首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Activated NK cells mediate potent cytolytic and secretory effector functions and are vital components of the early antiviral immune response. NK cell activities are regulated by the assortment of inhibitory receptors that recognize MHC class I ligands expressed on healthy cells and activating receptors that recognize inducible host ligands or ligands that are not well characterized. The activating Ly49H receptor of mouse NK cells is unique in that it specifically recognizes a virally encoded ligand, the m157 glycoprotein of murine CMV (MCMV). The Ly49H-m157 interaction underlies a potent resistance mechanism (Cmv1) in C57BL/6 mice and serves as an excellent model in which to understand how NK cells are specifically activated in vivo, as similar receptor systems are operative for human NK cells. For transduced cells expressing m157 in isolation and for MCMV-infected cells, we show that m157 is expressed in multiple isoforms with marked differences in abundance between infected fibroblasts (high) and macrophages (low). At the cell surface, m157 is exclusively a glycosylphosphatidylinositol-associated protein in MCMV-infected cells. Through random and site-directed mutagenesis of m157, we identify unique residues that provide for efficient cell surface expression of m157 but fail to activate Ly49H-expressing reporter cells. These m157 mutations are predicted to alter the conformation of a putative m157 interface with Ly49H, one that relies on the position of a critical alpha0 helix of m157. These findings support an emerging model for a novel interaction between this important NK cell receptor and its viral ligand.  相似文献   

2.
Mouse strains are either resistant or susceptible to murine cytomegalovirus (MCMV). Resistance is determined by the Cmv1(r) (Ly49h) gene, which encodes the Ly49H NK cell activation receptor. The protein encoded by the m157 gene of MCMV has been defined as a ligand for Ly49H. To find out whether the m157 protein is the only Ly49H ligand encoded by MCMV, we constructed the m157 deletion mutant and a revertant virus. Viruses were tested for susceptibility to NK cell control in Ly49H+ and Ly49H- mouse strains. Deletion of the m157 gene abolished the viral activation of Ly49H+ NK cells, resulting in higher virus virulence in vivo. Thus, in the absence of m157, Ly49H+ mice react like susceptible strains. 129/SvJ mice lack the Ly49H activation NK cell receptor but express the inhibitory Ly49I NK cell receptor that binds to the m157 protein. The Deltam157 inhibitory phenotype was weak because MCMV encodes a number of proteins that mediate NK inhibition, whose contribution could be shown by another mutant.  相似文献   

3.
NK cell responses are determined by signals received through activating and inhibitory cell surface receptors. Ly49H is an NK cell-specific activating receptor that accounts for the genetic resistance to murine CMV (MCMV). The Ly49H receptor has been shown to interact with two adaptor proteins (DAP12 and DAP10). In the context of MCMV infection, interaction of m157 (the MCMV-encoded ligand for Ly49H) with Ly49H results in activation of Ly49H-expressing NK cells. Chronic exposure of Ly49H with m157, however, induces tolerance in these same cells. The mechanism of this tolerance remains poorly understood. Using a transgenic mouse model, we demonstrate that induction of tolerance in Ly49H(+) NK cells by chronic exposure to m157, in vivo, requires signaling through the Ly49H adaptor protein DAP12, but not the DAP10 adaptor protein. Furthermore, mature Ly49H-expressing NK cells from wild-type mice can acquire a tolerant phenotype by 24 h posttransfer into a transgenic C57BL/6 mouse that expresses m157. The tolerant phenotype can be reversed, in vivo, if tolerant NK cells are transferred to mice that do not express the m157 protein. Thus, continuous activating receptor engagement can induce a transient tolerance in mature NK cells in vivo. These observations provide new insight into how activating receptor engagement shapes NK cell function and has important implications in how NK cells respond to tumors and during chronic viral infection.  相似文献   

4.
Natural Killer (NK) cells are crucial in early resistance to murine cytomegalovirus (MCMV) infection. In B6 mice, the activating Ly49H receptor recognizes the viral m157 glycoprotein on infected cells. We previously identified a mutant strain (MCMVG1F) whose variant m157 also binds the inhibitory Ly49C receptor. Here we show that simultaneous binding of m157 to the two receptors hampers Ly49H-dependent NK cell activation as Ly49C-mediated inhibition destabilizes NK cell conjugation with their targets and prevents the cytoskeleton reorganization that precedes killing. In B6 mice, as most Ly49H+ NK cells do not co-express Ly49C, the overall NK cell response remains able to control MCMVm157G1F infection. However, in B6 Ly49C transgenic mice where all NK cells express the inhibitory receptor, MCMV infection results in altered NK cell activation associated with increased viral replication. Ly49C-mediated inhibition also regulates Ly49H-independent NK cell activation. Most interestingly, MHC class I regulates Ly49C function through cis-interactions that mask the receptor and restricts m157 binding. B6 Ly49C Tg, β2m ko mice, whose Ly49C receptors are unmasked due to MHC class I deficient expression, are highly susceptible to MCMVm157G1F and are unable to control a low-dose infection. Our study provides novel insights into the mechanisms that regulate NK cell activation during viral infection.  相似文献   

5.
A murine cytomegalovirus (MCMV)-encoded protein, m157, has a putative major histocompatibility complex class I (MHC-I) structure and is recognized by the Ly49H NK cell activation receptor. Using a monoclonal antibody against m157, in this study we directly demonstrated that m157 is a cell surface-expressed glycophosphatidylinositol-anchored protein with early viral gene kinetics. Beta-2 microglobulin and TAP1 (transporter associated with antigen processing 1) were not required for its expression. MCMV-encoded proteins that down-regulate MHC-I did not affect the expression of m157. Thus, m157 is expressed on infected cells in a manner independent of viral regulation of host MHC-I.  相似文献   

6.
NK cells vigorously proliferate during viral infections. During the course of murine CMV infection, this response becomes dominated by the preferential proliferation of NK cells that express the activation receptor Ly49H. The factors driving such selective NK cell proliferation have not been characterized. In this study, we demonstrate that preferential NK cell proliferation is dependent on DAP12-mediated signaling following the binding of Ly49H to its virally encoded ligand, m157. Ly49H signaling through DAP12 appears to directly augment NK cell sensitivity to low concentrations of proproliferative cytokines such as IL-15. The impact of Ly49H-mediated signaling on NK cell proliferation is masked in the presence of high concentrations of proproliferative cytokines that nonselectively drive all NK cells to proliferate.  相似文献   

7.
NK cells become functionally competent to be triggered by their activation receptors through the interaction of NK cell inhibitory receptors with their cognate self-MHC ligands, an MHC-dependent educational process termed "licensing." For example, Ly49A(+) NK cells become licensed by the interaction of the Ly49A inhibitory receptor with its MHC class I ligand, H2D(d), whereas Ly49C(+) NK cells are licensed by H2K(b). Structural studies indicate that the Ly49A inhibitory receptor may interact with two sites, termed site 1 and site 2, on its H2D(d) ligand. Site 2 encompasses the α1/α2/α3 domains of the H2D(d) H chain and β(2)-microglobulin (β2m) and is the functional binding site for Ly49A in effector inhibition. Ly49C functionally interacts with a similar site in H2K(b). However, it is currently unknown whether this same site is involved in Ly49A- or Ly49C-dependent licensing. In this study, we produced transgenic C57BL/6 mice expressing wild-type or site 2 mutant H2D(d) molecules and studied whether Ly49A(+) NK cells are licensed. We also investigated Ly49A- and Ly49C-dependent NK licensing in murine β2m-deficient mice that are transgenic for human β2m, which has species-specific amino acid substitutions in β2m. Our data from these transgenic mice indicate that site 2 on self-MHC is critical for Ly49A- and Ly49C-dependent NK cell licensing. Thus, NK cell licensing through Ly49 involves specific interactions with its MHC ligand that are similar to those involved in effector inhibition.  相似文献   

8.
The Ly49H activating receptor on C57BL/6 (B6) NK cells plays a key role in early resistance to murine cytomegalovirus (MCMV) infection through specific recognition of the MCMV-encoded MHC class I-like molecule m157 expressed on infected cells. The m157 molecule is also recognized by the Ly49I inhibitory receptor from the 129/J mouse strain. The m157 gene is highly sequence variable among MCMV isolates, with many m157 variants unable to bind Ly49H(B6). In this study, we have sought to define if m157 variability leads to a wider spectrum of interactions with other Ly49 molecules and if this modifies host susceptibility to MCMV. We have identified novel m157-Ly49 receptor interactions, involving Ly49C inhibitory receptors from B6, BALB/c, and NZB mice, as well as the Ly49H(NZB) activation receptor. Using an MCMV recombinant virus in which m157(K181) was replaced with m157(G1F), which interacts with both Ly49H(B6) and Ly49C(B6), we show that the m157(G1F)-Ly49C interactions cause no apparent attenuating effect on viral clearance in B6 mice. Hence, when m157 can bind both inhibitory and activation NK cell receptors, the outcome is still activation. Thus, these data indicate that whereas m157 variants predominately interact with inhibitory Ly49 receptors, these interactions do not profoundly interfere with early NK cell responses.  相似文献   

9.
Natural killer (NK) cells discriminate between healthy and virally infected or transformed cells using diverse surface receptors that are both activating and inhibitory. Among them, the homodimeric Ly49 NK receptors, which can adopt two distinct conformations (backfolded and extended), are of particular importance for detecting cells infected with mouse cytomegalovirus (CMV) via recognition of the viral immunoevasin m157. The interaction of m157 with activating (Ly49H) and inhibitory (Ly49I) receptors governs the spread of mouse CMV. We carried out kinetic and thermodynamic experiments to elucidate the Ly49/m157 binding mechanism. Combining surface plasmon resonance, fluorescence anisotropy, and circular dichroism (CD), we determined that the best model to describe both the Ly49H/m157 and Ly49I/m157 interactions is a conformational selection mechanism where only the extended conformation of Ly49 (Ly49*) is able to bind the first m157 ligand followed by binding of the Ly49*/m157 complex to the second m157. The interaction is characterized by strong positive cooperativity such that the second m157 binds the Ly49 homodimer with a 1000-fold higher sequential constant than the first m157 (∼108 versus ∼105 m−1). Using far-UV CD, we obtained evidence for a conformational change in Ly49 upon binding m157 that could explain the positive cooperativity. The rate-limiting step of the overall mechanism is a conformational transition in Ly49 from its backfolded to extended form. The global thermodynamic parameters from the initial state (backfolded Ly49 and m157) to the final state (Ly49*/(m157)2) are characterized by an unfavorable enthalpy that is compensated by a favorable entropy, making the interaction spontaneous.  相似文献   

10.
NK cell-mediated cytotoxicity of target cells is the result of a balance between the activating and inhibitory signals provided by their respective ligand-receptor interactions. In our current study, we have investigated the significance of CD59 on human target cells in modulating this process. A range of CD59 site-specific Abs were used in NK cytotoxicity blocking studies against the CD59-expressing K562 target cell line. Significantly reduced cytotoxicity was observed in the presence of Abs previously shown to lack blocking capacity for C-mediated lysis. We investigated the consequences for alternative membrane attachment modalities, namely bis-myristoylated-peptidyl (BiMP) and GPI anchoring, on CD59-negative U937 cells. Expression of GPI-anchored CD59 either via transfection or incorporation rendered U937 targets more susceptible to NK cytotoxicity, whereas incorporation of CD59 via a BiMP anchor to similar levels did not alter susceptibility to NK cytotoxicity. Localization of both BiMP- and GPI-anchored CD59 proteins was shown to be within the lipid raft microdomain. A role for the GPI anchor and independence from glycosylation status was confirmed by expression of transmembrane-anchored CD59 or unglycosylated CD59 and by testing in NK cytotoxicity assays. To investigate mechanisms, we compared the signaling capacity of the various forms of expressed and incorporated CD59 following Ab cross-linking in calcium flux assays. GPI-anchored CD59, with or without glycosylation, mediated activation events, whereas CD59 forms lacking the GPI anchor did not. The data show that the increased susceptibility of target cells expressing CD59 to NK cytotoxicity requires GPI anchor-mediating signaling events, likely mediated by interactions between GPI-anchored CD59 on targets and NK receptors.  相似文献   

11.
NK cell function is regulated by Ly49 receptors in mice and killer cell Ig-like receptors in humans. Although inhibitory Ly49 and killer cell Ig-like receptors predominantly ligate classical MHC class I molecules, recent studies suggest that their activating counterparts recognize infection. The quintessential example is resistance to the mouse CMV in C57BL/6 mice, which depends on the functional recognition of m157, a mouse CMV-encoded MHC class I-like molecule, by Ly49H, an activating NK cell receptor. We have taken advantage of the natural variation in closely related members of the Ly49C-like receptors and the availability of Ly49 crystal structures to understand the molecular determinants of the Ly49H-m157 interaction and to identify amino acid residues discriminating between m157 binding and nonbinding receptors. Using a site-directed mutagenesis approach, we have targeted residues conserved in receptors binding to m157 (Ly49H and Ly49I(129)) but different from receptors lacking m157 recognition (Ly49C, Ly49I(B6), and Ly49U). Wild-type and mutant receptors were transfected into reporter cells, and physical binding as well as functional activation by m157 was studied. Our findings suggested that the Ly49 MHC class I contact "site 2," I226, may not be involved in m157 binding. In contrast, residue Y146 and G151, mapping at the receptor homodimer interface, are likely critical for functional recognition of the m157 glycoprotein. Our combined functional and three-dimensional modeling approach suggested that the architecture of the Ly49H dimer is crucial to accessing m157, but not MHC class I. These results link Ly49 homodimerization variability to the direct recognition of pathogen products.  相似文献   

12.
Natural killer (NK) cells play a critical role in controlling murine cytomegalovirus (MCMV) and can mediate both cytokine production and direct cytotoxicity. The NK cell activation receptor, Ly49H, is responsible for genetic resistance to MCMV in C57BL/6 mice. Recognition of the viral m157 protein by Ly49H is sufficient for effective control of MCMV infection. Additionally, during the host response to infection, distinct immune and non-immune cells elaborate a variety of pleiotropic cytokines which have the potential to impact viral pathogenesis, NK cells, and other immune functions, both directly and indirectly. While the effects of various immune deficiencies have been examined for general antiviral phenotypes, their direct effects on Ly49H-dependent MCMV control are poorly understood. To specifically interrogate Ly49H-dependent functions, herein we employed an in vivo viral competition approach to show Ly49H-dependent MCMV control is specifically mediated through cytotoxicity but not IFNγ production. Whereas m157 induced Ly49H-dependent degranulation, efficient cytotoxicity also required either IL-12 or type I interferon (IFN-I) which acted directly on NK cells to produce granzyme B. These studies demonstrate that both of these distinct NK cell-intrinsic mechanisms are integrated for optimal viral control by NK cells.  相似文献   

13.
NK cells can express both activating and inhibitory Ly49 receptors on their cell surface. When cells expressing both receptors are presented with a ligand, inhibition dominates the functional outcome. In this report we demonstrate that costimulation of the activating Ly49D murine NK cell receptor with IL-12 or IL-18 is capable of over-riding the inhibitory Ly49G2 receptor blockade for cytokine production both in vitro and in vivo. This synergy is mediated by and dependent upon Ly49D-expressing NK cells and results in significant systemic expression of IFN-gamma. This would place NK cells and their activating Ly-49 receptors as important initiators of microbial, antiviral, and antitumor immunity and provide a mechanism for the release of activating Ly49 receptors from inhibitory receptor blockade.  相似文献   

14.
This study aims to determine how the interaction of Ly49 receptors with MHC class I molecules shapes the development of the Ly49 repertoire. We have examined the percentage of NK cells that expressed Ly49A, Ly49G2, and Ly49D in single and double Ly49A/C-transgenic mice on four different MHC backgrounds, H-2(b), H-2(d), H-2(b/d), and beta(2)-microglobulin(-/-). The results show that the total numbers of NK cells were not different among the strains. The prior expression of a Ly49 receptor capable of binding to self MHC class I altered the percentage of NK cells expressing endogenous Ly49A, Ly49G2, and Ly49D even in mice in which no MHC ligand was present for the latter receptors. The NK cells in the Ly49-transgenic mice expressed the same level of endogenous Ly49 receptors as wild-type mice of a similar MHC background. In contrast, the number of NK T cells was reduced in mice in which the Ly49 transgene could bind to a MHC class I molecule. The onset of Ly49 receptor expression on NK cells during ontogeny was not altered in the presence of transgenic Ly49 receptors. These data support a sequential model and argue against a selection model for Ly49 repertoire development on NK cells.  相似文献   

15.
Glycosyl-phosphatidylinositol (GPI)- anchored proteins are preferentially transported to the apical cell surface of polarized Madin-Darby canine kidney (MDCK) cells. It has been assumed that the GPI anchor itself acts as an apical determinant by its interaction with sphingolipid-cholesterol rafts. We modified the rat growth hormone (rGH), an unglycosylated, unpolarized secreted protein, into a GPI-anchored protein and analyzed its surface delivery in polarized MDCK cells. The addition of a GPI anchor to rGH did not lead to an increase in apical delivery of the protein. However, addition of N-glycans to GPI-anchored rGH resulted in predominant apical delivery, suggesting that N-glycans act as apical sorting signals on GPI-anchored proteins as they do on transmembrane and secretory proteins. In contrast to the GPI-anchored rGH, a transmembrane form of rGH which was not raft-associated accumulated intracellularly. Addition of N-glycans to this chimeric protein prevented intracellular accumulation and led to apical delivery.  相似文献   

16.
Natural killer cells are part of the first line of innate immune defence against virus-infected cells and cancer cells in the vertebrate immune system. They are called 'natural' killers because, unlike cytotoxic T cells, they do not require a previous challenge and preactivation to become active. The Ly49 NK receptors are type II transmembrane glycoproteins, structurally characterized as disulphide-linked homodimers. They share extensive homology with C-type lectins, and they are encoded by a multigene family that in mice maps on chromosome 6. A fine balance between inhibitory and activating signals regulates the function of NK cells. Inhibitory Ly49 molecules bind primarily MHC class I ligands, whereas the ligands for activating Ly49 molecules may include MHC class I, but also interestingly MHC class I-like molecules expressed by viruses, as is the case for Ly49H, which binds the m157 gene product of murine cytomegalovirus. In this study, we review the function and X-ray crystal structure of the Ly49 NK cell receptors hitherto determined (Ly49A, Ly49C and Ly49I), and the structural features of the Ly49/MHC class I interaction as revealed by the X-ray crystal structures of Ly49A/H-2Dd and the recently determined Ly49C/H-2Kb.  相似文献   

17.
It is becoming increasingly clear that many diseases are the result of infection from multiple genetically distinct strains of a pathogen. Such multi-strain infections have the capacity to alter both disease and pathogen dynamics. Infection with multiple strains of human cytomegalovirus (HCMV) is common and has been linked to enhanced disease. Suggestions that disease enhancement in multi-strain infected patients is due to complementation have been supported by trans-complementation studies in mice during co-infection of wild type and gene knockout strains of murine CMV (MCMV). Complementation between naturally circulating strains of CMV has, however, not been assessed. In addition, many models of multi-strain infection predict that co-infecting strains will compete with each other and that this competition may contribute to selective transmission of more virulent pathogen strains. To assess the outcome of multi-strain infection, C57BL/6 mice were infected with up to four naturally circulating strains of MCMV. In this study, profound within-host competition was observed between co-infecting strains of MCMV. This competition was MCMV strain specific and resulted in the complete exclusion of certain strains of MCMV from the salivary glands of multi-strain infected mice. Competition was dependent on Ly49H+ natural killer (NK) cells as well as the expression of the ligand for Ly49H, the MCMV encoded product, m157. Strains of MCMV which expressed an m157 gene product capable of ligating Ly49H were outcompeted by strains of MCMV expressing variant m157 genes. Importantly, within-host competition prevented the shedding of the less virulent strains of MCMV, those recognized by Ly49H, into the saliva of multi-strain infected mice. These data demonstrate that NK cells have the strain specific recognition capacity required to meditate within-host competition between strains of MCMV. Furthermore, this within-host competition has the capacity to shape the dynamics of viral shedding and potentially select for the transmission of more virulent virus strains.  相似文献   

18.
CMV can cause life-threatening disease in immunodeficient hosts. Experimental infection in mice has revealed that the genetically determined natural resistance to murine CMV (MCMV) may be mediated either by direct recognition between the NK receptor Ly49H and the pathogen-encoded glycoprotein m157 or by epistatic interaction between Ly49P and the host MHC H-2D(k). Using stocks of wild-derived inbred mice as a source of genetic diversity, we found that PWK/Pas (PWK) mice were naturally resistant to MCMV. Depletion of NK cells subverted the resistance. Analysis of backcrosses to susceptible BALB/c mice revealed that the phenotype was controlled by a major dominant locus effect linked to the NK gene complex. Haplotype analysis of 41 polymorphic markers in the Ly49h region suggested that PWK mice may share a common ancestral origin with C57BL/6 mice; in the latter, MCMV resistance is dependent on Ly49H-m157 interactions. Nevertheless, PWK mice retained viral resistance against m157-defective mutant MCMV. These results demonstrate the presence of yet another NK cell-dependent viral resistance mechanism, named Cmv4, which most likely encodes for a new NK activating receptor. Identification of Cmv4 will expand our understanding of the specificity of the innate recognition of infection by NK cells.  相似文献   

19.
NK cell self-tolerance is maintained by inhibitory receptors specific for MHC class I molecules. Inhibitory NK receptors are also expressed on memory CD8 T cells but their biological relevance on T cells is unclear. In this study, we describe the expression of the Ly49A receptor on a subset of autoreactive T cells which persist in mice double-transgenic for the lymphocytic choriomeningitis virus-derived peptide gp33 and a TCRalphabeta specific for the gp33. No Ly49A-expressing cells are found in TCRalphabeta single-transgenic mice, indicating that the presence of the autoantigen is required for Ly49A induction. Direct evidence for an Ag-specific initiation of Ly49A expression has been obtained in vitro after stimulation of autoreactive TCRalphabeta T cells with the cognate self-Ag. This expression of Ly49A substantially reduces Ag-specific activation of autoreactive T cells. These findings thus suggest that autoantigen-specific induction of inhibitory NK cell receptors on T cells may contribute to peripheral self-tolerance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号