首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
It is becoming increasingly apparent that the nucleus harbors metabolic enzymes that affect genetic transforming events. Here, we describe a nuclear isoform of lactate dehydrogenase (nLDH) and its ability to orchestrate histone deacetylation by controlling the availability of nicotinamide adenine dinucleotide (NAD+), a key ingredient of the sirtuin-1 (SIRT1) deacetylase system. There was an increase in the expression of nLDH concomitant with the presence of hydrogen peroxide (H2O2) in the culture medium. Under oxidative stress, the NAD+ generated by nLDH resulted in the enhanced deacetylation of histones compared to the control hepatocytes despite no discernable change in the levels of SIRT1. There appeared to be an intimate association between nLDH and SIRT1 as these two enzymes co-immunoprecipitated. The ability of nLDH to regulate epigenetic modifications by manipulating NAD+ reveals an intricate link between metabolism and the processing of genetic information.  相似文献   

3.
4.
Several metabolites serve as substrates for histone modifications and communicate changes in the metabolic environment to the epigenome. Technologies such as metabolomics and proteomics have allowed us to reconstruct the interactions between metabolic pathways and histones. These technologies have shed light on how nutrient availability can have a dramatic effect on various histone modifications. This metabolism–epigenome cross talk plays a fundamental role in development, immune function, and diseases like cancer. Yet, major challenges remain in understanding the interactions between cellular metabolism and the epigenome. How the levels and fluxes of various metabolites impact epigenetic marks is still unclear. Discussed herein are recent applications and the potential of systems biology methods such as flux tracing and metabolic modeling to address these challenges and to uncover new metabolic–epigenetic interactions. These systems approaches can ultimately help elucidate how nutrients shape the epigenome of microbes and mammalian cells.  相似文献   

5.
Discovered in the beginning of the 20th century, nicotinamide adenine dinucleotide (NAD+) has evolved from a simple oxidoreductase cofactor to being an essential cosubstrate for a wide range of regulatory proteins that include the sirtuin family of NAD+‐dependent protein deacylases, widely recognized regulators of metabolic function and longevity. Altered NAD+ metabolism is associated with aging and many pathological conditions, such as metabolic diseases and disorders of the muscular and neuronal systems. Conversely, increased NAD+ levels have shown to be beneficial in a broad spectrum of diseases. Here, we review the fundamental aspects of NAD+ biochemistry and metabolism and discuss how boosting NAD+ content can help ameliorate mitochondrial homeostasis and as such improve healthspan and lifespan.  相似文献   

6.
7.
8.
9.
Sirtuins are NAD+-dependent protein deacylases/ADP-ribosyltransferases that have emerged as candidate targets for new therapeutics to treat metabolic disorders and other diseases, including cancer. The sirtuin SIRT5 resides primarily in the mitochondrial matrix and catalyzes the removal of negatively charged lysine acyl modifications; succinyl, malonyl, and glutaryl groups. Evidence has now accumulated to document the roles of SIRT5 as a significant regulator of cellular homeostasis, in a context- and cell-type specific manner, as has been observed previously for other sirtuin family members. SIRT5 regulates protein substrates involved in glycolysis, the TCA cycle, fatty acid oxidation, electron transport chain, ketone body formation, nitrogenous waste management, and ROS detoxification, among other processes. SIRT5 plays pivotal roles in cardiac physiology and stress responses and is involved in the regulation of numerous aspects of myocardial energy metabolism. SIRT5 is implicated in neoplasia, as both a tumor promoter and suppressor in a context-specific manner, and may serve a protective function in the setting of neurodegenerative disorders. Here, we review the current understanding of functional impacts of SIRT5 on its metabolic targets, and its molecular functions in both normal and pathological conditions. Finally, we will discuss the potential utility of SIRT5 as a drug target and also summarize the current status, progress, and challenges in developing small molecule compounds to modulate SIRT5 activity with high potency and specificity.  相似文献   

10.
Aberrant epigenetic silencing of tumor suppressor genes is a common feature observed during the transformation process of many cancers, including those of hematologic origin. Histone modifications, including acetylation, phosphorylation, and methylation, collaborate with DNA CpG island methylation to regulate gene expression. The dynamic process of histone methylation is the latest of these epigenetic modifications to be described, and the identification and characterization of LSD1 as a demethylase of lysine 4 of histone H3 (H3K4) has confirmed that both the enzyme and the modified histone play important roles as regulators of gene expression. LSD1 activity contributes to the suppression of gene expression by demethylating promoter-region mono- and dimethyl-H3K4 histone marks that are associated with active gene expression. As most post-translational modifications are reversible, the enzymes involved in the modification of histones have become targets for chemotherapeutic intervention. In this study, we examined the effects of the polyamine analogue LSD1 inhibitor 2d (1,15-bis{N 5-[3,3-(diphenyl)propyl]-N 1-biguanido}-4,12-diazapentadecane) in human acute myeloid leukemia (AML) cell lines. In each line studied, 2d evoked cytotoxicity and inhibited LSD1 activity, as evidenced by increases in the global levels of mono- and di-methylated H3K4 proteins. Global increases in other chromatin modifications were also observed following exposure to 2d, suggesting a broad response to this compound with respect to chromatin regulation. On a gene-specific level, treatment with 2d resulted in the re-expression of e-cadherin, a tumor suppressor gene frequently silenced by epigenetic modification in AML. Quantitative chromatin immunoprecipitation analysis of the e-cadherin promoter further confirmed that this re-expression was concurrent with changes in both active and repressive histone marks that were consistent with LSD1 inhibition. As hematologic malignancies have demonstrated promising clinical responses to agents targeting epigenetic silencing, this polyamine analogue LSD1 inhibitor presents an exciting new avenue for the development of novel therapeutic agents for the treatment of AML.  相似文献   

11.
12.
Energy metabolism impairment is a central event in the pathophysiology of ischemia. The limited availability of glucose and oxygen strongly affects mitochondrial activity, thus leading to ATP depletion. In this setting, the switch to alternative energy sources could ameliorate cells survival by enhancing ATP production, thus representing an attractive strategy for ischemic treatment. In this regard, some studies have recently re-evaluated the metabolic role of glutamate and its potential to promote cell survival under pathological conditions. In the present review, we discuss the ability of glutamate to exert an “energizing role” in cardiac and neuronal models of hypoxia/reoxygenation (H/R) injury, focusing on the Na+/Ca2+ exchanger (NCX) and the Na+-dependent excitatory amino acid transporters (EAATs) as key players in this metabolic pathway.  相似文献   

13.
Sirtuins are NAD+-dependent histone and protein deacetylases, which have been studied during the last decade with a focus on their role in lifespan extension and age-related diseases under normal and calorie-restricted or pathological conditions. However, sirtuins also have the ability to regulate energy homeostasis as they can sense the metabolic state of the cell through the NAD+/NADH ratio; hence, changes in the diet can modify the expression of these enzymes. Dietary manipulations are a common practice currently being used in livestock production with favorable results, probably due in part to the enhanced activity of sirtuins. Nevertheless, sirtuin expression in livestock species has not been a research target. For these reasons, the goal of this review is to awaken interest in these enzymes for future detailed characterization in livestock species by presenting a general introduction to what sirtuins are, how they work and what is known about their role in livestock.  相似文献   

14.
15.
Metabolic rewiring and epigenetic remodeling, which are closely linked and reciprocally regulate each other, are among the well-known cancer hallmarks. Recent evidence suggests that many metabolites serve as substrates or cofactors of chromatin-modifying enzymes as a consequence of the translocation or spatial regionalization of enzymes or metabolites. Various metabolic alterations and epigenetic modifications also reportedly drive immune escape or impede immunosurveillance within certain contexts, playing important roles in tumor progression. In this review, we focus on how metabolic reprogramming of tumor cells and immune cells reshapes epigenetic alterations, in particular the acetylation and methylation of histone proteins and DNA. We also discuss other eminent metabolic modifications such as, succinylation, hydroxybutyrylation, and lactylation, and update the current advances in metabolism- and epigenetic modification-based therapeutic prospects in cancer.Supplementary InformationThe online version contains supplementary material available at (10.1007/s13238-021-00846-7) contains supplementary material, which is available to authorized users.  相似文献   

16.
Acetyl-CoA, as an important molecule, not only participates in multiple intracellular metabolic reactions, but also affects the post-translational modification of proteins, playing a key role in the metabolic activity and epigenetic inheritance of cells. Cancer cells require extensive lipid metabolism to fuel for their growth, while also require histone acetylation modifications to increase the expression of cancer-promoting genes. As a raw material for de novo lipid synthesis and histone acetylation, acetyl-CoA has a major impact on lipid metabolism and histone acetylation in cancer. More importantly, in cancer, acetyl-CoA connects lipid metabolism with histone acetylation, forming a more complex regulatory mechanism that influences cancer growth, proliferation, metastasis.  相似文献   

17.
The sirtuins are a family of NAD+-dependent protein deacetylases that regulate cell survival, metabolism, and longevity. Three sirtuins, SIRT3–5, localize to mitochondria. Expression of SIRT3 is selectively activated during fasting and calorie restriction. SIRT3 regulates the acetylation level and enzymatic activity of key metabolic enzymes, such as acetyl-CoA synthetase, long-chain acyl-CoA dehydrogenase, and 3-hydroxy-3-methylglutaryl-CoA synthase 2, and enhances fat metabolism during fasting. SIRT5 exhibits demalonylase/desuccinylase activity, and lysine succinylation and malonylation are abundant mitochondrial protein modifications. No convincing enzymatic activity has been reported for SIRT4. Here, we review the emerging role of mitochondrial sirtuins as metabolic sensors that respond to changes in the energy status of the cell and modulate the activities of key metabolic enzymes via protein deacylation.  相似文献   

18.
Parkinson disease (PD) is the most common age-dependent neurodegenerative movement disorder. Accumulated evidence indicates both environmental and genetic factors play important roles in PD pathogenesis, but the potential interaction between environment and genetics in PD etiology remains largely elusive. Here, we report that PD-related neurotoxins induce both expression and acetylation of multiple sites of histones in cultured human cells and mouse midbrain dopaminergic (DA) neurons. Consistently, levels of histone acetylation are markedly higher in midbrain DA neurons of PD patients compared to those of their matched control individuals. Further analysis reveals that multiple histone deacetylases (HDACs) are concurrently decreased in 1-methyl-4-phenylpyridinium (MPP+)-treated cells and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mouse brains, as well as midbrain tissues of human PD patients. Finally, inhibition of histone acetyltransferase (HAT) protects, whereas inhibition of HDAC1 and HDAC2 potentiates, MPP+-induced cell death. Pharmacological and genetic inhibition of autophagy suppresses MPP+-induced HDACs degradation. The study reveals that PD environmental factors induce HDACs degradation and histone acetylation increase in DA neurons via autophagy and identifies an epigenetic mechanism in PD pathogenesis.  相似文献   

19.
《Epigenetics》2013,8(7):637-644
The ability of environmental factors to shape health and disease involves epigenetic mechanisms that mediate gene-environment interactions. Metastable epiallele genes are variably expressed in genetically identical individuals due to epigenetic modifications established during early development. DNA methylation within metastable epialleles is stochastic due to probabilistic reprogramming of epigenetic marks during embryogenesis. Maternal nutrition and environment have been shown to affect metastable epiallele methylation patterns and subsequent adult phenotype. Little is known, however, about the role of histone modifications in influencing metastable epiallele expression and phenotypic variation. Utilizing chromatin immunoprecipitation followed by qPCR, we observe variable histone patterns in the 5’ long terminal repeat (LTR) of the murine viable yellow agouti (Avy) metastable epiallele. This region contains 6 CpG sites, which are variably methylated in isogenic Avy/a offspring. Yellow mice, which are hypomethylated at the Avy LTR and exhibit constitutive ectopic expression of agouti (a), also display enrichment of H3 and H4 di-acetylation (p=0.08 and 0.09, respectively). Pseudoagouti mice, in which Avy hypermethylation is thought to silence ectopic expression, exhibit enrichment of H4K20 tri-methylation (p=0.01). No differences are observed for H3K4 tri-methylation (p=0.7), a modification often enriched in the promoter of active genes. These results show for the first time the presence of variable histone modifications at a metastable epiallele, indicating that DNA methylation acts in concert with histone modifications to affect inter-individual variation of metastable epiallele expression. Therefore, the potential for environmental factors to influence histone modifications, in addition to DNA methylation, should be addressed in environmental epigenomic studies.  相似文献   

20.
The ability of environmental factors to shape health and disease involves epigenetic mechanisms that mediate gene-environment interactions. Metastable epiallele genes are variably expressed in genetically identical individuals due to epigenetic modifications established during early development. DNA methylation within metastable epialleles is stochastic due to probabilistic reprogramming of epigenetic marks during embryogenesis. Maternal nutrition and environment have been shown to affect metastable epiallele methylation patterns and subsequent adult phenotype. Little is known, however, about the role of histone modifications in influencing metastable epiallele expression and phenotypic variation. Utilizing chromatin immunoprecipitation followed by qPCR, we observe variable histone patterns in the 5′ long terminal repeat (LTR) of the murine viable yellow agouti (Avy) metastable epiallele. This region contains 6 CpG sites, which are variably methylated in isogenic Avy/a offspring. Yellow mice, which are hypomethylated at the Avy LTR and exhibit constitutive ectopic expression of Agouti (a), also display enrichment of H3 and H4 di-acetylation (p = 0.08 and 0.09, respectively). Pseudoagouti mice, in which Avy hypermethylation is thought to silence ectopic expression, exhibit enrichment of H4K20 tri-methylation (p = 0.01). No differences are observed for H3K4 tri-methylation (p = 0.7), a modification often enriched in the promoter of active genes. These results show for the first time the presence of variable histone modifications at a metastable epiallele, indicating that DNA methylation acts in concert with histone modifications to affect inter-individual variation of metastable epiallele expression. Therefore, the potential for environmental factors to influence histone modifications, in addition to DNA methylation, should be addressed in environmental epigenomic studies.Key words: epigenetics, metastable epiallele, viable yellow agouti, histone, environmental epigenomics  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号