首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bone morphogenetic protein 2 (BMP-2) is a growth factor embedded in the extracellular matrix of bone tissue. BMP-2 acts as trigger of mesenchymal cell differentiation into osteoblasts, thus stimulating healing and de novo bone formation. The clinical use of recombinant human BMP-2 (rhBMP-2) in conjunction with scaffolds has raised recent controversies, based on the mode of presentation and the amount to be delivered. The protocol presented here provides a simple and efficient way to deliver BMP-2 for in vitro studies on cells. We describe how to form a self-assembled monolayer consisting of a heterobifunctional linker, and show the subsequent binding step to obtain covalent immobilization of rhBMP-2. With this approach it is possible to achieve a sustained presentation of BMP-2 while maintaining the biological activity of the protein. In fact, the surface immobilization of BMP-2 allows targeted investigations by preventing unspecific adsorption, while reducing the amount of growth factor and, most notably, hindering uncontrolled release from the surface. Both short- and long-term signaling events triggered by BMP-2 are taking place when cells are exposed to surfaces presenting covalently immobilized rhBMP-2, making this approach suitable for in vitro studies on cell responses to BMP-2 stimulation.  相似文献   

2.
3.
Fractures to the osteoporotic bone feature a delay in callus formation and reduced enchondral ossification. Human mesenchymal stem cells (hMSC), the cellular source of fracture healing, are recruited to the fracture site by cytokines, such as BMP-2 and BMP-7. Aim of the study was to scrutinize hMSC for osteoporosis associated alterations in BMP mediated migration and invasion as well as in extracellular matrix (ECM) binding integrin expression.  相似文献   

4.
Most growth factors naturally involved in development and regeneration demonstrate strong binding to the extracellular matrix and are retained there until being locally mobilized by cells. In spite of this feedback between cell activity and growth factor mobilization in the extracellular matrix, this approach has not been extensively explored in therapeutic situations. We present an engineered bone morphogenetic protein-2 (BMP-2) fusion protein that mimics such function in a surgically relevant matrix, fibrin, incorporated into the matrix until it is locally liberated by cell surface-associated proteases. A tripartite fusion protein, denoted TG-pl-BMP-2, was designed and produced recombinantly. An N-terminal transglutaminase substrate (TG) domain provides covalent attachment to fibrin during coagulation under the influence of the blood transglutaminase factor XIIIa. A central plasmin substrate (pl) domain provides a cleavage site for local release of the attached growth factor from the fibrin matrix under the influence of cell-activated plasmin. A C-terminal human BMP-2 domain provides osteogenic activity. TG-pl-BMP-2 in fibrin was evaluated in vivo in critical-size craniotomy defects in rats, where it induced 76% more defect healing with bone at 3 weeks with a dose of 1 mug/defect than wildtype BMP-2 in fibrin. After a dosing study in rabbits, the engineered growth factor in fibrin was evaluated in a prospective clinical study for pancarpal fusion in dogs, where it induced statistically faster and more extensive bone bridging than equivalent treatment with cancellous bone autograft. The strong healing response shown by fibrin including a bound BMP-2 variant suggests that with the combination of bound growth factor and ingrowth matrix, it may be possible to improve upon the natural growth factor and even upon tissue autograft.  相似文献   

5.
Follistatin inhibits the function of the oocyte-derived factor BMP-15.   总被引:1,自引:0,他引:1  
Recent studies have highlighted the importance of a novel oocyte-derived growth factor, bone morphogenetic protein-15 (BMP-15) in the regulation of proliferation and differentiation of granulosa cells in the ovary. Namely, BMP-15 stimulates granulosa cell mitosis and inhibits follicle-stimulating hormone (FSH) receptor mRNA expression in granulosa cell, thereby playing a critical role in the elaborate mechanism controlling ovarian folliculogenesis. At present, however, nothing is known about molecules which may regulate the biological activity of BMP-15. Here we demonstrate evidence that follistatin can form an inactive complex with BMP-15, through which follistatin inhibits BMP-15 bioactivities. The binding of follistatin to BMP-15 was directly demonstrated by a surface plasmon resonance biosensor, and the ability of follistatin to inhibit BMP-15 functions was determined by established BMP-15 bioassays using primary rat granulosa cells. Specifically, follistatin attenuated BMP-15 stimulation of granulosa cell proliferation and reversed BMP-15 inhibition of FSH receptor mRNA expression leading to the suppression of FSH-induced progesterone synthesis. This is the first demonstration of the biochemical interaction and biological antagonism of follistatin and BMP-15, which may be involved in the complex yet well-controlled mechanism of the regulation of follicle growth and development.  相似文献   

6.
Heparin demonstrates several kinds of biological activities by binding to various extracellular molecules and plays pivotal roles in bone metabolism. However, the role of heparin in the biological activity of bone morphogenetic protein (BMP) remains unclear. In the present study, we examined whether heparin has the effects on osteoblast differentiation induced by BMP-2 in vitro and also elucidated the precise mechanism by which heparin regulates bone metabolism induced by this molecule. Our results showed that heparin inhibited alkaline phosphatase (ALP) activity and mineralization in osteoblastic cells cultured with BMP-2. Heparin was found to suppress the mRNA expressions of osterix, Runx2, ALP and osteocalcin, as well as phosphorylation of Smad1/5/8 and p38 MAPK. Further, heparin bound to both BMP-2 and BMP receptor (BMPR). These results suggest that heparin suppresses BMP-2-BMPR binding, and inhibits BMP-2 osteogenic activity in vitro.  相似文献   

7.
The healing of bone defects is a challenge for both tissue engineering and modern orthopaedics. This problem has been addressed through the study of scaffold constructs combined with mechanoregulatory theories, disregarding the influence of chemical factors and their respective delivery devices. Of the chemical factors involved in the bone healing process, bone morphogenetic protein-2 (BMP-2) has been identified as one of the most powerful osteoinductive proteins. The aim of this work is to develop and validate a mechano-chemical regulatory model to study the effect of BMP-2 on the healing of large bone defects in silico. We first collected a range of quantitative experimental data from the literature concerning the effects of BMP-2 on cellular activity, specifically proliferation, migration, differentiation, maturation and extracellular matrix production. These data were then used to define a model governed by mechano-chemical stimuli to simulate the healing of large bone defects under the following conditions: natural healing, an empty hydrogel implanted in the defect and a hydrogel soaked with BMP-2 implanted in the defect. For the latter condition, successful defect healing was predicted, in agreement with previous in vivo experiments. Further in vivo comparisons showed the potential of the model, which accurately predicted bone tissue formation during healing, bone tissue distribution across the defect and the quantity of bone inside the defect. The proposed mechano-chemical model also estimated the effect of BMP-2 on cells and the evolution of healing in large bone defects. This novel in silico tool provides valuable insight for bone tissue regeneration strategies.  相似文献   

8.
It is unclear whether metformin, one of the anti-hyperglycemic agents commonly used for type 2 diabetes, could affect bone formation through activation of AMP-activated protein kinase (AMPK). In order to clarify this issue, we investigated the effects of metformin on the differentiation and mineralization of osteoblastic MC3T3-E1 cells as well as intracellular signal transduction. Metformin (50 μM) significantly increased collagen-I and osteocalcin mRNA expression, stimulated alkaline phosphatase activity, and enhanced cell mineralization. Moreover, metformin significantly activated AMPK in dose- and time-dependent manners, and induced endothelial nitric oxide synthase (eNOS) and bone morphogenetic protein-2 (BMP-2) expressions. Supplementation of Ara-A (0.1 mM), a specific AMPK inhibitor, significantly reversed the metformin-induced eNOS and BMP-2 expressions. Our findings suggest that metformin can induce the differentiation and mineralization of osteoblasts via activation of the AMPK signaling pathway, and that this drug might be beneficial for not only diabetes but also osteoporosis by promoting bone formation.  相似文献   

9.
10.
Proteoglycans have been identified within the extracellular matrices (ECM) of bone and are known to play a role in ECM assembly, mineralization, and bone formation. Bone morphogenetic protein-2 (BMP-2) specifically converts the differentiation pathway of C2C12 myoblasts into that of osteoblast lineage cells. Microarray analyses of the mouse myoblast cell line C2C12 and its differentiation into osteoblastic cells in response to BMP-2 have suggested the up-regulation of several proteoglycan species, although there is a lack of biochemical evidence for this response. In this study we have biochemically analyzed and characterized the proteoglycan populations that are induced in C2C12 cells upon osteoblastic differentiation produced by BMP-2. An important and specific increase in the synthesis of secreted decorin was observed in BMP-2-treated cells, as compared to untreated myoblasts and myoblasts induced to differentiate into myotubes. Decorin was seen to contain larger glycosaminoglycan (GAG) chains in induced than in non-induced cells. BMP-2 also produced an augment in the synthesis of different heparan sulfate proteoglycans such syndecan-2, - 3, glypican, and perlecan in detergent-soluble and non-soluble cellular fractions. We also examined whether the evident changes induced by BMP-2 in secreted decorin could have a functional role. BMP-2 signaling dependent as well as induction of alkaline phosphatase (ALP) activity was diminished in decorin null myoblasts compared to wild type myoblats although cell surface level of BPM-2 receptors was unchanged. These results are the first biochemical evidence and analysis for the effect of BMP-2 on the synthesis of proteoglycan during osteogenic conversion of myoblasts and suggest a role for decorin in cell response to BMP-2.  相似文献   

11.
12.
比较研究蛇床子素与淫羊藿苷处理对体外培养的大鼠骨髓间充质细胞(rat bone marrow stromal cell, rBMSC)成骨性分化的影响.从体外分离培养的大鼠骨髓间充质细胞,筛选出最佳的蛇床子素和淫羊藿苷处理的浓度为1×10-5 mol/L, 然后用最佳的浓度对体外培养的大鼠骨髓间充质细胞进行药物干预;在药物干预后的第3、6、9、12和15 d后测定碱性磷酸酶活性(alkaline phosphatase,ALP)和钙含量;第12 d 进行钙化结节茜素红染色;第12 h、24 h、48 h、72 h和96 h 对OXS、Runx-2、骨形态发生蛋白(bone morphogenetic protein,BMP-2)和collagen-I mRNA 表达水平进行real-time RT-PCR检测.结果显示,浓度为1×10-5 mol/L蛇床子素和淫羊藿苷干预均可提高体外培养的骨髓间充质细胞ALP活性,增加Ca含量,提高Runx、OXS、BMP-2和collagen-1 mRNA的表达水平.同时,淫羊藿苷在促进体外培养骨髓间充质细胞成骨性分化活性强于蛇床子素.  相似文献   

13.
Endothelin-1 (ET-1) is a vasoactive peptide that modulates bone metabolism via regulatory effects on osteoblasts, chondrocytes, and osteoclasts. While ET-1 may circulate in the blood stream, tissue-specific expression of this peptide is more physiologically relevant. In the present study we measured ET-1 synthesis in sections of fetal rat calvaria (FRC) and in cultured FRC osteoblasts. Regulation of ET-1 synthesis in FRC osteoblasts by bone morphogenetic protein-7 (BMP-7) and transforming growth factor-beta1 (TGF-beta1) also was examined. Immunohistochemical analysis revealed ET-1 staining in calvarial osteoblasts, endothelial cells, and osteocytes. ET-1 mRNA expression was detected in cultured FRC cells and ET-1 peptide was present in conditioned media. During long-term culture of FRC cells (26 days) ET-1 peptide production rose sharply and peaked during the time of cellular proliferation (Days 0-3) then returned to baseline levels by Day 18, when mineralized nodules were forming. Treatment of FRC cells with BMP-7 enhanced ET-1 levels by three-fold on Day 3 and enhanced nodule formation by 15-fold on Day 26. To determine whether ET-1 was involved in an autocrine manner in BMP-7-induced nodule formation, cells were cultured in the presence of BMP-7 and BQ-123, an ET(A) receptor antagonist. BQ-123 had no effect on nodule formation in control or BMP-7-treated cells, indicating that osteoblast-derived ET-1 regulates other cell types in vivo during the bone formation process.  相似文献   

14.
Itoh T  Ando M  Tsukamasa Y  Akao Y 《FEBS letters》2012,586(12):1693-1701
MicroRNAs (miRs) regulate several biological functions such as cell growth, cell differentiation, and carcinogenesis, by binding to the 3'-untranslated regions (3'-UTR) of specific target genes, in order to repress translation or promote degradation of the transcribed mRNAs. In the present study, using microRNA array and in silico analyses, we found that miR-370 regulates the expression of bone morphogenetic protein-2 (BMP-2) and V-ets Erythroblastosis Virus E26 Oncogene Homolog 1 (Ets1) in BMP-2-stimulated murine pre-osteoblast MC3T3-E1 cell differentiation. The enforced expression of mature miR-370 in MC3T3-E1 cells or primary osteoblast cells remarkably attenuated BMP-2-induced pre-osteoblast differentiation. To ascertain the mechanisms underlying the regulation of osteoblast differentiation by miR-370, we hypothesized a BMP-2-Ets1-PTHrP feed-forward loop regulatory mechanism.  相似文献   

15.
Small G proteins of the Rho family are pivotal regulators of several signaling networks. The Ras homolog family (Rho) and one of its targets, Rho-associated protein kinase (ROCK), participate in a wide variety of biological processes, including bone formation. A previous study has demonstrated that the ROCK inhibitor Y-27632 enhanced bone formation induced by recombinant human bone morphogenetic protein-2 (BMP-2) in vivo and in vitro. However, the effect of other Rho family members, such as Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division cycle 42 (Cdc42), on bone formation remains unknown. In this study, we investigated whether Rac1 also participates in BMP-2-induced osteogenesis. Expression of a dominant-negative mutant of Rac1 enhanced BMP-2-induced osteoblastic differentiation in C2C12 cells, whereas a constitutively active mutant of Rac1 attenuated that effect. Knockdown of T-lymphoma invasion and metastasis 1 (Tiam1), a Rac-specific guanine nucleotide exchange factor, enhanced BMP-2-induced alkaline phosphatase activity. Further, we demonstrated that BMP-2 stimulated Rac1 activity. These results indicate that the activation of Rac1 attenuates osteoblastic differentiation in C2C12 cells.  相似文献   

16.
Tendon-bone insertion injuries such as rotator cuff and anterior cruciate ligament injuries are currently highly common and severe. The key method of treating this kind of injury is the reconstruction operation. The success of this reconstructive process depends on the ability of the graft to incorporate into the bone. Recently, there has been substantial discussion about how to enhance the integration of tendon and bone through biological methods. Stem cells like bone marrow mesenchymal stem cells (MSCs), tendon stem/progenitor cells, synovium-derived MSCs, adipose-derived stem cells, or periosteum-derived periosteal stem cells can self-regenerate and potentially differentiate into different cell types, which have been widely used in tissue repair and regeneration. Thus, we concentrate in this review on the current circumstances of tendon-bone healing using stem cell therapy.  相似文献   

17.
We previously reported that extracellular sphingomyelinase induces sphingomyelin hydrolysis in osteoblast-like MC3T3-E1 cells and that mitogen-activated protein (MAP) kinases are involved in bone morphogenetic protein (BMP)-4-stimulated osteocalcin synthesis in these cells. In the present study, we investigated whether sphingomyelinase affects BMP-4-stimulated synthesis of osteocalcin in osteoblast-like MC3T3-E1 cells. Sphingomyelinase significantly enhanced the BMP-4-stimulated osteocalcin synthesis. Among sphingomyelin metabolites, C(2)-ceramide enhanced the BMP-4-stimulated osteocalcin synthesis while sphingosine and sphingosine 1-phosphate had little effect on the synthesis. D-erythro-MAPP, an inhibitor of ceramidase, amplified the sphingomyelinase-effect on the osteocalcin synthesis. C(2)-ceramide suppressed the BMP-4-induced phosphorylation of p44/p42 MAP kinase, while having little effect on the phosphorylation of Smad1 and p38 MAP kinase. Taken together, our results strongly suggest that extracellular sphingomyelinase enhances the BMP-stimulated osteocalcin synthesis via ceramide in osteoblasts and that the effect of ceramide is exerted at a point upstream from p44/p42 MAP kinase.  相似文献   

18.
We investigated the encapsulation of BMP-2 gene-modified mesenchymal stem cells (MSCs) in alginate-poly-L-lysine (APA) microcapsules for the persistent delivery of bone morphogenic protein-2 (BMP-2) to induce bone formation. An electrostatic droplet generator was employed to produce APA microcapsules containing encapsulated beta-gal or BMP-2 gene-transfected bone marrow-derived MSCs. We found that X-gal staining was still positive 28 days after encapsulation. Encapsulated BMP-2 gene-transfected cells were capable of constitutive delivery of BMP-2 proteins for at least 30 days. The encapsulated BMP-2 gene-transfected MSCs or the encapsulated non-gene transfer MSCs (control group) were cocultured with the undifferentiated MSCs. The gene products from the encapsulated BMP-2 cells could induce the undifferentiated MSCs to become osteoblasts that had higher alkaline phosphatase (ALP) activity than those in the control group (p<0.05). The APA microcapsules could inhibit the permeation of fluorescein isothiocyanate-conjuncted immunoglobulin G. Mixed lymphocyte reaction also indicates that the APA microcapsules could prevent the encapsulated BMP-2 gene-transfected MSCs from initiating the cellular immune response. These results demonstrated that the nonautologous BMP-2 gene-transfected stem cells are of potential utility for enhancement of bone repair and bone regeneration in vivo.  相似文献   

19.
The human osteoinductive proteins BMP-2a and BMP-2b have been cloned and expressed in mammalian cells. In order to improve expression levels we examined the role of the proregion in assembly and export. Use of the BMP-2a proregion combined with the mature region of BMP-2b leads to dramatically improved expression of mature BMP-2b. Mature BMP-2b has been purified to near homogeneity from the BMP-2a/2b hybrid, and its structural properties and biological activity determined. Recombinant mature BMP-2b homodimer elicits bone formation in vivo.  相似文献   

20.
The mechanisms of retinoid activity in tumors remain largely unknown. Here we establish that retinoids cause extensive apoptosis of medulloblastoma cells. In a xenograft model, retinoids largely abrogated tumor growth. Using receptor-specific retinoid agonists, we defined a subset of mRNAs that were induced by all active retinoids in retinoid-sensitive cell lines. We also identified bone morphogenetic protein-2 (BMP-2) as a candidate mediator of retinoid activity. BMP-2 protein induced medulloblastoma cell apoptosis, whereas the BMP-2 antagonist noggin blocked both retinoid and BMP-2-induced apoptosis. BMP-2 also induced p38 mitogen-activated protein kinase (MAPK), which is necessary for BMP-2- and retinoid-induced apoptosis. Retinoid-resistant medulloblastoma cells underwent apoptosis when treated with BMP-2 or when cultured with retinoid-sensitive medulloblastoma cells. Retinoid-induced expression of BMP-2 is thus necessary and sufficient for apoptosis of retinoid-responsive cells, and expression of BMP-2 by retinoid-sensitive cells is sufficient to induce apoptosis in surrounding retinoid-resistant cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号