共查询到20条相似文献,搜索用时 15 毫秒
1.
Shuffling of Promoters for Multiple Genes To Optimize Xylose Fermentation in an Engineered Saccharomyces cerevisiae Strain
下载免费PDF全文

We describe here a useful metabolic engineering tool, multiple-gene-promoter shuffling (MGPS), to optimize expression levels for multiple genes. This method approaches an optimized gene overexpression level by fusing promoters of various strengths to genes of interest for a particular pathway. Selection of these promoters is based on the expression levels of the native genes under the same physiological conditions intended for the application. MGPS was implemented in a yeast xylose fermentation mixture by shuffling the promoters for GND2 and HXK2 with the genes for transaldolase (TAL1), transketolase (TKL1), and pyruvate kinase (PYK1) in the Saccharomyces cerevisiae strain FPL-YSX3. This host strain has integrated xylose-metabolizing genes, including xylose reductase, xylitol dehydrogenase, and xylulose kinase. The optimal expression levels for TAL1, TKL1, and PYK1 were identified by analysis of volumetric ethanol production by transformed cells. We found the optimal combination for ethanol production to be GND2-TAL1-HXK2-TKL1-HXK2-PYK1. The MGPS method could easily be adapted for other eukaryotic and prokaryotic organisms to optimize expression of genes for industrial fermentation. 相似文献
2.
3.
Xylose fermentation by Saccharomyces cerevisiae 总被引:1,自引:0,他引:1
We have performed a comparative study of xylose utilization in Saccharomyces cerevisiae transformants expressing two key enzymes in xylose metabolism, xylose reductase (XR) and xylitol dehydrogenase (XDH), and in a prototypic xylose-utilizing yeast, Pichia stipitis. In the absence of respiration (see text), baker's yeast cells convert half of the xylose to xylitol and ethanol, whereas P. stipilis cells display rather a homofermentative conversion of xylose to ethanol. Xylitol production by baker's yeast is interpreted as a result of the dual cofactor dependence of the XR and the generation of NADPH by the pentose phosphate pathway. Further limitations of xylose utilization in S. cerevisiae cells are very likely caused by an insufficient capacity of the non-oxidative pentose phosphate pathway, as indicated by accumulation of sedoheptulose-7-phosphate and the absence of fructose-1,6-bisphosphate and pyruvate accumulation. By contrast, uptake at high substrate concentrations probably does not limit xylose conversion in S. cerevisiae XYL1/XYL2 transformants.Correspondence to: M. Ciriacy 相似文献
4.
H. Wouter Wisselink Maurice J. Toirkens Qixiang Wu Jack T. Pronk Antonius J. A. van Maris 《Applied and environmental microbiology》2009,75(4):907-914
Lignocellulosic feedstocks are thought to have great economic and environmental significance for future biotechnological production processes. For cost-effective and efficient industrial processes, complete and fast conversion of all sugars derived from these feedstocks is required. Hence, simultaneous or fast sequential fermentation of sugars would greatly contribute to the efficiency of production processes. One of the main challenges emerging from the use of lignocellulosics for the production of ethanol by the yeast Saccharomyces cerevisiae is efficient fermentation of d-xylose and l-arabinose, as these sugars cannot be used by natural S. cerevisiae strains. In this study, we describe the first engineered S. cerevisiae strain (strain IMS0003) capable of fermenting mixtures of glucose, xylose, and arabinose with a high ethanol yield (0.43 g g−1 of total sugar) without formation of the side products xylitol and arabinitol. The kinetics of anaerobic fermentation of glucose-xylose-arabinose mixtures were greatly improved by using a novel evolutionary engineering strategy. This strategy included a regimen consisting of repeated batch cultivation with repeated cycles of consecutive growth in three media with different compositions (glucose, xylose, and arabinose; xylose and arabinose; and only arabinose) and allowed rapid selection of an evolved strain (IMS0010) exhibiting improved specific rates of consumption of xylose and arabinose. This evolution strategy resulted in a 40% reduction in the time required to completely ferment a mixture containing 30 g liter−1 glucose, 15 g liter−1 xylose, and 15 g liter−1 arabinose.In recent years, the need for biotechnological manufacturing based on lignocellulosic feedstocks has become evident (6, 10). In contrast to the readily fermentable, mainly starch- or sucrose-containing feedstocks used in current biotechnological production processes, lignocellulosic biomass requires intensive pretreatment and hydrolysis, which yield complex mixtures of sugars (3, 7, 14, 27). For cost-effective and efficient industrial processes, complete and fast conversion of all sugars present in lignocellulosic hydrolysates is a prerequisite. The major hurdles encountered in implementing these production processes are the conversion of substrates that cannot be utilized by the organism of choice and, even more importantly, the subsequent improvement of sugar conversion rates and product yields.The use of evolutionary engineering has proven to be very valuable for obtaining phenotypes of (industrial) microorganisms with improved properties, such as an expanded substrate range, increased stress tolerance, and efficient substrate utilization (16, 17). Also, for the yeast Saccharomyces cerevisiae, the preferred organism for large-scale ethanol production for the past few decades, evolutionary engineering has been extensively used to select for industrially relevant phenotypes. For ethanol production from lignocellulose by S. cerevisiae, one of the main challenges is efficient conversion of the pentoses d-xylose and l-arabinose to ethanol. To deal with this challenge, S. cerevisiae strains have been metabolically engineered since the early 1990s for the conversion of xylose into ethanol by the introduction of heterologous xylose utilization pathways (for recent reviews, see references 9 and 20). Arabinose utilization, however, has been addressed only quite recently. The most successful approach for obtaining arabinose consumption in S. cerevisiae has been the introduction of a bacterial arabinose utilization pathway (5, 26). In addition to metabolic engineering, extensive evolutionary engineering (by prolonged cultivation of recombinant S. cerevisiae strains in either anaerobic chemostat or repeated anaerobic batch cultures) was required to obtain S. cerevisiae strains that ferment either xylose (13, 19) or arabinose (5, 26) fast or to improve fermentation performance with mixtures containing glucose and xylose (12). In contrast, (evolutionary) engineering has still not resulted in fast and efficient fermentation of both xylose and arabinose to ethanol by a single recombinant S. cerevisiae strain. At best, simultaneous utilization of xylose and arabinose yielded large amounts of the undesirable side products xylitol and arabinitol (11). Hence, a major remaining challenge is the conversion of both xylose and arabinose with high ethanol production rates and yields.In a previous study, an S. cerevisiae strain was metabolically engineered to obtain both xylose and arabinose utilization. For this, the Piromyces XylA, S. cerevisiae XKS1, and Lactobacillus plantarum araA, araB, and araD genes, as well as the endogenous genes of the pentose phosphate pathway (RPE1, RKI1, TKL1, and TAL1), were overexpressed. Selection by sequential batch cultivation under conditions with arabinose as the sole carbon source resulted in strain IMS0002, which is capable of fermenting arabinose to ethanol under anaerobic conditions (26). Unfortunately, the ability to ferment xylose to ethanol was largely lost during long-term selection for improved l-arabinose fermentation. During anaerobic batch cultivation of strain IMS0002 in a glucose-xylose-arabinose mixture, xylose was not consumed completely and was converted to almost equimolar amounts of xylitol. This loss of xylose metabolism illustrates the limitations of selection in media supplemented with a single carbon and energy source.The goal of the present study was to evaluate and optimize selection strategies for evolutionary optimization of the utilization of substrate mixtures. Fermentation of glucose, xylose, and arabinose mixtures by engineered S. cerevisiae strains was used as the model. 相似文献
5.
Improved production of ethanol by deleting FPS1 and over-expressing GLT1 in Saccharomyces cerevisiae
To improve ethanol production in Saccharomyces cerevisiae, two yeast strains were constructed. In the mutant KAM-3, the FPS1 gene, which encodes a channel protein responsible for glycerol export, was deleted. The mutant KAM-11 had the GLT1 gene (encoding glutamate synthase) placed under the PGK1 promoter while having the FPS1 deletion. Growth rate and biomass concentration remained virtually unchanged with the mutant KAM-11, compared to that of the parent. Over-expression of GLT1 by the PGK1 promoter along with FPS1 deletion resulted in a 14% higher ethanol production and a 30% lower glycerol formation compared to the parental strain under anaerobic fermentation conditions. Furthermore, acetate and pyruvic acid formation was also reduced in order for cells to maintain redox balance. 相似文献
6.
Youyun Liang Tong Si Ee Lui Ang Huimin Zhao 《Applied and environmental microbiology》2014,80(21):6677-6684
Several yeast strains have been engineered to express different cellulases to achieve simultaneous saccharification and fermentation of lignocellulosic materials. However, successes in these endeavors were modest, as demonstrated by the relatively low ethanol titers and the limited ability of the engineered yeast strains to grow using cellulosic materials as the sole carbon source. Recently, substantial enhancements to the breakdown of cellulosic substrates have been observed when lytic polysaccharide monooxygenases (LPMOs) were added to traditional cellulase cocktails. LPMOs are reported to cleave cellulose oxidatively in the presence of enzymatic electron donors such as cellobiose dehydrogenases. In this study, we coexpressed LPMOs and cellobiose dehydrogenases with cellobiohydrolases, endoglucanases, and β-glucosidases in Saccharomyces cerevisiae. These enzymes were secreted and docked onto surface-displayed miniscaffoldins through cohesin-dockerin interaction to generate pentafunctional minicellulosomes. The enzymes on the miniscaffoldins acted synergistically to boost the degradation of phosphoric acid swollen cellulose and increased the ethanol titers from our previously achieved levels of 1.8 to 2.7 g/liter. In addition, the newly developed recombinant yeast strain was also able to grow using phosphoric acid swollen cellulose as the sole carbon source. The results demonstrate the promise of the pentafunctional minicellulosomes for consolidated bioprocessing by yeast. 相似文献
7.
8.
Kenro Tokuhiro Masayoshi Muramatsu Chikara Ohto Toshiya Kawaguchi Shusei Obata Nobuhiko Muramoto Masana Hirai Haruo Takahashi Akihiko Kondo Eiji Sakuradani Sakayu Shimizu 《Applied and environmental microbiology》2009,75(17):5536-5543
(E, E, E)-Geranylgeraniol (GGOH) is a valuable starting material for perfumes and pharmaceutical products. In the yeast Saccharomyces cerevisiae, GGOH is synthesized from the end products of the mevalonate pathway through the sequential reactions of farnesyl diphosphate synthetase (encoded by the ERG20 gene), geranylgeranyl diphosphate synthase (the BTS1 gene), and some endogenous phosphatases. We demonstrated that overexpression of the diacylglycerol diphosphate phosphatase (DPP1) gene could promote GGOH production. We also found that overexpression of a BTS1-DPP1 fusion gene was more efficient for producing GGOH than coexpression of these genes separately. Overexpression of the hydroxymethylglutaryl-coenzyme A reductase (HMG1) gene, which encodes the major rate-limiting enzyme of the mevalonate pathway, resulted in overproduction of squalene (191.9 mg liter−1) rather than GGOH (0.2 mg liter−1) in test tube cultures. Coexpression of the BTS1-DPP1 fusion gene along with the HMG1 gene partially redirected the metabolic flux from squalene to GGOH. Additional expression of a BTS1-ERG20 fusion gene resulted in an almost complete shift of the flux to GGOH production (228.8 mg liter−1 GGOH and 6.5 mg liter−1 squalene). Finally, we constructed a diploid prototrophic strain coexpressing the HMG1, BTS1-DPP1, and BTS1-ERG20 genes from multicopy integration vectors. This strain attained 3.31 g liter−1 GGOH production in a 10-liter jar fermentor with gradual feeding of a mixed glucose and ethanol solution. The use of bifunctional fusion genes such as the BTS1-DPP1 and ERG20-BTS1 genes that code sequential enzymes in the metabolic pathway was an effective method for metabolic engineering.(E,E,E)-Geranylgeraniol (GGOH) can be used as an important ingredient for perfumes and as a desirable raw material for synthesizing vitamins A and E (4, 13). It is also known to induce apoptosis in various cancer and tumor cell lines (24, 36). GGOH is the dephosphorylated derivative of (E,E,E)-geranylgeranyl diphosphate (GGPP) (Fig. (Fig.1).1). GGPP is a significant intermediate of ubiquinone and carotenoid biosyntheses, especially in carotenoid-producing microorganisms and plant cells. It is also utilized as the lipid anchor of geranylgeranylated proteins. In the yeast Saccharomyces cerevisiae, GGPP is synthesized by GGPP synthase (GGPS), encoded by the BTS1 gene, which catalyzes the condensation of farnesyl diphosphate (FPP) and isopentenyl diphosphate (IPP) rather than the successive addition of IPP molecules to dimethylallyl diphosphate, geranyl diphosphate, and FPP that is detected in mammalian tissues (14). Biologically synthesized GGOH comprises only (E,E,E)-geometric isomers, and only the (E,E,E)-isomers have significant biological activities (23). The chemically synthesized form is usually obtained as mixtures of (E)- and (Z)-isomers and thus has lower potency. Therefore, there is a greater possibility of attaining efficient production of (E,E,E)-GGOH through fermentative production.Open in a separate windowFIG. 1.Biosynthetic pathway for GGOH in S. cerevisiae. The solid arrows indicate the one-step conversions in the biosynthesis, and the dashed arrows indicate the several steps. Intermediates: HMG-CoA, 3-hydroxy-3-methylflutaryl coenzyme A; DMAPP, dimethylallyl diphosphate. Enzymes: HMG-R, HMG-coenzyme A reductase (encoded by the HMG1 gene); FPS, FPP synthase (ERG20).Some yeast strains accumulate ergosterol up to 4.6% dry mass (1). Thus, yeasts have the potential to produce large amounts of GGOH if it is possible to enhance and redirect the metabolic flux to GGOH synthesis. The enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-R), encoded by the HMG1 gene has been shown to be the major rate-limiting enzyme in the mevalonate pathway in S. cerevisiae (12). Overproduction of the catalytic domain of HMG-R in an S. cerevisiae strain resulted in squalene accumulation of up to 1% (27) and 2% (8) dry mass but did not cause any difference in the contents of isoprenoid alcohols such as farnesol (FOH) and geraniol (27). These results suggest that squalene is preferably accumulated rather than GGOH when the mevalonate pathway is enhanced by overexpression of the HMG1 gene. Squalene is synthesized through the condensation of two molecules of FPP catalyzed by squalene synthase (SQS) encoded by the ERG9 gene in S. cerevisiae (Fig. (Fig.1).1). The addition of an SQS inhibitor to cultures of S. cerevisiae strains resulted in the production of considerable amounts of FOH (∼77.5 mg liter−1) and relatively small amounts of GGOH (∼2.2 mg liter−1) (20). It has also been reported that SQS-deficient (Δerg9) S. cerevisiae strains, which are sterol auxotrophic, accumulated FPP in their cells (35) and excreted 1.3 mg liter−1 of FOH into the culture medium (5). Therefore, inactivation of SQS seems to enhance FOH rather than GGOH production. This is probably because of the low GGPS activity in S. cerevisiae. Indeed, a carotenoid-producing Rhodotorula yeast strain showed higher GGOH (24.4 mg liter−1) than FOH (4.4 mg liter−1) production on cultivation with an SQS inhibitor (20). Our group previously found that GGOH production could be enhanced by overexpression of the BTS1 gene in S. cerevisiae without SQS inhibition. In addition, coexpression of a fusion of the BTS1 and farnesyl diphosphate synthetase (ERG20) genes along with the HMG1 gene resulted in the production of a substantial amount of GGOH with only a small amount of FOH (C. Ohto, M. Muramatsu, E. Sakuradani, S. Shimizu, and S. Obata, submitted for publication).These results suggest that GGOH can be produced from GGPP through some endogenous phosphatase activities when GGPP synthesis is enhanced. We therefore hypothesized that enhancement of the phosphatase activity could increase the productivity of GGOH. However, it is not clear what kind of phosphatase enhances the GGOH production. It has been reported that the products of the diacylglycerol diphosphate phosphatase (DPP1) gene and lipid phosphate phosphatase (LPP1) gene account for most of the FPP and GGPP phosphatase activities in a particulate (membrane associated) fraction of S. cerevisiae (9). In this study, we found that GGOH production could be enhanced by overexpression of these phosphatase genes. We also demonstrated that overexpression of the BTS1-DPP1 and BTS1-ERG20 fusion genes along with the HMG1 gene further increased GGOH production. Finally, we constructed a high-level GGOH-producing yeast available for industrial processes involving multicopy integration vectors. The productivity of GGOH was evaluated in test tube cultures and 10-liter jar fermentors. 相似文献
9.
Characteristics of Fps1-dependent and -independent glycerol transport in Saccharomyces cerevisiae. 总被引:1,自引:0,他引:1
下载免费PDF全文

F C Sutherland F Lages C Lucas K Luyten J Albertyn S Hohmann B A Prior S G Kilian 《Journal of bacteriology》1997,179(24):7790-7795
Eadie-Hofstee plots of glycerol uptake in wild-type Saccharomyces cerevisiae W303-1A grown on glucose showed the presence of both saturable transport and simple diffusion, whereas an fps1delta mutant displayed only simple diffusion. Transformation of the fps1delta mutant with the glpF gene, which encodes glycerol transport in Escherichia coli, restored biphasic transport kinetics. Yeast extract-peptone-dextrose-grown wild-type cells had a higher passive diffusion constant than the fps1delta mutant, and ethanol enhanced the rate of proton diffusion to a greater extent in the wild type than in the fps1delta mutant. In addition, the lipid fraction of the fps1delta mutant contained a lower percentage of phospholipids and a higher percentage of glycolipids than that of the wild type. Fps1p, therefore, may be involved in the regulation of lipid metabolism in S. cerevisiae, affecting membrane permeability in addition to fulfilling its specific role in glycerol transport. Simultaneous uptake of glycerol and protons occurred in both glycerol- and ethanol-grown wild-type and fps1delta cells and resulted in the accumulation of glycerol at an inside-to-outside ratio of 12:1 to 15:1. Carbonyl cyanide m-chlorophenylhydrazone prevented glycerol accumulation in both strains and abolished transport in the fps1delta mutant grown on ethanol. Likewise, 2,4-dinitrophenol inhibited transport in glycerol-grown wild-type cells. These results indicate the presence of an Fps1p-dependent facilitated diffusion system in glucose-grown cells and an Fps1p-independent proton symport system in derepressed cells. 相似文献
10.
11.
Mekonnen M. Demeke María R. Foulquié-Moreno Fran?oise Dumortier Johan M. Thevelein 《PLoS genetics》2015,11(3)
Circular DNA elements are involved in genome plasticity, particularly of tandem repeats. However, amplifications of DNA segments in Saccharomyces cerevisiae reported so far involve pre-existing repetitive sequences such as ribosomal DNA, Ty elements and Long Terminal Repeats (LTRs). Here, we report the generation of an eccDNA, (extrachromosomal circular DNA element) in a region without any repetitive sequences during an adaptive evolution experiment. We performed whole genome sequence comparison between an efficient D-xylose fermenting yeast strain developed by metabolic and evolutionary engineering, and its parent industrial strain. We found that the heterologous gene XylA that had been inserted close to an ARS sequence in the parent strain has been amplified about 9 fold in both alleles of the chromosomal locus of the evolved strain compared to its parent. Analysis of the amplification process during the adaptive evolution revealed formation of a XylA-carrying eccDNA, pXI2-6, followed by chromosomal integration in tandem arrays over the course of the evolutionary adaptation. Formation of the eccDNA occurred in the absence of any repetitive DNA elements, probably using a micro-homology sequence of 8 nucleotides flanking the amplified sequence. We isolated the pXI2-6 eccDNA from an intermediate strain of the evolutionary adaptation process, sequenced it completely and showed that it confers high xylose fermentation capacity when it is transferred to a new strain. In this way, we have provided clear evidence that gene amplification can occur through generation of eccDNA without the presence of flanking repetitive sequences and can serve as a rapid means of adaptation to selection pressure. 相似文献
12.
We used commercial bakers' yeast (Saccharomyces cerevisiae) to study the conversion of d-xylulose to ethanol in the presence of d-xylose. The rate of ethanol production increased with an increase in yeast cell density. The optimal temperature for d-xylulose fermentation was 35 degrees C, and the optimal pH range was 4 to 6. The fermentation of d-xylulose by yeast resulted in the production of ethanol as the major product; small amounts of xylitol and glycerol were also produced. The production of xylitol was influenced by pH as well as temperature. High pH values and low temperatures enhanced xylitol production. The rate of d-xylulose fermentation decreased when the production of ethanol yielded concentrations of 4% or more. The slow conversion rate of d-xylulose to ethanol was increased by increasing the yeast cell density. The overall production of ethanol from d-xylulose by yeast cells under optimal conditions was 90% of the theoretical yield. 相似文献
13.
The roles of three membrane proteins, BOR1, DUR3, and FPS1, in boron (B) transport in yeast were examined. The boron concentration in yeast cells lacking BOR1 was elevated upon exposure to 90 mM boric acid, whereas cells lacking DUR3 or FPS1 showed lower boron concentrations. Compared with control cells, cells overexpressing BOR1 or FPS1 had a lower boron concentration, and cells overexpressing DUR3 had a higher boron concentration. These results suggest that, in addition to the efflux boron transporter BOR1, DUR3 and FPS1 play important roles in regulating the cellular boron concentration. Analysis of the yeast transformants for tolerance to a high boric acid concentration revealed an apparent negative correlation between the protoplasmic boron concentration and the degree of tolerance to a high external boron concentration. Thus, BOR1, DUR3, and FPS1 appear to be involved in tolerance to boric acid and the maintenance of the protoplasmic boron concentration. 相似文献
14.
Trey K. Sato Tongjun Liu Lucas S. Parreiras Daniel L. Williams Dana J. Wohlbach Benjamin D. Bice Irene M. Ong Rebecca J. Breuer Li Qin Donald Busalacchi Shweta Deshpande Chris Daum Audrey P. Gasch David B. Hodge 《Applied and environmental microbiology》2014,80(2):540-554
The fermentation of lignocellulose-derived sugars, particularly xylose, into ethanol by the yeast Saccharomyces cerevisiae is known to be inhibited by compounds produced during feedstock pretreatment. We devised a strategy that combined chemical profiling of pretreated feedstocks, high-throughput phenotyping of genetically diverse S. cerevisiae strains isolated from a range of ecological niches, and directed engineering and evolution against identified inhibitors to produce strains with improved fermentation properties. We identified and quantified for the first time the major inhibitory compounds in alkaline hydrogen peroxide (AHP)-pretreated lignocellulosic hydrolysates, including Na+, acetate, and p-coumaric (pCA) and ferulic (FA) acids. By phenotyping these yeast strains for their abilities to grow in the presence of these AHP inhibitors, one heterozygous diploid strain tolerant to all four inhibitors was selected, engineered for xylose metabolism, and then allowed to evolve on xylose with increasing amounts of pCA and FA. After only 149 generations, one evolved isolate, GLBRCY87, exhibited faster xylose uptake rates in both laboratory media and AHP switchgrass hydrolysate than its ancestral GLBRCY73 strain and completely converted 115 g/liter of total sugars in undetoxified AHP hydrolysate into more than 40 g/liter ethanol. Strikingly, genome sequencing revealed that during the evolution from GLBRCY73, the GLBRCY87 strain acquired the conversion of heterozygous to homozygous alleles in chromosome VII and amplification of chromosome XIV. Our approach highlights that simultaneous selection on xylose and pCA or FA with a wild S. cerevisiae strain containing inherent tolerance to AHP pretreatment inhibitors has potential for rapid evolution of robust properties in lignocellulosic biofuel production. 相似文献
15.
Reduced Oxidative Pentose Phosphate Pathway Flux in Recombinant Xylose-Utilizing Saccharomyces cerevisiae Strains Improves the Ethanol Yield from Xylose 总被引:1,自引:0,他引:1
下载免费PDF全文

Marie Jeppsson Bjrn Johansson Brbel Hahn-Hgerdal Marie F. Gorwa-Grauslund 《Applied microbiology》2002,68(4):1604-1609
In recombinant, xylose-fermenting Saccharomyces cerevisiae, about 30% of the consumed xylose is converted to xylitol. Xylitol production results from a cofactor imbalance, since xylose reductase uses both NADPH and NADH, while xylitol dehydrogenase uses only NAD+. In this study we increased the ethanol yield and decreased the xylitol yield by lowering the flux through the NADPH-producing pentose phosphate pathway. The pentose phosphate pathway was blocked either by disruption of the GND1 gene, one of the isogenes of 6-phosphogluconate dehydrogenase, or by disruption of the ZWF1 gene, which encodes glucose 6-phosphate dehydrogenase. Decreasing the phosphoglucose isomerase activity by 90% also lowered the pentose phosphate pathway flux. These modifications all resulted in lower xylitol yield and higher ethanol yield than in the control strains. TMB3255, carrying a disruption of ZWF1, gave the highest ethanol yield (0.41 g g−1) and the lowest xylitol yield (0.05 g g−1) reported for a xylose-fermenting recombinant S. cerevisiae strain, but also an 84% lower xylose consumption rate. The low xylose fermentation rate is probably due to limited NADPH-mediated xylose reduction. Metabolic flux modeling of TMB3255 confirmed that the NADPH-producing pentose phosphate pathway was blocked and that xylose reduction was mediated only by NADH, leading to a lower rate of xylose consumption. These results indicate that xylitol production is strongly connected to the flux through the oxidative part of the pentose phosphate pathway. 相似文献
16.
Glycerol has been shown to cross the plasma membrane of Saccharomyces cerevisiae through (1) a H(+)/symport detected in cells grown on non-fermentable carbon sources, (2) the constitutively expressed Fps1p channel and (3) by passive diffusion. The Fps1p channel has been named a facilitator for mediating glycerol low affinity transport of the facilitated diffusion type. We present experimental evidence that this kinetic is an artefact created by glycerol kinase activity. Instead, the channel is shown to mediate the major part of glycerol's passive diffusion. This is not incompatible with Fps1p's major role in vivo, which has been previously shown to be the control of glycerol export under osmotic stress or in reaction to turgor changes. We also verified that FPS1 overexpression caused an increase in H(+)/symport V(max). Furthermore, yfl054c and fps1 mutants were equally affected by exogenously added ethanol, being the correspondent passive diffusion stimulated. For the first time, to our knowledge, a phenotype attributed to the functioning of YFL054c gene is presented. Glycerol passive diffusion is thus apparently channel-mediated. This is discussed according to glycerol's chemical properties, which contradict the widely spread concept of glycerol's liposoluble nature. The discussion considers the multiple roles that the intracellular levels of glycerol and its pathway regulation might play as a central key to metabolism control. 相似文献
17.
Genetically Engineered Saccharomyces Yeast Capable of Effective Cofermentation of Glucose and Xylose 总被引:7,自引:0,他引:7
下载免费PDF全文

Xylose is one of the major fermentable sugars present in cellulosic biomass, second only to glucose. However, Saccharomyces spp., the best sugar-fermenting microorganisms, are not able to metabolize xylose. We developed recombinant plasmids that can transform Saccharomyces spp. into xylose-fermenting yeasts. These plasmids, designated pLNH31, -32, -33, and -34, are 2μm-based high-copy-number yeast-E. coli shuttle plasmids. In addition to the geneticin resistance and ampicillin resistance genes that serve as dominant selectable markers, these plasmids also contain three xylose-metabolizing genes, a xylose reductase gene, a xylitol dehydrogenase gene (both from Pichia stipitis), and a xylulokinase gene (from Saccharomyces cerevisiae). These xylose-metabolizing genes were also fused to signals controlling gene expression from S. cerevisiae glycolytic genes. Transformation of Saccharomyces sp. strain 1400 with each of these plasmids resulted in the conversion of strain 1400 from a non-xylose-metabolizing yeast to a xylose-metabolizing yeast that can effectively ferment xylose to ethanol and also effectively utilizes xylose for aerobic growth. Furthermore, the resulting recombinant yeasts also have additional extraordinary properties. For example, the synthesis of the xylose-metabolizing enzymes directed by the cloned genes in these recombinant yeasts does not require the presence of xylose for induction, nor is the synthesis repressed by the presence of glucose in the medium. These properties make the recombinant yeasts able to efficiently ferment xylose to ethanol and also able to efficiently coferment glucose and xylose present in the same medium to ethanol simultaneously. 相似文献
18.
With D-xylose (50 g l ) as sole carbon substrate, aerobic cultures of S. cerevisiae consumed significant amounts of sugar (26.4 g l ), producing 4.0 g xylitol l but no ethanol. In the presence of a mixture of glucose (35 g l ) and xylose (15 g l ), yeasts consumed 1.6 g xylose l that was converted nearly stoichiometrically to xylitol. Anaerobic conditions lessened xylose consumption and its conversion into xylitol. Traces of ethanol (0.4 g l ) were produced when xylose was the only carbon source, however. Agar-entrapped yeasts behaved as anaerobically-grown cultures but with higher specific rates of xylose consumption and xylitol production. 相似文献
19.
20.
Cytokinesis in Saccharomyces cerevisiae occurs by the concerted action of the actomyosin system and septum formation. Here we report on the roles of HOF1, BNI1, and BNR1 in cytokinesis, focusing on Hof1p. Deletion of HOF1 causes a temperature-sensitive defect in septum formation. A Hof1p ring forms on the mother side of the bud neck in G2/M, followed by the formation of a daughter-side ring. Around telophase, Hof1p is phosphorylated and the double rings merge into a single ring that contracts slightly and may colocalize with the actomyosin structure. Upon septum formation, Hof1p splits into two rings, disappearing upon cell separation. Hof1p localization is dependent on septins but not Myo1p. Synthetic lethality suggests that Bni1p and Myo1p belong to one functional pathway, whereas Hof1p and Bnr1p belong to another. These results suggest that Hof1p may function as an adapter linking the primary septum synthesis machinery to the actomyosin system. The formation of the actomyosin ring is not affected by bni1Delta, hof1Delta, or bnr1Delta. However, Myo1p contraction is affected by bni1Delta but not by hof1Delta or bnr1Delta. In bni1Delta cells that lack the actomyosin contraction, septum formation is often slow and asymmetric, suggesting that actomyosin contraction may provide directionality for efficient septum formation. 相似文献