intracellular Ca stores suggest interactions between Na and H with extracellular receptors.  相似文献   

3.
We investigated the relationship between intracellular Ca2+ and pH homeostasis in Madin-Darby canine kidney-focus (MDCK-F) cells, a cell line exhibiting spontaneous oscillations of intracellular Ca2+ concentration (Ca i 2+ ). Ca i 2+ and intracellular pH (pH i ) were measured with the fluorescent dyes Fura-2 and BCECF by means of video imaging techniques. Ca2+ influx from the extracellular space into the cell was determined with the Mn2+ quenching technique. Cells were superfused with HEPES-buffered solutions. Under control conditions (pH 7.2), spontaneous Ca i 2+ oscillations were observed in virtually all cells investigated. Successive alkalinization and acidification of the cytoplasm induced by an ammonia ion prepulse had no apparent effect on Ca i 2+ oscillations. On the contrary, changes of extracellular pH value strongly affected Ca i 2+ oscillations. Extracellular alkalinization to pH 7.6 completely suppressed oscillations, whereas extracellular acidification to pH 6.8 decreased their frequency by 40%. Under the same conditions, the respective pH i changes were less than 0. 1 pH units. However, experiments with the Mn2+ quenching technique revealed that extracellular alkalinization significantly reduced Ca2+ entry from the extracellular space. Large increases of Ca i 2+ triggered by the blocker of the cytoplasmic Ca2+-ATPase, thapsigargin, had no effect on pH i We conclude: intracellular Ca2+ homeostasis in MDCK-F cells is pH dependent. pH controls Ca2+ homeostasis mainly by effects on the level of Ca2+ entry across the plasma membrane. On the contrary, the intracellular pH value seems to be insensitive to rapid changes of Ca i 2+ .The project was supported by the Deutsche Forschungsgemeinschaft, SFB-176 (A6) and by the Jubilämusstiftung of the University of Würzburg.The authors gratefully acknowledge the valuable discussions with Drs. M.J. Berridge, M. Carew, I. Davidson, G. Law and B. Somasundraman. We are grateful to Applied Imaging for financial and technical support and to the Medical Research Council for financial support.  相似文献   

4.
Regulation of intracellular pH is critical for the maintenance of cell homeostasis in response to stress. We used yeast two-hybrid screening to identify novel interacting partners of the pH-regulating transporter NBCe1-B. We identified Hsp70-like stress 70 protein chaperone (STCH) as interacting with NBCe1-B at the N-terminal (amino acids 96–440) region. Co-injection of STCH and NBCe1-B cRNA into Xenopus oocytes significantly increased surface expression of NBCe1-B and enhanced bicarbonate conductance compared with NBCe1-B cRNA alone. STCH siRNA decreased the rate of Na+-dependent pHi recovery from NH4+ pulse-induced acidification in an HSG (human submandibular gland ductal) cell line. We observed that in addition to NBCe1-B, Na+/H+ exchanger (NHE)-dependent pHi recovery was also impaired by STCH siRNA and further confirmed the interaction of STCH with NHE1 but not plasma membrane Ca2+ ATPase. Both NBCe1-B and NHE1 interactions were dependent on a specific 45-amino acid region of STCH. In conclusion, we identify a novel role of STCH in the regulation of pHi through site-specific interactions with NBCe1-B and NHE1 and subsequent modulation of membrane transporter expression. We propose STCH may play a role in pHi regulation at times of cellular stress by enhancing the recovery from intracellular acidification.  相似文献   

5.
Regulatory relationship and gain control between cytosolic free Ca2+ concentration (Cai) and cytosolic pH (pHi) were evaluated by two different cell types, gastric parietal cells, and blood platelets. Studies were carried out in both single cells and populations of cells, using Ca2+-indicative probe fura-2 (1-(2-(5′-carboxyoxazol-2′-yl)-6-aminobenzofuran-5-oxy)-2-(2′-amino-5′-methylphenoxy) ethane-N,N,N′,N′-tetraacetic acid) and pH-indicative probe BCECF (2′,7′-bis(carboxyethyl) carboxyfluorescein). Stimulation of single and populational parietal cells and platelets with gastrin and thrombin, respectively, resulted in an increase in Cai. In both populational cell types, an initial change in pHi during agonist stimulation occurred almost simultaneously with the mobilization of Ca2+; an initial transient decrease in pHi was followed by a slower increase in pHi above the prestimulation level. When populational platelets were preloaded with the Ca2+ chelator BAPTA (1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′tetraacetic acid), the thrombin-induced initial large increase in Cai was apparently inhibited, whereas the pHi decrease induced by thrombin was not altered. This suggests that the initial Cai change is not a prerequisite for the pHi change. The effect of pHi on Cai was examined next. In both single and populational cell types, application of the K+-H+ ionophore nigericin, which induced a transient decrease in pHi, led to the release of Ca2+ from intracellular stores. In single parietal cells double-labeled with fura-2 and BCECF, a temporal decrease in pHi preceded the rise in Cai after stimulation with nigericin. A decrease in pHi, and an increase in Cai occurred at 1.5 and 4 s, respectively. In single parietal cells, replacement of medium Na+ with N-methyl- -glucamine (NMG+), which also induced a decrease in pHi, resulted in repetitive Ca2+ spike oscillations. The source of Ca2+ utilized for the Ca2+ oscillation that was induced by NMG+ originated from the agonist-sensitive pool. Thus, several maneuvers, which were capable of decreasing pHi, led to an increase in Cai. Cytosolic acidification may be a part of the trigger for Ca2+ mobilization from intracellular stores in both parietal cells and platelets.  相似文献   

6.
A stroke causes a hypoxic brain microenvironment that alters neural cell metabolism resulting in cell membrane hyperpolarization and intracellular acidosis. We studied how intracellular pH (pHi) is regulated in differentiated mouse neural progenitor cells during hyperpolarizing conditions, induced by prompt reduction of the extracellular K+ concentration. We found that the radial glia-like population in differentiating embryonic neural progenitor cells, but not neuronal cells, was rapidly acidified under these conditions. However, when extracellular calcium was removed, an instant depolarization and recovery of the pHi, back to normal levels, took place. The rapid recovery phase seen in the absence of calcium, was dependent on extracellular bicarbonate and could be inhibited by S0859, a potent Na/HCO3 cotransporter inhibitor. Immunostaining and PCR data, showed that NBCe1 (SLC4A4) and NBCn1 (SLC4A7) were expressed in the cell population and that the pHi recovery in the radial glial-like cells after calcium removal was mediated mainly by the electrogenic sodium bicarbonate transporter NBCe1 (SLC4A4). Our results indicate that extracellular calcium might hamper pHi regulation and Na/HCO3 cotransporter activity in a brain injury microenvironment. Our findings show that the NBC-type transporters are the main pHi regulating systems prevailing in glia-like progenitor cells and that these calcium sensitive transporters are important for neuronal progenitor cell proliferation, survival and neural stem cell differentiation.  相似文献   

7.
Intracellular pH (pHi) and Na (ana i) were recorded in isolated sheep cardiac Purkinje fibres using ion-selective microelectrodes while simultaneously recording twitch tension. A fall of (pHi) stimulated acid-extrusion via sarcolemmal Na-H exchange but the extrusion was inhibited by reducing extracellular pH (pHo), indicating an inhibitory effect of external H ions upon the exchanger. Intracellular acidosis can reduce contraction by directly reducing myofibrillar Ca2– sensitivity. The activation of Na-H exchange at low (pHi) can offset this direct inhibitory effect of H ions since exchange-activation elevates ana i which then indirectly elevates Cai 2+ (via Na-Ca exchange) thus tending to restore tension. This protection of contraction during intracellular acidosis can be removed if extracellular (pHi) is also allowed to fall since, under these conditions, Na-H exchange is inhibited.  相似文献   

8.
Several aspects of Mg2+ homeostasis were investigated in cultured chicken heart cells using the fluorescent Mg2+ indicator, FURAPTRA. The concentration of cytosolic Mg2+ ([Mg2+]i) is 0.48 ± 0.03 mM (n = 31). To test whether a putative Na/Mg exchange mechanism controls [Mg2+]i below electrochemical equilibrium, we manipulated the Na+ gradient and assessed the effects on [Mg2+]i. When extracellular Na+ was removed, [Mg2+]i increased; this increase was not altered in Mg-free solutions, but was attenuated in Ca-free solutions. A similar increase in [Mg2+]i, which was dependent upon extracellular Ca2+, was observed when intracellular Na+ was raised by inhibiting the Na/K pump with ouabain. These results do not provide evidence for Na/Mg exchange in heart cells, but they suggest that Ca2+ can modulate [Mg2+]i. In addition, removing extracellular Na+ caused a decrease in intracellular pH (pHi), as measured by pH-sensitive microelectrodes, and this acidification was attenuated when Cat+ was also removed from the solution. These results suggest that Ca2+ and H+ interact intracellularly. Since changes in the Na+ gradient can also alter pHi, we questioned whether pH can modulate [Mg2+]i. pHi was manipulated by the NH4Cl prepulse method. NH4 +-evoked changes in pHi, as measured by the fluorescent indicator BCECF, were accompanied by opposite changes in [Mg2+]i; [Mg2+]i changed by –0.16 mM/unit pH. These NH4 +-evoked changes in [Mg2+]i were not caused by movements of Mg2+ or Ca2+ across the sarcolemma or by changes in cytosolic Ca2+. Additionally, pHi was manipulated by changing extracellular pH (pHo). When pHo was decreased from 7.4 to 6.3, pHi decreased by 0.64 units and [Mg2+]i increased by 0.12 mM; in contrast, when pHo was raised from 7.4 to 8.3, pHi increased by 0.6 units and [Mg2+]i did not change significantly. The results of our investigations suggest that Ca 2+ and H+ can modulate [Mg2+]i, probably by affecting cytosolic Mg2+ binding and/or subcellular Mg2+ transport and that such redistribution of intracellular Mg2+ may play an important role in Mg2+ homeostasis in cardiac cells.  相似文献   

9.
The actions of intracellular pH (pH i ) on Ca2+dependent Cl? channels were studied in secretory epithelial cells derived from human colon carcinoma (T84) and in isolated rat parotid acinar cells. Channel currents were measured with the whole cell voltage clamp technique with pipette solutions of different pH. Ca2+dependent Cl? channels were activated by superfusing ionomycin to increase the intracellular calcium concentration ([Ca2+] i ) or by using pipette solutions with buffered Ca2+ levels. Large currents were activated in T84 and parotid cells by both methods with pH i levels of 7.3 or 8.3. Little or no Cl? channel current was activated with pH i at 6.4. We used on-cell patch clamp methods to investigate the actions of low pH i on single Cl? channel current amplitude in T84 cells. Lowering the pH i had little or no effect on the current amplitude of a 8 pS Cl? channel, but did reduce channel activity. These results suggest that cytosolic acidification may be able to modulate stimulus-secretion coupling in fluid-secreting epithelia by inhibiting the activation of Ca2+-activated Cl? channels.  相似文献   

10.
Summary Homeostasis of intracellular calcium ([Ca++]i) and pH (pHi) is important in the cell's ability to respond to growth factors, to initiate differentiation and proliferation, and to maintain normal metabolic pathways. Because of the importance of these ions to cellular functions, we investigated the effects of changes of [Ca++]i and pHi on each other in primary cultures of rabbit corneal epithelial cells. Digitized fluorescence imaging was used to measure [Ca++]i with fura-2 and pHi with 2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF). Resting pHi in these cells was 7.37±0.05 (n=20 cells) and resting [Ca++]i was 129±10 nM (n=35 cells) using a nominally bicarbonate-free Krebs Ringer HEPES buffer (KRHB), pH 7.4. On exposure to 20 mM NH4Cl, which rapidly alkalinized cells by 0.45 pH units, an increase in [Ca++]i to 215±14 nM occurred. Pretreatment of the cells with 100 μM verapamil or exposure to 1 mM ethylene bis-(oxyethylenenitrilo)-tetraacetic acid (EGTA) without extracellular calcium before addition of 20 mM NH4Cl did not abolish the calcium increase, suggesting that the source of the calcium transient was from intracellular calcium stores. On removal of NH4Cl or addition of 20 mM sodium lactate, there were minimal changes in calcium even though pHi decreased. Treatment of CE cells with the calcium ionophores, ionomycin and 4-bromo A23187, increased [Ca++]i, but produced a biphasic change in pHi. Initially, there was an acidification of the cytosol, and then an alkalinization of 0.10 to 0.11 pH units above initial values. When [Ca++]i was decreased by treating the cells with 5 mM EGTA and 20 μM ionomycin, pHi decreased by 0.35±0.02 units. We conclude that an increase in pHi leads to an increase in [Ca++]i in rabbit corneal epithelial cells; however, a decrease in pHi leads to minor changes in [Ca++]i. The ability of CE cells to maintain proper calcium homeostasis when pHi is decreased may represent an adaptive mechanism to maintain physiological calcium levels during periods of acidification, which occur during prolonged eye closure.  相似文献   

11.
Previous studies in chick embryo cardiac myocytes have shown that the inhibition of Na+/K+-ATPase with ouabain induces cell shrinkage in an isosmotic environment (290 mOsm). The same inhibition produces an enhanced RVD (regulatory volume decrease) in hyposmotic conditions (100 mOsm). It is also known that submitting chick embryo cardiomyocytes to a hyperosmotic solution induces shrinkage and a concurrent intracellular alkalization. The objective of this study was to evaluate the involvement of intracellular pH (pHi), intracellular Ca2+ ([Ca2+]i) and Na+/K+-ATPase inhibition during hyposmotic swelling. Changes in intracellular pH and Ca2+ were monitored using BCECF and fura-2, respectively. The addition of ouabain (100 M) under both isosmotic and hyposmotic stimuli resulted in a large increase in [Ca2+]i (200%). A decrease in pHi (from 7.3 ± 0.09 to 6.4 ± 0.08, n = 6; p < 0.05) was only observed when ouabain was applied during hyposmotic swelling. This acidification was prevented by the removal of extracellular Ca2+. Inhibition of Na+/H2+ exchange with amiloride (1 mM) had no effect on the ouabain-induced acidification. Preventing the mitochondrial accumulation of Ca2+ using CCCP (10 M) resulted in a blockade of the progressive acidification normally induced by ouabain. The inhibition of mitochondrial membrane K+/H+ exchange with DCCD (1 mM) also completely prevented the acidification. Our results suggest that intracellular acidification upon cell swelling is mediated by an initial Ca2+ influx via Na+/Ca2+ exchange, which under hyposmotic conditions activates the K+ and Ca2+ mitochondrial exchange systems (K+/H+ and Ca2+/H+).Deceased  相似文献   

12.
TMEM16F, a dual-function phospholipid scramblase and ion channel, is important in blood coagulation, skeleton development, HIV infection, and cell fusion. Despite advances in understanding its structure and activation mechanism, how TMEM16F is regulated by intracellular factors remains largely elusive. Here we report that TMEM16F lipid scrambling and ion channel activities are strongly influenced by intracellular pH (pHi). We found that low pHi attenuates, whereas high pHi potentiates, TMEM16F channel and scramblase activation under physiological concentrations of intracellular Ca2+ ([Ca2+]i). We further demonstrate that TMEM16F pHi sensitivity depends on [Ca2+]i and exhibits a bell-shaped relationship with [Ca2+]i: TMEM16F channel activation becomes increasingly pHi sensitive from resting [Ca2+]i to micromolar [Ca2+]i, but when [Ca2+]i increases beyond 15 µM, pHi sensitivity gradually diminishes. The mutation of a Ca2+-binding residue that markedly reduces TMEM16F Ca2+ sensitivity (E667Q) maintains the bell-shaped relationship between pHi sensitivity and Ca2+ but causes a dramatic shift of the peak [Ca2+]i from 15 µM to 3 mM. Our biophysical characterizations thus pinpoint that the pHi regulatory effects on TMEM16F stem from the competition between Ca2+ and protons for the primary Ca2+-binding residues in the pore. Within the physiological [Ca2+]i range, the protonation state of the primary Ca2+-binding sites influences Ca2+ binding and regulates TMEM16F activation. Our findings thus uncover a regulatory mechanism of TMEM16F by pHi and shine light on our understanding of the pathophysiological roles of TMEM16F in diseases with dysregulated pHi, including cancer.  相似文献   

13.
The transformation of certain cells reduces the requirement of extracellular Ca2+ for growth. The SV-40 transformed human lung fibroblasts, WI-38 VA13, require less Ca2+ than normal WI-38 cells. Spreading area of normal cells decreases when cultured in 10 μM Ca2+ medium. Intracellular calcium concentration ([Ca2+]i), of the normal and transformed cells cultured in 10μM and 2 mM Ca2+ media was measured by the fluorescence microscope technique using fura-2 as a probe. The [Ca2+], is measured in the resting state and during mobilization by serum or bradykinin stimulation. The lowering of extracellular calcium concentration results in a decrease in the resting state [Ca2+],i of both normal and transformed cells. Although the total decrease in [Ca2+]i is the same for both cell, the rate of decrease is much faster in normal cells than in transformed cells. Low extracellular Ca2+ reduces the number of cells responsive to the serum or bradykinin stimulation and decreases the peak [Ca2+]i value in both cells. In addition, we investigated, using BCECF as a fluorecent probe, the intracellular pH (pHi) of normal and transformed cells maintained at low and normal Ca2+. The low Ca2+ condition makes pHi acidic in normal cells but not in transformed cells. The acidification of the normal cell is accompanied by a decrease in the spreading area of the cells. The decrease of the cell attacment, followed by the reduced spreading area, induced the acidic pHi. These results suggest that the reduced Ca2+ requirement of transformed cells for growth is related to the mechanism of pHi regulation rather than Ca2+ homeostasis and, possibly, to the anchorage-independent growth, which is a unique feature of transformed cells. © 1993 Wiley-Liss, Inc.  相似文献   

14.
We have investigated the involvement of intracellular pH (pHi) in the regulation of P-glycoprotein (P-gp) in K562/DOX cells. The selective Na+/H+ exchanger1 (NHE1) inhibitor cariporide and the “high K+” buffer were used to induce the sustained intracellular acidification of the K562/DOX cells that exhibited more alkaline pHi than the K562 cells. The acidification resulted in the decreased P-gp activity with increased Rhodamine 123 (Rh123) accumulation in K562/DOX cells, which could be blocked by the P-gp inhibitor verapamil. Moreover, the acidification decreased MDR1 mRNA and P-gp expression, and promoted the accumulation and distribution of doxorubicin into the cell nucleus. Interestingly, these processes were all pHi and time-dependent. Furthermore, the change of the P-gp expression was reversible with the pHi recovery. These data indicate that the tumor multidrug resistance (MDR) mediated by P-gp could be reversed by sustained intracellular acidification through down-regulating the P-gp expression and activity, and there is a regulative link between the pHi and P-gp in K562/DOX cells.  相似文献   

15.
Rises of intracellular Ca2+ ([Ca2+]i) are key signals for cell division, differentiation, and maturation. Similarly, they are likely to be important for the unique processes of meiosis and spermatogenesis, carried out exclusively by male germ cells. In addition, elevations of [Ca2+]i and intracellular pH (pHi) in mature sperm trigger at least two events obligatory for fertilization: capacitation and acrosome reaction. Evidence implicates the activity of Ca2+ channels modulated by pHi in the origin of these Ca2+ elevations, but their nature remains unexplored, in part because work in individual spermatozoa are hampered by formidable experimental difficulties. Recently, late spermatogenic cells have emerged as a model system for studying aspects relevant for sperm physiology, such as plasmalemmal ion fluxes. Here we describe the first study on the influence of controlled intracellular alkalinization on [Ca2+]i on identified spermatogenic cells from mouse adult testes. In BCECF [(2′,7′)-bis(carboxymethyl)- (5,6)-carboxyfluorescein]-AM-loaded spermatogenic cells, a brief (30–60 s) application of 25 mM NH4Cl increased pHi by ∼1.3 U from a resting pHi ∼6.65. A steady pHi plateau was maintained during NH4Cl application, with little or no rebound acidification. In fura-2-AM-loaded cells, alkalinization induced a biphasic response composed of an initial [Ca2+]i drop followed by a two- to threefold rise. Maneuvers that inhibit either Ca2+ influx or intracellular Ca2+ release demonstrated that the majority of the Ca2+ rise results from plasma membrane Ca2+ influx, although a small component likely to result from intracellular Ca2+ release was occasionally observed. Ca2+ transients potentiated with repeated NH4Cl applications, gradually obliterating the initial [Ca2+]i drop. The pH-sensitive Ca2+ permeation pathway allows the passage of other divalents (Sr2+, Ba2+, and Mn2+) and is blocked by inorganic Ca2+ channel blockers (Ni2+ and Cd2+), but not by the organic blocker nifedipine. The magnitude of these Ca2+ transients increased as maturation advanced, with the largest responses being recorded in testicular sperm. By extrapolation, these findings suggest that the pH-dependent Ca2+ influx pathway could play significant roles in mature sperm physiology. Its pharmacology and ion selectivity suggests that it corresponds to an ion channel different from the voltage-gated T-type Ca2+ channel also present in spermatogenic cells. We postulate that the Ca2+ permeation pathway regulated by pHi, if present in mature sperm, may be responsible for the dihydropyridine-insensitive Ca2+ influx required for initiating the acrosome reaction and perhaps other important sperm functions.  相似文献   

16.
TASK-2 (KCNK5 or K2P5.1) is a background K+ channel that is opened by extracellular alkalinization and plays a role in renal bicarbonate reabsorption and central chemoreception. Here, we demonstrate that in addition to its regulation by extracellular protons (pHo) TASK-2 is gated open by intracellular alkalinization. The following pieces of evidence suggest that the gating process controlled by intracellular pH (pHi) is independent from that under the command of pHo. It was not possible to overcome closure by extracellular acidification by means of intracellular alkalinization. The mutant TASK-2-R224A that lacks sensitivity to pHo had normal pHi-dependent gating. Increasing extracellular K+ concentration acid shifts pHo activity curve of TASK-2 yet did not affect pHi gating of TASK-2. pHo modulation of TASK-2 is voltage-dependent, whereas pHi gating was not altered by membrane potential. These results suggest that pHo, which controls a selectivity filter external gate, and pHi act at different gating processes to open and close TASK-2 channels. We speculate that pHi regulates an inner gate. We demonstrate that neutralization of a lysine residue (Lys245) located at the C-terminal end of transmembrane domain 4 by mutation to alanine abolishes gating by pHi. We postulate that this lysine acts as an intracellular pH sensor as its mutation to histidine acid-shifts the pHi-dependence curve of TASK-2 as expected from its lower pKa. We conclude that intracellular pH, together with pHo, is a critical determinant of TASK-2 activity and therefore of its physiological function.  相似文献   

17.
A new kinetic model of the Na+/H+ exchanger (NHE) was developed by fitting a variety of major experimental findings, such as ion-dependencies, forward/reverse mode, and the turnover rate. The role of NHE in ion homeostasis was examined by implementing the NHE model in a minimum cell model including intracellular pH buffer, Na+/K+ pump, background H+, and Na+ fluxes. This minimum cell model was validated by reconstructing recovery of pHi from acidification, accompanying transient increase in [Na+]i due to NHE activity. Based on this cell model, steady-state relationships among pHi, [Na+]I, and [Ca2+]i were quantitatively determined, and thereby the critical level of acidosis for cell survival was predicted. The acidification reported during partial blockade of the Na+/K+ pump was not attributed to a dissipation of the Na+ gradient across the membrane, but to an increase in indirect H+ production. This NHE model, though not adapted to the dimeric behavioral aspects of NHE, can provide a strong clue to quantitative prediction of degree of acidification and accompanying disturbance of ion homeostasis under various pathophysiological conditions.  相似文献   

18.
TRPM2 is a Ca2+-permeable nonselective cation channel that plays important roles in oxidative stress–mediated cell death and inflammation processes. However, how TRPM2 is regulated under physiological and pathological conditions is not fully understood. Here, we report that both intracellular and extracellular protons block TRPM2 by inhibiting channel gating. We demonstrate that external protons block TRPM2 with an IC50 of pHo = 5.3, whereas internal protons inhibit TRPM2 with an IC50 of pHi = 6.7. Extracellular protons inhibit TRPM2 by decreasing single-channel conductance. We identify three titratable residues, H958, D964, and E994, at the outer vestibule of the channel pore that are responsible for pHo sensitivity. Mutations of these residues reduce single-channel conductance, decrease external Ca2+ ([Ca2+]o) affinity, and inhibit [Ca2+]o-mediated TRPM2 gating. These results support the following model: titration of H958, D964, and E994 by external protons inhibits TRPM2 gating by causing conformation change of the channel, and/or by decreasing local Ca2+ concentration at the outer vestibule, therefore reducing [Ca2+]o permeation and inhibiting [Ca2+]o-mediated TRPM2 gating. We find that intracellular protons inhibit TRPM2 by inducing channel closure without changing channel conductance. We identify that D933 located at the C terminus of the S4-S5 linker is responsible for intracellular pH sensitivity. Replacement of Asp933 by Asn933 changes the IC50 from pHi = 6.7 to pHi = 5.5. Moreover, substitution of Asp933 with various residues produces marked changes in proton sensitivity, intracellular ADP ribose/Ca2+ sensitivity, and gating profiles of TRPM2. These results indicate that D933 is not only essential for intracellular pH sensitivity, but it is also crucial for TRPM2 channel gating. Collectively, our findings provide a novel mechanism for TRPM2 modulation as well as molecular determinants for pH regulation of TRPM2. Inhibition of TRPM2 by acidic pH may represent an endogenous mechanism governing TRPM2 gating and its physiological/pathological functions.  相似文献   

19.
Summary Cellular potential and pH measurements (pH i ) were carried out in the perfused kidney ofNecturus on proximal tubules with standard and recessed-tip glass microelectrodes under control conditions and after stimulation of tubular bicarbonate reabsorption. Luminal pH and net bicarbonate reabsorption were measured in parallel experiments with recessed-tip glass or antimony electrodes, both during stationary microperfusions as well as under conditions of isosmotic fluid transport. A mean cell pH of 7.15 was obtained in control conditions. When the luminal bicarbonate concentration was raised to 25 and 50mm, pH i rose to 7.44 and 7.56, respectively. These changes in pH i were fully reversible. Under all conditions intracellular H+ was below electrochemical equilibrium. Thus the maintenance of intracellular pH requires active H+ extrusion across one or both of the cell membranes. The observed rise in pH i and the peritubular depolarization after stimulation of bicarbonate reabsorption are consistent with enhanced luminal hydrogen ion secretion and augmentation of peritubular bicarbonate exit via an anion-conductive transport pathway.  相似文献   

20.
Progesterone (P) has previously been shown to rapidly increase free intracellular calcium concentration ([Ca2−]i), and subsequently to initiate the acrosome reaction (AR) in capacitated human sperm. The present study used cytochemical analysis of the AR, and spectrofluorometric determination of sperm [Ca2−]i and intracellular pH (pHi) in Na+-containing and Na+-deficient bicarbonate/CO2-buffered media to investigate the role of Na+ in these P-initiated changes. We found that P failed to initiate the AR in Na+-deficient medium, and that the initial rise in [Ca2+]i following P (1 μg/ml) stimulation was similar for both media; however, the [Ca2+]i in the Na+-deficient medium regressed more rapidly and plateaued at a significantly lower [Ca2+]i. Moreover, the differences in plateau [Ca2+]i were directly related to the percentage of acrosome reactions, suggesting that the plateau phase is not due to [Ca2+]i, but rather to the release of intracellular fura-2 into the medium during the AR. These [Ca2+]i and AR results are in contrast to those reported previously by others for human sperm and suggest that a Na+-dependent mechanism is important in the P-initiated human sperm AR. Such a Na+ requirement may reflect the involvement of this ion in pHi regulation, as capacitated sperm that were incubated in a Na+-deficient medium for ≥ 30 min displayed a significantly lower pHi. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号