首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Virulent Mycobacterium leprae interfere with host defense mechanisms such as cytokine activation and apoptosis. The mitochondrial pathway of apoptosis is regulated by the Bcl-2 family of proteins. Expression of Fas ligand and apoptotic proteins is found in leprosy lesions and M. leprae has been shown to activate pro-apoptotic Bcl-2 genes, Bak and Bax. However, the mechanism by which M. leprae modulates apoptosis is as yet unclear. We investigated expression of apoptotic genes in THP-1 monocytes in response to infection by M. leprae and non-pathogenic M. bovis BCG.  相似文献   

2.
CCL5 is a key in limiting mycobacterial infection. Although NF-κB has been implicated, signaling cascades involved in CCL5 production by epithelial cells following infection with Mycobacterium bovis BCG are still not defined. Here we show that using pharmacological inhibition of sphingosine kinase (SPK), striking inhibition of M. bovis BCG-induced CCL5 protein was observed. Phosphatidylinositol 3-kinase (PI3K) and Akt were also important for CCL5 production by epithelial cells infected with M. bovis BCG. Moreover, there was increased activation of PI3K, IKK/αβ and NF-κB in A549 cells infected with M. bovis BCG. Importantly, the PI3K activation was dependent on SPK. Finally, M. bovis BCG increases the recruitment of p300 with NF-κB in A549 cells. Together, these studies are the first to show that M. bovis BCG-induced CCL5 secretion is dependent on the SPK/PI3K/Akt/NF-κB and p300 signaling pathway. The regulatory pathways of M. bovis BCG-induced CCL5 production can potentially be exploited therapeutically.  相似文献   

3.
4.
Mycobacterium leprae, the intracellular etiological agent of leprosy, infects Schwann promoting irreversible physical disabilities and deformities. These cells are responsible for myelination and maintenance of axonal energy metabolism through export of metabolites, such as lactate and pyruvate. In the present work, we observed that infected Schwann cells increase glucose uptake with a concomitant increase in glucose-6-phosphate dehydrogenase (G6PDH) activity, the key enzyme of the oxidative pentose pathway. We also observed a mitochondria shutdown in infected cells and mitochondrial swelling in pure neural leprosy nerves. The classic Warburg effect described in macrophages infected by Mycobacterium avium was not observed in our model, which presented a drastic reduction in lactate generation and release by infected Schwann cells. This effect was followed by a decrease in lactate dehydrogenase isoform M (LDH-M) activity and an increase in cellular protection against hydrogen peroxide insult in a pentose phosphate pathway and GSH-dependent manner. M. leprae infection success was also dependent of the glutathione antioxidant system and its main reducing power source, the pentose pathway, as demonstrated by a 50 and 70% drop in intracellular viability after treatment with the GSH synthesis inhibitor buthionine sulfoximine, and aminonicotinamide (6-ANAM), an inhibitor of G6PDH 6-ANAM, respectively. We concluded that M. leprae could modulate host cell glucose metabolism to increase the cellular reducing power generation, facilitating glutathione regeneration and consequently free-radical control. The impact of this regulation in leprosy neuropathy is discussed.  相似文献   

5.
Mycobacterium leprae infects macrophages and Schwann cells inducing a gene expression program to facilitate its replication and progression to disease. MicroRNAs (miRNAs) are key regulators of gene expression and could be involved during the infection. To address the genetic influence of miRNAs in leprosy, we enrolled 1,098 individuals and conducted a case-control analysis in order to study four miRNAs genes containing single nucleotide polymorphism (miRSNP). We tested miRSNP-125a (rs12975333 G>T), miRSNP-223 (rs34952329 *>T), miRSNP-196a-2 (rs11614913 C>T) and miRSNP-146a (rs2910164 G>C). Amongst them, miRSNP-146a was the unique gene associated with risk to leprosy per se (GC OR = 1.44, p = 0.04; CC OR = 2.18, p = 0.0091). We replicated this finding showing that the C-allele was over-transmitted (p = 0.003) using a transmission-disequilibrium test. A functional analysis revealed that live M. leprae (MOI 100∶1) was able to induce miR-146a expression in THP-1 (p<0.05). Furthermore, pure neural leprosy biopsies expressed augmented levels of that miRNA as compared to biopsy samples from neuropathies not related with leprosy (p = 0.001). Interestingly, carriers of the risk variant (C-allele) produce higher levels of mature miR-146a in nerves (p = 0.04). From skin biopsies, although we observed augmented levels of miR-146a, we were not able to correlate it with a particular clinical form or neither host genotype. MiR-146a is known to modulate TNF levels, thus we assessed TNF expression (nerve biopsies) and released by peripheral blood mononuclear cells infected with BCG Moreau. In both cases lower TNF levels correlates with subjects carrying the risk C-allele, (p = 0.0453 and p = 0.0352; respectively), which is consistent with an immunomodulatory role of this miRNA in leprosy.  相似文献   

6.

Background

Although the number of newly detected leprosy cases has decreased globally, a quarter of a million new cases are detected annually and eradication remains far away. Current options for leprosy prevention are contact tracing and BCG vaccination of infants. Future options may include chemoprophylaxis and early diagnosis of subclinical infections. This study compared the predicted trends in leprosy case detection of future intervention strategies.

Methods

Seven leprosy intervention scenarios were investigated with a microsimulation model (SIMCOLEP) to predict future leprosy trends. The baseline scenario consisted of passive case detection, multidrug therapy, contact tracing, and BCG vaccination of infants. The other six scenarios were modifications of the baseline, as follows: no contact tracing; with chemoprophylaxis; with early diagnosis of subclinical infections; replacement of the BCG vaccine with a new tuberculosis vaccine ineffective against Mycobacterium leprae (“no BCG”); no BCG with chemoprophylaxis; and no BCG with early diagnosis.

Findings

Without contact tracing, the model predicted an initial drop in the new case detection rate due to a delay in detecting clinical cases among contacts. Eventually, this scenario would lead to new case detection rates higher than the baseline program. Both chemoprophylaxis and early diagnosis would prevent new cases due to a reduction of the infectious period of subclinical cases by detection and cure of these cases. Also, replacing BCG would increase the new case detection rate of leprosy, but this effect could be offset with either chemoprophylaxis or early diagnosis.

Conclusions

This study showed that the leprosy incidence would be reduced substantially by good BCG vaccine coverage and the combined strategies of contact tracing, early diagnosis, and treatment of infection and/or chemoprophylaxis among household contacts. To effectively interrupt the transmission of M. leprae, it is crucial to continue developing immuno- and chemoprophylaxis strategies and an effective test for diagnosing subclinical infections.  相似文献   

7.
In leprosy, classic diagnostic tools based on bacillary counts and histopathology have been facing hurdles, especially in distinguishing latent infection from active disease and diagnosing paucibacillary clinical forms. Serological tests and IFN-gamma releasing assays (IGRA) that employ humoral and cellular immune parameters, respectively, are also being used, but recent results indicate that quantitative PCR (qPCR) is a key technique due to its higher sensitivity and specificity. In fact, advances concerning the structure and function of the Mycobacterium leprae genome led to the development of specific PCR-based gene amplification assays for leprosy diagnosis and monitoring of household contacts. Also, based on the validation of point-of-care technologies for M. tuberculosis DNA detection, it is clear that the same advantages of rapid DNA detection could be observed in respect to leprosy. So far, PCR has proven useful in the determination of transmission routes, M. leprae viability, and drug resistance in leprosy. However, PCR has been ascertained to be especially valuable in diagnosing difficult cases like pure neural leprosy (PNL), paucibacillary (PB), and patients with atypical clinical presentation and histopathological features compatible with leprosy. Also, the detection of M. leprae DNA in different samples of the household contacts of leprosy patients is very promising. Although a positive PCR result is not sufficient to establish a causal relationship with disease outcome, quantitation provided by qPCR is clearly capable of indicating increased risk of developing the disease and could alert clinicians to follow these contacts more closely or even define rules for chemoprophylaxis.  相似文献   

8.
A constitutive saturated and monounsaturated fatty acid pattern of Mycobacterium leprae, isolated from the liver of a nine-banded armadillo with experimental leprosy, was analyzed gaschromatographically and compared with that of cultured M. lepraemurium, M. avium, M. bovis, strain BCG and M. smegmatis. In comparing the fatty acid pattern thus obtained and the known structure of mycolic acids in these mycobacteria, an experiential rule that each species of mycobacteria has a relatively high content of normal (straight-chained) saturated fatty acid having two more carbons than those of the α-branch in this species' mycolic acids, coincided well for all mycobacteria tested. In particular, M. leprae was found to contain a relatively high content of behenic acid (n-C22:0) and the carbon-number of the α-branch in this species' mycolic acids is 20 as we previously reported. These data suggested the possibility of simple detection of M. leprae by gaschromatography, and results sustaining this possibility were obtained.  相似文献   

9.
Leprosy is a chronic infection of the skin and nerves caused by Mycobacterium leprae and the newly discovered Mycobacterium lepromatosis. Human leprosy has been documented for millennia in ancient cultures. Recent genomic studies of worldwide M. leprae strains have further traced it along global human dispersals during the past ∼100,000 years. Because leprosy bacilli are strictly intracellular, we wonder how long humans have been affected by this disease-causing parasite. Based on recently published data on M. leprae genomes, M. lepromatosis discovery, leprosy bacilli evolution, and human evolution, it is most likely that the leprosy bacilli started parasitic evolution in humans or early hominids millions of years ago. This makes leprosy the oldest human-specific infection. The unique adaptive evolution has likely molded the indolent growth and evasion from human immune defense that may explain leprosy pathogenesis. Accordingly, leprosy can be viewed as a natural consequence of a long parasitism. The burden of leprosy may have affected minor selection on human genetic polymorphisms.  相似文献   

10.
Mycobacterium leprae (M. leprae) lives and replicates within macrophages in a foamy, lipid-laden phagosome. The lipids provide essential nutrition for the mycobacteria, and M. leprae infection modulates expression of important host proteins related to lipid metabolism. Thus, M. leprae infection increases the expression of adipophilin/adipose differentiation-related protein (ADRP) and decreases hormone-sensitive lipase (HSL), facilitating the accumulation and maintenance of lipid-rich environments suitable for the intracellular survival of M. leprae. HSL levels are not detectable in skin smear specimens taken from leprosy patients, but re-appear shortly after multidrug therapy (MDT). This study examined the effect of MDT components on host lipid metabolism in vitro, and the outcome of rifampicin, dapsone and clofazimine treatment on ADRP and HSL expression in THP-1 cells. Clofazimine attenuated the mRNA and protein levels of ADRP in M. leprae-infected cells, while those of HSL were increased. Rifampicin and dapsone did not show any significant effects on ADRP and HSL expression levels. A transient increase of interferon (IFN)-β and IFN-γ mRNA was also observed in cells infected with M. leprae and treated with clofazimine. Lipid droplets accumulated by M. leprae-infection were significantly decreased 48 h after clofazimine treatment. Such effects were not evident in cells without M. leprae infection. In clinical samples, ADRP expression was decreased and HSL expression was increased after treatment. These results suggest that clofazimine modulates lipid metabolism in M. leprae-infected macrophages by modulating the expression of ADRP and HSL. It also induces IFN production in M. leprae-infected cells. The resultant decrease in lipid accumulation, increase in lipolysis, and activation of innate immunity may be some of the key actions of clofazimine.  相似文献   

11.
Mycobacterium leprae is the causative agent of leprosy and also known to possess unique features such as inability to proliferate in vitro. Among the cellular components of M. leprae, various glycolipids present on the cell envelope are well characterized and some of them are identified to be pathogenic factors responsible for intracellular survival in host cells, while other intracellular metabolites, assumed to be associated with basic physiological feature, remain largely unknown. In the present study, to elucidate the comprehensive profile of intracellular metabolites, we performed the capillary electrophoresis-mass spectrometry (CE-MS) analysis on M. leprae and compared to that of M. bovis BCG. Interestingly, comparison of these two profiles showed that, in M. leprae, amino acids and their derivatives are significantly accumulated, but most of intermediates related to central carbon metabolism markedly decreased, implying that M. leprae possess unique metabolic features. The present study is the first report demonstrating the unique profiles of M. leprae metabolites and these insights might contribute to understanding undefined metabolism of M. leprae as well as pathogenic characteristics related to the manifestation of the disease.  相似文献   

12.
13.
Mycobacterium tuberculosis is one of the most successful pathogens known, having infected more than a third of the global population. An important strategy for intracellular survival of pathogenic mycobacteria relies on their capacity to resist delivery to lysosomes, instead surviving within macrophage phagosomes. Several factors of both mycobacterial and host origin have been implicated in this process. However, whether or not this strategy is employed in vivo is not clear. Here we show that in vivo, following intravenous infection, M. tuberculosis and Mycobacterium bovis BCG initially survived by resisting lysosomal transfer. However, after prolonged infection the bacteria were transferred to lysosomes yet continued to proliferate. A M. bovis BCG mutant lacking protein kinase G (PknG), that cannot avoid lysosomal transfer and is readily cleared in vitro, was found to survive and proliferate in vivo. The ability to survive and proliferate in lysosomal organelles in vivo was found to be due to an altered host environment rather than changes in the inherent ability of the bacteria to arrest phagosome maturation. Thus, within an infected host, both M. tuberculosis and M. bovis BCG adapts to infection-specific host responses. These results are important to understand the pathology of tuberculosis and may have implications for the development of effective strategies to combat tuberculosis.  相似文献   

14.
Mycobacterium bovis BCG, a live attenuated strain of M. bovis initially developed as a vaccine against tuberculosis, is also used as an adjuvant for immunotherapy of cancers and for treatment of parasitic infections. The underlying mechanisms are thought to rely on its immunomodulatory properties including the recruitment of natural killer (NK) cells. In that context, we aimed to study the impact of M. bovis BCG on NK cell functions. We looked at cytotoxicity, cytokine production, proliferation and cell survival of purified human NK cells following exposure to single live particles of mycobacteria. We found that M. bovis BCG mediates apoptosis of NK cells only in the context of IL-2 stimulation during which CD56bright NK cells are releasing IFN-γ in response to mycobacteria. We found that the presence of mycobacteria prevented the IL-2 induced proliferation and surface expression of NKp44 receptor by the CD56bright population. In summary, we observed that M. bovis BCG is modulating the functions of CD56bright NK cells to drive this subset to produce IFN-γ before subsequent programmed cell death. Therefore, IFN-γ production by CD56bright cells constitutes the main effector mechanism of NK cells that would contribute to the benefits observed for M. bovis BCG as an immunotherapeutic agent.  相似文献   

15.
Leprosy is a curable neglected disease of humans caused by Mycobacterium leprae that affects the skin and peripheral nerves and manifests clinically in various forms ranging from self-resolving, tuberculoid leprosy to lepromatous leprosy having significant pathology with ensuing disfiguration disability and social stigma. Despite the global success of multi-drug therapy (MDT), incidences of clinical leprosy have been observed in individuals with no apparent exposure to other cases, suggestive of possible non-human sources of the bacteria. In this study we show that common free-living amoebae (FLA) can phagocytose M. leprae, and allow the bacillus to remain viable for up to 8 months within amoebic cysts. Viable bacilli were extracted from separate encysted cocultures comprising three common Acanthamoeba spp.: A. lenticulata, A. castellanii, and A. polyphaga and two strains of Hartmannella vermiformis. Trophozoites of these common FLA take up M. leprae by phagocytosis. M. leprae from infected trophozoites induced to encyst for long-term storage of the bacilli emerged viable by assessment of membrane integrity. The majority (80%) of mice that were injected with bacilli extracted from 35 day cocultures of encysted/excysted A. castellanii and A. polyphaga showed lesion development that was similar to mice challenged with fresh M. leprae from passage mice albeit at a slower initial rate. Mice challenged with coculture-extracted bacilli showed evidence of acid-fast bacteria and positive PCR signal for M. leprae. These data support the conclusion that M. leprae can remain viable long-term in environmentally ubiquitous FLA and retain virulence as assessed in the nu/nu mouse model. Additionally, this work supports the idea that M. leprae might be sustained in the environment between hosts in FLA and such residence in FLA may provide a macrophage-like niche contributing to the higher-than-expected rate of leprosy transmission despite a significant decrease in human reservoirs due to MDT.  相似文献   

16.
Dendritic cells (DCs) play a pivotal role in the connection of innate and adaptive immunity of hosts to mycobacterial infection. Studies on the interaction of monocyte-derived DCs (MO-DCs) using Mycobacterium leprae in leprosy patients are rare. The present study demonstrated that the differentiation of MOs to DCs was similar in all forms of leprosy compared to normal healthy individuals. In vitro stimulation of immature MO-DCs with sonicated M. leprae induced variable degrees of DC maturation as determined by the increased expression of HLA-DR, CD40, CD80 and CD86, but not CD83, in all studied groups. The production of different cytokines by the MO-DCs appeared similar in all of the studied groups under similar conditions. However, the production of interleukin (IL)-12p70 by MO-DCs from lepromatous (LL) leprosy patients after in vitro stimulation with M. leprae was lower than tuberculoid leprosy patients and healthy individuals, even after CD40 ligation with CD40 ligand-transfected cells. The present cumulative findings suggest that the MO-DCs of LL patients are generally a weak producer of IL-12p70 despite the moderate activating properties ofM. leprae. These results may explain the poor M. leprae-specific cell-mediated immunity in the LL type of leprosy.  相似文献   

17.
18.
Regulatory T (Treg) cells are known for their role in maintaining self-tolerance and balancing immune reactions in autoimmune diseases and chronic infections. However, regulatory mechanisms can also lead to prolonged survival of pathogens in chronic infections like leprosy and tuberculosis (TB). Despite high humoral responses against Mycobacterium leprae (M. leprae), lepromatous leprosy (LL) patients have the characteristic inability to generate T helper 1 (Th1) responses against the bacterium. In this study, we investigated the unresponsiveness to M. leprae in peripheral blood mononuclear cells (PBMC) of LL patients by analysis of IFN-γ responses to M. leprae before and after depletion of CD25+ cells, by cell subsets analysis of PBMC and by immunohistochemistry of patients'' skin lesions. Depletion of CD25+ cells from total PBMC identified two groups of LL patients: 7/18 (38.8%) gained in vitro responsiveness towards M. leprae after depletion of CD25+ cells, which was reversed to M. leprae-specific T-cell unresponsiveness by addition of autologous CD25+ cells. In contrast, 11/18 (61.1%) remained anergic in the absence of CD25+ T-cells. For both groups mitogen-induced IFN-γ was, however, not affected by depletion of CD25+ cells. In M. leprae responding healthy controls, treated lepromatous leprosy (LL) and borderline tuberculoid leprosy (BT) patients, depletion of CD25+ cells only slightly increased the IFN-γ response. Furthermore, cell subset analysis showed significantly higher (p = 0.02) numbers of FoxP3+ CD8+CD25+ T-cells in LL compared to BT patients, whereas confocal microscopy of skin biopsies revealed increased numbers of CD68+CD163+ as well as FoxP3+ cells in lesions of LL compared to tuberculoid and borderline tuberculoid leprosy (TT/BT) lesions. Thus, these data show that CD25+ Treg cells play a role in M. leprae-Th1 unresponsiveness in LL.  相似文献   

19.

Background

Tuberculosis (TB) is the leading cause of death worldwide from a single infectious agent. An ability to detect the Mycobacterium tuberculosis complex (MTC) in clinical material while simultaneously differentiating its members is considered important. This allows for the gathering of epidemiological information pertaining to the prevalence, transmission and geographical distribution of the MTC, including those MTC members associated with zoonotic TB infection in humans. Also differentiating between members of the MTC provides the clinician with inherent MTC specific drug susceptibility profiles to guide appropriate chemotherapy.

Methodology/Principal Findings

The aim of this study was to develop a multiplex real-time PCR assay using novel molecular targets to identify and differentiate between the phylogenetically closely related M. bovis, M. bovis BCG and M. caprae. The lpqT gene was explored for the collective identification of M. bovis, M. bovis BCG and M. caprae, the lepA gene was targeted for the specific identification of M. caprae and a Region of Difference 1 (RD1) assay was incorporated in the test to differentiate M. bovis BCG. The multiplex real-time PCR assay was evaluated on 133 bacterial strains and was determined to be 100% specific for the members of the MTC targeted.

Conclusions/Significance

The multiplex real-time PCR assay developed in this study is the first assay described for the identification and simultaneous differentiation of M. bovis, M. bovis BCG and M. caprae in one internally controlled reaction. Future validation of this multiplex assay should demonstrate its potential in the rapid and accurate diagnosis of TB caused by these three mycobacteria. Furthermore, the developed assay may be used in conjunction with a recently described multiplex real-time PCR assay for identification of the MTC and simultaneous differentiation of M. tuberculosis, M. canettii resulting in an ability to differentiate five of the eight members of the MTC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号