首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Disruption of telomere maintenance pathways leads to accelerated entry into cellular senescence, a stable proliferative arrest that promotes aging‐associated disorders in some mammals. The budding yeast CST complex, comprising Cdc13, Stn1, and Ctc1, is critical for telomere replication, length regulation, and end protection. Although mammalian homologues of CST have been identified recently, their role and function for telomere maintenance in normal somatic human cells are still incompletely understood. Here, we characterize the function of human Stn1 in cultured human fibroblasts and demonstrate its critical role in telomere replication, length regulation, and function. In the absence of high telomerase activity, shRNA‐mediated knockdown of hStn1 resulted in aberrant and fragile telomeric structures, stochastic telomere attrition, increased telomere erosion rates, telomere dysfunction, and consequently accelerated entry into cellular senescence. Oxidative stress augmented the defects caused by Stn1 knockdown leading to almost immediate cessation of cell proliferation. In contrast, overexpression of hTERT suppressed some of the defects caused by hStn1 knockdown suggesting that telomerase can partially compensate for hStn1 loss. Our findings reveal a critical role for human Stn1 in telomere length maintenance and function, supporting the model that efficient replication of telomeric repeats is critical for long‐term viability of normal somatic mammalian cells.  相似文献   

2.
Telomere maintenance is critical for genome stability. The newly-identified Ctc1/Stn1/Ten1 complex is important for telomere maintenance, though its precise role is unclear. We report here that depletion of hStn1 induces catastrophic telomere shortening, DNA damage response, and early senescence in human somatic cells. These phenotypes are likely due to the essential role of hStn1 in promoting efficient replication of lagging-strand telomeric DNA. Downregulation of hStn1 accumulates single-stranded G-rich DNA specifically at lagging-strand telomeres, increases telomere fragility, hinders telomere DNA synthesis, as well as delays and compromises telomeric C-strand synthesis. We further show that hStn1 deficiency leads to persistent and elevated association of DNA polymerase α (polα) to telomeres, suggesting that hStn1 may modulate the DNA synthesis activity of polα rather than controlling the loading of polα to telomeres. Additionally, our data suggest that hStn1 is unlikely to be part of the telomere capping complex. We propose that the hStn1 assists DNA polymerases to efficiently duplicate lagging-strand telomeres in order to achieve complete synthesis of telomeric DNA, therefore preventing rapid telomere loss.  相似文献   

3.
The telomere-ending binding protein complex CST (Cdc13-Stn1-Ten1) mediates critical functions in both telomere protection and replication. We devised a co-expression and affinity purification strategy for isolating large quantities of the complete Candida glabrata CST complex. The complex was found to exhibit a 2∶4∶2 or 2∶6∶2 stoichiometry as judged by the ratio of the subunits and the native size of the complex. Stn1, but not Ten1 alone, can directly and stably interact with Cdc13. In gel mobility shift assays, both Cdc13 and CST manifested high-affinity and sequence-specific binding to the cognate telomeric repeats. Single molecule FRET-based analysis indicates that Cdc13 and CST can bind and unfold higher order G-tail structures. The protein and the complex can also interact with non-telomeric DNA in the absence of high-affinity target sites. Comparison of the DNA–protein complexes formed by Cdc13 and CST suggests that the latter can occupy a longer DNA target site and that Stn1 and Ten1 may contact DNA directly in the full CST–DNA assembly. Both Stn1 and Ten1 can be cross-linked to photo-reactive telomeric DNA. Mutating residues on the putative DNA–binding surface of Candida albicans Stn1 OB fold domain caused a reduction in its crosslinking efficiency in vitro and engendered long and heterogeneous telomeres in vivo, indicating that the DNA–binding activity of Stn1 is required for telomere protection. Our data provide insights on the assembly and mechanisms of CST, and our robust reconstitution system will facilitate future biochemical analysis of this important complex.  相似文献   

4.
The CST complex is a key player in telomere replication and stability, which in yeast comprises Cdc13, Stn1 and Ten1. While Stn1 and Ten1 are very well conserved across species, Cdc13 does not resemble its mammalian counterpart CTC1 either in sequence or domain organization, and Cdc13 but not CTC1 displays functions independently of the rest of CST. Whereas the structures of human CTC1 and CST have been determined, the molecular organization of Cdc13 remains poorly understood. Here, we dissect the molecular architecture of Candida glabrata Cdc13 and show how it regulates binding to telomeric sequences. Cdc13 forms dimers through the interaction between OB-fold 2 (OB2) domains. Dimerization stimulates binding of OB3 to telomeric sequences, resulting in the unfolding of ssDNA secondary structure. Once bound to DNA, Cdc13 prevents the refolding of ssDNA by mechanisms involving all domains. OB1 also oligomerizes, inducing higher-order complexes of Cdc13 in vitro. OB1 truncation disrupts these complexes, affects ssDNA unfolding and reduces telomere length in C. glabrata. Together, our results reveal the molecular organization of C. glabrata Cdc13 and how this regulates the binding and the structure of DNA, and suggest that yeast species evolved distinct architectures of Cdc13 that share some common principles.  相似文献   

5.
Budding yeast Cdc13-Stn1-Ten1 (CST) complex plays an essential role in telomere protection and maintenance, and has been proposed to be a telomere-specific replication protein A (RPA)-like complex. Previous genetic and structural studies revealed a close resemblance between Stn1-Ten1 and RPA32-RPA14. However, the relationship between Cdc13 and RPA70, the largest subunit of RPA, has remained unclear. Here, we report the crystal structure of the N-terminal OB (oligonucleotide/oligosaccharide binding) fold of Cdc13. Although Cdc13 has an RPA70-like domain organization, the structures of Cdc13 OB folds are significantly different from their counterparts in RPA70, suggesting that they have distinct evolutionary origins. Furthermore, our structural and biochemical analyses revealed unexpected dimerization by the N-terminal OB fold and showed that homodimerization is probably a conserved feature of all Cdc13 proteins. We also uncovered the structural basis of the interaction between the Cdc13 N-terminal OB fold and the catalytic subunit of DNA polymerase α (Pol1), and demonstrated a role for Cdc13 dimerization in Pol1 binding. Analysis of the phenotypes of mutants defective in Cdc13 dimerization and Cdc13-Pol1 interaction revealed multiple mechanisms by which dimerization regulates telomere lengths in vivo. Collectively, our findings provide novel insights into the mechanisms and evolution of Cdc13.  相似文献   

6.
In budding yeast (Saccharomyces cerevisiae), the cell cycle-dependent telomere elongation by telomerase is controlled by the cyclin-dependent kinase 1 (Cdk1). The telomere length homeostasis is balanced between telomerase-unextendable and telomerase-extendable states that both require Cdc13. The recruitment of telomerase complex by Cdc13 promotes telomere elongation, while the formation of Cdc13-Stn1-Ten1 (CST) complex at the telomere blocks telomere elongation by telomerase. However, the cellular signaling that regulates the timing of the telomerase-extendable and telomerase-unextendable states is largely unknown. Phosphorylation of Cdc13 by Cdk1 promotes the interaction between Cdc13 and Est1 and hence telomere elongation. Here, we show that Cdk1 also phosphorylates Stn1 at threonine 223 and serine 250 both in vitro and in vivo, and these phosphorylation events are essential for the stability of the CST complexes at the telomeres. By controlling the timing of Cdc13 and Stn1 phosphorylations during cell cycle progression, Cdk1 regulates the temporal recruitment of telomerase complexes and CST complexes to the telomeres to facilitate telomere maintenance.  相似文献   

7.
The conserved shelterin complex caps chromosome ends to protect telomeres and regulate telomere replication. In fission yeast Schizosaccharomyces pombe, shelterin consists of telomeric single- and double-stranded DNA-binding modules Pot1-Tpz1 and Taz1-Rap1 connected by Poz1, and a specific component Ccq1. While individual structures of the two DNA-binding OB folds of Pot1 (Pot1OB1-GGTTAC and Pot1OB2-GGTTACGGT) are available, structural insight into recognition of telomeric repeats with spacers by the complete DNA-binding domain (Pot1DBD) remains an open question. Moreover, structural information about the Tpz1-Ccq1 interaction requires to be revealed for understanding how the specific component Ccq1 of S. pombe shelterin is recruited to telomeres to function as an interacting hub. Here, we report the crystal structures of Pot1DBD-single-stranded-DNA, Pot1372-555-Tpz1185-212 and Tpz1425-470-Ccq1123-439 complexes and propose an integrated model depicting the assembly mechanism of the shelterin complex at telomeres. The structure of Pot1DBD-DNA unveils how Pot1 recognizes S. pombe degenerate telomeric sequences. Our analyses of Tpz1-Ccq1 reveal structural basis for the essential role of the Tpz1-Ccq1 interaction in telomere recruitment of Ccq1 that is required for telomere maintenance and telomeric heterochromatin formation. Overall, our findings provide valuable structural information regarding interactions within fission yeast shelterin complex at 3’ ss telomeric overhang.  相似文献   

8.
Telomeres are nucleoprotein structures that cap the ends of linear chromosomes. Telomere homeostasis is central to maintaining genomic integrity. In budding yeast, Cdk1 phosphorylates the telomere-specific binding protein, Cdc13, promoting the recruitment of telomerase to telomere and thereby telomere elongation. Cdc13 is also an integral part of the CST (Cdc13-Stn1-Ten1) complex that is essential for telomere capping and counteracting telomerase-dependent telomere elongation. Therefore, telomere length homeostasis is a balance between telomerase-extendable and CST-unextendable states. In our earlier work, we showed that Cdk1 also phosphorylates Stn1 which occurs sequentially following Cdc13 phosphorylation during cell cycle progression. This stabilizes the CST complex at the telomere and results in telomerase inhibition. Hence Cdk1-dependent phosphorylations of Stn1 acts like a molecular switch that drives Cdc13 to complex with Stn1-Ten1 rather than with telomerase. However, the underlying mechanism of how a single cyclin-dependent kinase phosphorylates Cdc13 and Stn1 in temporally distinct windows is largely unclear. Here, we show that S phase cyclins are necessary for telomere maintenance. The S phase and mitotic cyclins facilitate Cdc13 and Stn1 phosphorylation respectively, to exert opposing outcomes at the telomere. Thus, our results highlight a previously unappreciated role for cyclins in telomere replication.  相似文献   

9.
RPA-like proteins mediate yeast telomere function   总被引:1,自引:0,他引:1  
Cdc13, Stn1 and Ten1 are essential yeast proteins that both protect chromosome termini from unregulated resection and regulate telomere length. Cdc13, which localizes to telomeres through high-affinity binding to telomeric single-stranded DNA, has been extensively characterized, whereas the contribution(s) of the Cdc13-associated Stn1 and Ten1 proteins to telomere function have remained unclear. We show here that Stn1 and Ten1 are DNA-binding proteins with specificity for telomeric DNA substrates. Furthermore, Stn1 and Ten1 show similarities to Rpa2 and Rpa3, subunits of the heterotrimeric replication protein A (RPA) complex, which is the major single-stranded DNA-binding activity in eukaryotic cells. We propose that Cdc13, Stn1 and Ten1 function as a telomere-specific RPA-like complex. Identification of an RPA-like complex that is targeted to a specific region of the genome suggests that multiple RPA-like complexes have evolved, each making individual contributions to genomic stability.  相似文献   

10.
Elongation of the telomeric overhang by telomerase is counteracted by synthesis of the complementary strand by the CST complex, CTC1(Cdc13)/Stn1/Ten1. Interaction of budding yeast Stn1 with overhang‐binding Cdc13 is increased by Cdc13 SUMOylation. Human and fission yeast CST instead interact with overhang‐binding TPP1/POT1. We show that the fission yeast TPP1 ortholog, Tpz1, is SUMOylated. Tpz1 SUMOylation restricts telomere elongation and promotes Stn1/Ten1 telomere association, and a SUMO‐Tpz1 fusion protein has increased affinity for Stn1. Our data suggest that SUMO inhibits telomerase through stimulation of Stn1/Ten1 action by Tpz1, highlighting the evolutionary conservation of the regulation of CST function by SUMOylation.  相似文献   

11.
The assembly of a protective cap onto the telomeres of eukaryotic chromosomes suppresses genomic instability through inhibition of DNA repair activities that normally process accidental DNA breaks. We show here that the essential Cdc13–Stn1–Ten1 complex is entirely dispensable for telomere protection in non‐dividing cells. However, Yku and Rap1 become crucially important for this function in these cells. After inactivation of Yku70 in G1‐arrested cells, moderate but significant telomere degradation occurs. As the activity of cyclin‐dependent kinases (CDK) promotes degradation, these results suggest that Yku stabilizes G1 telomeres by blocking the access of CDK1‐independent nucleases to telomeres. The results indeed show that both Exo1 and the Mre11/Rad50/Xrs2 complex are required for telomeric resection after Yku loss in non‐dividing cells. Unexpectedly, both asynchronously growing and quiescent G0 cells lacking Rap1 display readily detectable telomere degradation, suggesting an earlier unanticipated function for this protein in suppression of nuclease activities at telomeres. Together, our results show a high flexibility of the telomeric cap and suggest that distinct configurations may provide for efficient capping in dividing versus non‐dividing cells.  相似文献   

12.
The budding yeast Cdc13, Stn1 and Ten1 (CST) proteins are proposed to function as an RPA-like complex at telomeres that protects (‘caps'') chromosome ends and regulates their elongation by telomerase. We show that Stn1 has a critical function in both processes through the deployment of two separable domains. The N terminus of Stn1 interacts with Ten1 and carries out its essential capping function. The C terminus of Stn1 binds both Cdc13 and Pol12, and we present genetic data indicating that the Stn1–Cdc13 interaction is required to limit continuous telomerase action. Stn1 telomere association, similar to that of Cdc13, peaks during S phase. Significantly, the magnitude of Stn1 telomere binding is independent of telomere TG tract length, suggesting that the negative effect of Stn1 on telomerase action might be regulated by a modification of CST activity or structure in cis at individual telomeres. Genetic analysis suggests that the Tel1 kinase exerts an effect in parallel with the Stn1 C terminus to counteract its inhibition of telomerase. These data provide new insights into the coordination of telomere capping and telomerase regulation.  相似文献   

13.
The telosome/shelterin, a six-protein complex formed by TRF1, TRF2, RAP1, TIN2, POT1, and TPP1, functions as the core of the telomere interactome, acting as the molecular platform for the assembly of higher order complexes and coordinating cross-talks between various protein subcomplexes. Within the telosome, there are two oligonucleotide- or oligosaccharide-binding (OB) fold-containing proteins, TPP1 and POT1. They can form heterodimers that bind to the telomeric single-stranded DNA, an activity that is central for telomere end capping and telomerase recruitment. Through proteomic analyses, we found that in addition to POT1, TPP1 can associate with another OB fold-containing protein, OBFC1/AAF44. The yeast homolog of OBFC1 is Stn1, which plays a critical role in telomere regulation. We show here that OBFC1/AAF44 can localize to telomeres in human cells and bind to telomeric single-stranded DNA in vitro. Furthermore, overexpression of an OBFC1 mutant resulted in elongated telomeres in human cells, implicating OBFC1/AAF4 in telomere length regulation. Taken together, our studies suggest that OBFC1/AAF44 represents a new player in the telomere interactome for telomere maintenance.Telomeres are specialized linear chromosome end structures, which are regulated and protected by networks of protein complexes (14). Telomere length, structure, and integrity are critical for the cells and the organism as a whole. Telomere dysregulation can lead to DNA damage response, cell cycle checkpoint, genome instability, and predisposition to cancer (59). Mammalian telomeres are composed of double-stranded (TTAGGG)n repeats followed by 3′-single-stranded overhangs (10). In addition to the telomerase that directly mediates the addition of telomere repeats to the end of chromosomes (11, 12), a multitude of telomere-specific proteins have been identified that form the telosome/shelterin complex and participate in telomere maintenance (9, 13). The telosome in turn acts as the platform onto which higher order telomere regulatory complexes may be assembled into the telomere interactome (14). The telomere interactome has been proposed to integrate the complex and labyrinthine network of protein signaling pathways involved in DNA damage response, cell cycle checkpoint, and chromosomal end maintenance and protection for telomere homeostasis and genome stability.Of the six telomeric proteins (TRF1, TRF2, RAP1, TIN2, POT1, and TPP1) that make up the telosome, TRF1 and TRF2 have been shown to bind telomeric double-stranded DNA (15, 16), whereas the OB3 fold-containing protein POT1 exhibits high affinities for telomeric ssDNA in vitro (17, 18). Although the OB fold of TPP1 does not show appreciable ssDNA binding activity, heterodimerization of TPP1 and POT1 enhances the POT1 ssDNA binding (17, 18). More importantly, POT1 depends on TPP1 for telomere recruitment, and the POT1-TPP1 heterodimer functions in telomere end protection and telomerase recruitment. Notably, the OB fold of TPP1 is critical for the recruitment of the telomerase (18). Disruption of POT1-TPP1 interaction by dominant negative inhibition, RNA interference, or gene targeting could lead to dysregulation of telomere length as well DNA damage responses at the telomeres (1821).In budding yeast, the homolog of mammalian POT1, Cdc13, has been shown to interact with two other OB fold-containing proteins, Stn1 and Ten1, to form a Cdc13-Stn1-Ten1 (CST) complex (22, 23). The CST complex participates in both telomere length control and telomere end capping (22, 23). The presence of multiple OB fold-containing proteins from yeast to human suggests a common theme for telomere ssDNA protection (4). Indeed, it has been proposed that the CST complex is structurally analogous to the replication factor A complex and may in fact function as a telomere-specific replication factor A complex (23). Notably, homologs of the CST complex have been found in other species such as Arabidopsis (24), further supporting the notion that multiple OB fold proteins may be involved in evolutionarily conserved mechanisms for telomere end protection and length regulation. It remains to be determined whether the CST complex exists in mammals.Although the circuitry of interactions among telosome components has been well documented and studied, how core telosome subunits such as TPP1 help to coordinate the cross-talks between telomere-specific signaling pathways and other cellular networks remains unclear. To this end, we carried out large scale immunoprecipitations and mass spectrometry analysis of the TPP1 protein complexes in mammalian cells. Through these studies, we identified OB fold-containing protein 1 (OBFC1) as a new TPP1-associated protein. OBFC1 is also known as α-accessory factor AAF44 (36). Sequence alignment analysis indicates that OBFC1 is a homolog of the yeast Stn1 protein (25). Further biochemical and cellular studies demonstrate the association of OBFC1 with TPP1 in live cells. Moreover, we showed that OBFC1 bound to telomeric ssDNA and localized to telomeres in mammalian cells. Dominant expression of an OBFC1 mutant led to telomere length dysregulation, indicating that OBFC1 is a novel telomere-associated OB fold protein functioning in telomere length regulation.  相似文献   

14.
In the budding yeast Saccharomyces cerevisiae, the structure and function of telomeres are maintained by binding proteins, such as Cdc13-Stn1-Ten1 (CST), Yku, and the telomerase complex. Like CST and Yku, telomerase also plays a role in telomere protection or capping. Unlike CST and Yku, however, the underlying molecular mechanism of telomerase-mediated telomere protection remains unclear. In this study, we employed both the CDC13-EST1 fusion gene and the separation-of-function allele est1-D514A to elucidate that Est1 provided a telomere protection pathway that was independent of both the CST and Yku pathways. Est1's ability to convert single-stranded telomeric DNA into a G quadruplex was required for telomerase-mediated telomere protection function. Additionally, Est1 maintained the integrity of telomeres by suppressing the recombination of subtelomeric Y' elements. Our results demonstrate that one major functional role that Est1 brings to the telomerase complex is the capping or protection of telomeres.  相似文献   

15.
The budding yeast Cdc13-Stn1-Ten1 complex is crucial for telomere protection and has been proposed to resemble the RPA complex structurally and functionally. The Cdc13 homologues in Candida species are unusually small and lack two conserved domains previously implicated in telomere regulation, thus raising interesting questions concerning the mechanisms and evolution of these proteins. In this report, we show that the unusually small Cdc13 homologue in Candida albicans is indeed a regulator of telomere lengths and that it associates with telomere DNA in vivo. We demonstrated high-affinity telomere DNA binding by C. tropicalis Cdc13 (CtCdc13) and found that dimerization of this protein through its OB4 domain is important for high-affinity DNA binding. Interestingly, CtCdc13-DNA complex formation appears to involve primarily recognition of multiple copies of a six-nucleotide element (GGATGT) that is shared by many Candida telomere repeats. We also determined the crystal structure of the OB4 domain of C. glabrata Cdc13, which revealed a novel mechanism of OB fold dimerization. The structure also exhibits marked differences to the C-terminal OB fold of RPA70, thus arguing against a close evolutionary kinship between these two proteins. Our findings provide new insights on the mechanisms and evolution of a critical telomere end binding protein.  相似文献   

16.
Genome stability necessitates a mechanism to protect the termini of linear chromosomes from inappropriate degradation or recombination. In many species this protection depends on 'capping' proteins that bind telomeric DNA. The budding yeast Cdc13p binds single-stranded telomeric sequences, prevents lethal degradation of chromosome ends and regulates telomere extension by telomerase. Two Cdc13-interacting proteins, Stn1p and Ten1p, are also required for viability and telomere length regulation. It has been proposed that Cdc13p DNA binding directs a Cdc13p-Stn1p-Ten1p complex to telomeres to mediate end protection. However, the functional significance of these protein interactions, and their respective roles in maintaining telomere integrity, remain undefined. Here, we show that co-overexpressing TEN1 with a truncated form of STN1 efficiently bypasses the essential role of CDC13. We further show that this truncated Stn1p binds directly to Pol12p, a polymerase alpha-primase regulatory subunit, and that Pol12 activity is required for CDC13 bypass. Thus, Stn1p and Ten1p control a Cdc13p-independent telomere capping mechanism that is coupled to the conventional DNA replication machinery.  相似文献   

17.
The Saccharomyces cerevisiae CDC13 protein binds single-strand telomeric DNA. Here we report the isolation of new mutant alleles of CDC13 that confer either abnormal telomere lengthening or telomere shortening. This deregulation not only depended on telomerase (Est2/TLC1) and Est1, a direct regulator of telomerase, but also on the yeast Ku proteins, yKu70/Hdf1 and yKu80/Hdf2, that have been previously implicated in DNA repair and telomere maintenance. Expression of a Cdc13-yKu70 fusion protein resulted in telomere elongation, similar to that produced by a Cdc13-Est1 fusion, thus suggesting that yKu70 might promote Cdc13-mediated telomerase recruitment. We also demonstrate that Stn1 is an inhibitor of telomerase recruitment by Cdc13, based both on STN1 overexpression and Cdc13-Stn1 fusion experiments. We propose that accurate regulation of telomerase recruitment by Cdc13 results from a coordinated balance between positive control by yKu70 and negative control by Stn1. Our results represent the first evidence of a direct control of the telomerase-loading function of Cdc13 by a double-strand telomeric DNA-binding complex.  相似文献   

18.
In Saccharomyces cerevisiae, Cdc13 has been proposed to mediate telomerase recruitment at telomere ends. Stn1, which associates with Cdc13 by the two-hybrid interaction, has been implicated in telomere maintenance. Ten1, a previously uncharacterized protein, was found to associate physically with both Stn1 and Cdc13. A binding defect between Stn1-13 and Ten1 was responsible for the long telomere phenotype of stn1-13 mutant cells. Moreover, rescue of the cdc13-1 mutation by STN1 was much improved when TEN1 was simultaneously overexpressed. Several ten1 mutations were found to confer telomerase-dependent telomere lengthening. Other, temperature-sensitive, mutants of TEN1 arrested at G(2)/M via activation of the Rad9-dependent DNA damage checkpoint. These ten1 mutant cells were found to accumulate single-stranded DNA in telomeric regions of the chromosomes. We propose that Ten1 is required to regulate telomere length, as well as to prevent lethal damage to telomeric DNA.  相似文献   

19.
The POT1 (protection of telomeres 1) protein binds the single-stranded overhang at the ends of chromosomes in diverse eukaryotes. It is essential for chromosome end-protection in the fission yeast Schizosaccharomyces pombe, and it is involved in regulation of telomere length in human cells. Here, we report the crystal structure at a resolution of 1.73 A of the N-terminal half of human POT1 (hPOT1) protein bound to a telomeric single-stranded DNA (ssDNA) decamer, TTAGGGTTAG, the minimum tight-binding sequence indicated by in vitro binding assays. The structure reveals that hPOT1 contains two oligonucleotide/ oligosaccharide-binding (OB) folds; the N-terminal OB fold binds the first six nucleotides, resembling the structure of the S. pombe Pot1pN-ssDNA complex, whereas the second OB fold binds and protects the 3' end of the ssDNA. These results provide an atomic-resolution model for chromosome end-capping.  相似文献   

20.
PTOP interacts with POT1 and regulates its localization to telomeres   总被引:1,自引:0,他引:1  
Telomere maintenance has been implicated in cancer and ageing, and requires cooperation between a multitude of telomeric factors, including telomerase, TRF1, TRF2, RAP1, TIN2, Tankyrase, PINX1 and POT1 (refs 1-12). POT1 belongs to a family of oligonucleotide-binding (OB)-fold-containing proteins that include Oxytricha nova TEBP, Cdc13, and spPot1, which specifically recognize telomeric single-stranded DNA (ssDNA). In human cells, the loading of POT1 to telomeric ssDNA controls telomerase-mediated telomere elongation. Surprisingly, a human POT1 mutant lacking an OB fold is still recruited to telomeres. However, the exact mechanism by which this recruitment occurs remains unclear. Here we identify a novel telomere protein, PTOP, which interacts with both POT1 and TIN2. PTOP binds to the carboxyl terminus of POT1 and recruits it to telomeres. Inhibition of PTOP by RNA interference (RNAi) or disruption of the PTOP-POT1 interaction hindered the localization of POT1 to telomeres. Furthermore, expression of the respective interaction domains on PTOP and POT1 alone extended telomere length in human cells. Therefore, PTOP heterodimerizes with POT1 and regulates POT1 telomeric recruitment and telomere length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号