首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We have developed and applied a method unifying fluorescence microscopy and mass spectrometry for studying spatial and temporal properties of proteins and protein complexes in yeast cells. To combine the techniques, first we produced a variety of DNA constructs that can be used for genomic tagging of proteins with modular fluorescent and affinity tags. The modular tag consists of one of the multiple versions of monomeric fluorescent proteins fused to a variety of small affinity epitopes. After this step we tested the constructs by tagging two yeast proteins, Pil1 and Lsp1, the core components of eisosomes, the large protein complexes involved in endocytosis in Saccharomyces cerevisiae, with a variety of fluorescent and affinity probes. Among the modular tags produced we found several combinations that were optimal for determining subcellular localization and for purifying the tagged proteins and protein complexes for the detailed analysis by mass spectrometry. And finally, we applied the designed method for finding the new protein components of eisosomes and for gaining new insights into molecular mechanisms regulating eisosome assembly and disassembly by reversible phosphorylation and dephosphorylation. Our results indicate that this approach combining fluorescence microscopy and mass spectrometry into a single method provides a unique perspective into molecular mechanisms regulating composition and dynamic properties of the protein complexes in living cells.Fluorescent proteins have become invaluable probes for studying molecular processes in living cells with light microscopy techniques (13). Proteins, organelles, and entire cells can be selectively visualized using a variety of fluorescent proteins fused to the proteins of interest (16). Combined with genetics and molecular biology techniques fluorescence microscopy provides an efficient tool for observing molecular phenotypes useful for dissecting the pathways of cell cycle progression and cell response to internal and external signals (7). However, understanding the mechanism controlling the properties of proteins in cells can be a challenging task, frequently requiring a comprehensive characterization of the proteins at the molecular level.The proteins tagged with green fluorescent protein (GFP)1 can be also purified using GFP antibodies. Cheeseman and Desai (8) and Cristea et al. (9) have enriched GFP-tagged proteins and protein complexes for further detailed analysis by MS. The MS-based methods for protein analysis are fast, sensitive, and able to identify both proteins in complex protein mixtures and residues bearing post-translational modifications (10, 11). Thus, the addition of affinity purification and mass spectrometry steps enabled the researchers to study protein interactions and the post-translational modifications in the context of the protein subcellular localization. Juxtaposition of the protein localization, composition of the protein complexes, and post-translational modifications frequently yield a unique perspective of the cellular processes and the molecular mechanisms of their regulation (12, 13).Using fluorescent proteins also as affinity probes can be problematic in several instances. First of all, the good quality antibodies against the rapidly increasing number of fluorescent proteins (3, 6) are not yet readily available. Furthermore raising antibodies specifically recognizing fluorescent proteins originating from the same organism but fluorescing a different color can be difficult or even impossible because such proteins frequently differ by mutations of only a few amino acids (16). Thus, we seek an alternative approach to the design of tags suitable for subcellular localization and purification of proteins and protein complexes that is 1) independent of the availability of antibody to a specific form of a fluorescent protein, 2) suitable for multiplexing, i.e. simultaneous observation of subcellular localization of several proteins and affinity purification of the proteins and stably associated protein complexes, and 3) flexible and easy to modify to incorporate better versions of fluorescent proteins and affinity tags after they are discovered.One possible solution that satisfies the stated requirements is to use a modular tag containing a version of a fluorescent protein fused to an affinity epitope. In this case we can decouple requirements for both modules and optimize the performance of each one independently for fluorescence microscopy and affinity purification experiments. To our knowledge, this possibility was first realized by Thorn and co-worker (14) who have fused 3HA (three repeats of YPYDVPDYA epitope from hemagglutinin protein) and 13MYC (13 repeats of EQKLISEEDL epitope, corresponding to a stretch of the C-terminal amino acids of the human c-MYC protein) tags to several variants of fluorescent proteins. The authors have argued that the fusion of the fluorescent proteins to the affinity epitopes may enable fluorescence and immunochemical analysis but did not test this idea. Cheeseman and Desai (8) fused the S-peptide and hexahistidine epitopes to the GFP protein to enable additional tandem purification steps. Su and co-workers (15) also fused a hexahistidine tag (His6) to GFP to purify recombinantly produced proteins. Although hexahistidine tag performs well for isolation of overexpressed recombinant proteins, it works poorly for affinity purification of low abundance, endogenously expressed proteins (16). A double affinity tag containing a single MYC epitope and hexahistidine was also used to purify recombinantly produced fluorescent proteins (6).Here we describe the design and implementation of the modular fluorescent and affinity tags. These tags contain a variety of fluorescent proteins, which can be used exclusively for obtaining subcellular visualization, and several small epitope tags that can be utilized to perform two-step affinity purification. To test the performance of the constructs produced, we tagged two yeast proteins, Pil1 and Lsp1, the core components of eisosomes, with a variety of modular tags.Eisosomes are large heterodimeric protein complexes recently discovered in Saccharomyces cerevisiae (17). There are ∼50–100 eisosomes in each mature yeast cell distributed uniformly in a characteristic dotted pattern at the cell surface periphery. Each eisosome contains ∼2000–5000 copies of Pil1 and Lsp1. It was shown that eisosomes serve as portals of endocytosis in yeast. The function of eisosomes is regulated by reversible phosphorylation (18, 19).Among the constructs tested, we found several combinations of fluorescent protein and affinity tags that were optimal for determining subcellular localization and purification of the proteins and protein complexes. We applied these tags to further investigate eisosomes and found several new protein components of the complexes and obtained new insights into molecular mechanisms regulating eisosome integrity by reversible phosphorylation and dephosphorylation. Our results indicate that an approach combining fluorescence microscopy and mass spectrometry into a single method provides a unique perspective into molecular mechanisms regulating composition and dynamic properties of the protein complexes in living cells.  相似文献   

3.
Mitochondria play a central role in energy metabolism and cellular survival, and consequently mitochondrial dysfunction is associated with a number of human pathologies. Reversible protein phosphorylation emerges as a central mechanism in the regulation of several mitochondrial processes. In skeletal muscle, mitochondrial dysfunction is linked to insulin resistance in humans with obesity and type 2 diabetes. We performed a phosphoproteomics study of functional mitochondria isolated from human muscle biopsies with the aim to obtain a comprehensive overview of mitochondrial phosphoproteins. Combining an efficient mitochondrial isolation protocol with several different phosphopeptide enrichment techniques and LC-MS/MS, we identified 155 distinct phosphorylation sites in 77 mitochondrial phosphoproteins, including 116 phosphoserine, 23 phosphothreonine, and 16 phosphotyrosine residues. The relatively high number of phosphotyrosine residues suggests an important role for tyrosine phosphorylation in mitochondrial signaling. Many of the mitochondrial phosphoproteins are involved in oxidative phosphorylation, tricarboxylic acid cycle, and lipid metabolism, i.e. processes proposed to be involved in insulin resistance. We also assigned phosphorylation sites in mitochondrial proteins involved in amino acid degradation, importers and transporters, calcium homeostasis, and apoptosis. Bioinformatics analysis of kinase motifs revealed that many of these mitochondrial phosphoproteins are substrates for protein kinase A, protein kinase C, casein kinase II, and DNA-dependent protein kinase. Our results demonstrate the feasibility of performing phosphoproteome analysis of organelles isolated from human tissue and provide novel targets for functional studies of reversible phosphorylation in mitochondria. Future comparative phosphoproteome analysis of mitochondria from healthy and diseased individuals will provide insights into the role of abnormal phosphorylation in pathologies, such as type 2 diabetes.Mitochondria are the primary energy-generating systems in eukaryotes. They play a crucial role in oxidative metabolism, including carbohydrate metabolism, fatty acid oxidation, and urea cycle, as well as in calcium signaling and apoptosis (1, 2). Mitochondrial dysfunction is centrally involved in a number of human pathologies, such as type 2 diabetes, Parkinson disease, and cancer (3). The most prevalent form of cellular protein post-translational modifications (PTMs),1 reversible phosphorylation (46), is emerging as a central mechanism in the regulation of mitochondrial functions (7, 8). The steadily increasing numbers of reported mitochondrial kinases, phosphatases, and phosphoproteins imply an important role of protein phosphorylation in different mitochondrial processes (911).Mass spectrometry (MS)-based proteome analysis is a powerful tool for global profiling of proteins and their PTMs, including protein phosphorylation (12, 13). A variety of proteomics techniques have been developed for specific enrichment of phosphorylated proteins and peptides and for phosphopeptide-specific data acquisition techniques at the MS level (14). Enrichment methods based on affinity chromatography, such as titanium dioxide (TiO2) (1517), zwitterionic hydrophilic interaction chromatography (ZIC-HILIC) (18), immobilized metal affinity chromatography (IMAC) (19, 20), and ion exchange chromatography (strong anion exchange and strong cation exchange) (21, 22), have shown high efficiencies for enrichment of phosphopeptides (14). Recently, we demonstrated that calcium phosphate precipitation (CPP) is highly effective for enriching phosphopeptides (23). It is now generally accepted that no single method is comprehensive, but combinations of different enrichment methods produce distinct overlapping phosphopeptide data sets to enhance the overall results in phosphoproteome analysis (24, 25). Phosphopeptide sequencing by mass spectrometry has seen tremendous advances during the last decade (26). For example, MS/MS product ion scanning, multistage activation, and precursor ion scanning are effective methods for identifying serine (Ser), threonine (Thr), and tyrosine (Tyr) phosphorylated peptides (14, 26).A “complete” mammalian mitochondrial proteome was reported by Mootha and co-workers (27) and included 1098 proteins. The mitochondrial phosphoproteome has been characterized in a series of studies, including yeast, mouse and rat liver, porcine heart, and plants (19, 2831). To date, the largest data set by Deng et al. (30) identified 228 different phosphoproteins and 447 phosphorylation sites in rat liver mitochondria. However, the in vivo phosphoproteome of human mitochondria has not been determined. A comprehensive mitochondrial phosphoproteome is warranted for further elucidation of the largely unknown mechanisms by which protein phosphorylation modulates diverse mitochondrial functions.The percutaneous muscle biopsy technique is an important tool in the diagnosis and management of human muscle disorders and has been widely used to investigate metabolism and various cellular and molecular processes in normal and abnormal human muscle, in particular the molecular mechanism underlying insulin resistance in obesity and type 2 diabetes (32). Skeletal muscle is rich in mitochondria and hence a good source for a comprehensive proteomics and functional analysis of mitochondria (32, 33).The major aim of the present study was to obtain a comprehensive overview of site-specific phosphorylation of mitochondrial proteins in functionally intact mitochondria isolated from human skeletal muscle. Combining an efficient protocol for isolation of skeletal muscle mitochondria with several different state-of-the-art phosphopeptide enrichment methods and high performance LC-MS/MS, we identified 155 distinct phosphorylation sites in 77 mitochondrial phosphoproteins, many of which have not been reported before. We characterized this mitochondrial phosphoproteome by using bioinformatics tools to classify functional groups and functions, including kinase substrate motifs.  相似文献   

4.
Protein subcellular localization is a major determinant of protein function. However, this important protein feature is often described in terms of discrete and qualitative categories of subcellular compartments, and therefore it has limited applications in quantitative protein function analyses. Here, we present Protein Localization Analysis and Search Tools (PLAST), an automated analysis framework for constructing and comparing quantitative signatures of protein subcellular localization patterns based on microscopy images. PLAST produces human-interpretable protein localization maps that quantitatively describe the similarities in the localization patterns of proteins and major subcellular compartments, without requiring manual assignment or supervised learning of these compartments. Using the budding yeast Saccharomyces cerevisiae as a model system, we show that PLAST is more accurate than existing, qualitative protein localization annotations in identifying known co-localized proteins. Furthermore, we demonstrate that PLAST can reveal protein localization-function relationships that are not obvious from these annotations. First, we identified proteins that have similar localization patterns and participate in closely-related biological processes, but do not necessarily form stable complexes with each other or localize at the same organelles. Second, we found an association between spatial and functional divergences of proteins during evolution. Surprisingly, as proteins with common ancestors evolve, they tend to develop more diverged subcellular localization patterns, but still occupy similar numbers of compartments. This suggests that divergence of protein localization might be more frequently due to the development of more specific localization patterns over ancestral compartments than the occupation of new compartments. PLAST enables systematic and quantitative analyses of protein localization-function relationships, and will be useful to elucidate protein functions and how these functions were acquired in cells from different organisms or species. A public web interface of PLAST is available at http://plast.bii.a-star.edu.sg.  相似文献   

5.
研究酵母(yeast)蛋白质相互作用与基因表达谱和蛋白质亚细胞定位的关系.首先,构建了蛋白质相互作用正样本集、负样本集、随机组对负样本集和混合样本集.然后,对于4个数据集中的所有蛋白质对,通过比较它们的基于距离的基因共表达的分布以及它们中具有已知亚细胞定位的蛋白质对的共定位出现率,实现了这些高通量数据的交叉量化分析.结果揭示,与非相互作用蛋白质对相比,相互作用蛋白质对的基因表达谱具有较高的相似性;相互作用蛋白质对更倾向于具有相同的亚细胞定位.结果还揭示出这些蛋白质特征相关的总体趋势.  相似文献   

6.
7.
8.
Aflatoxin, a mycotoxin synthesized by Aspergillus spp., is among the most potent naturally occurring carcinogens known. Little is known about the subcellular organization of aflatoxin synthesis. Previously, we used transmission electron microscopy and immunogold labeling to demonstrate that the late aflatoxin enzyme OmtA localizes primarily to vacuoles in fungal cells on the substrate surface of colonies. In the present work, we monitored subcellular localization of Ver-1 in real time in living cells. Aspergillus parasiticus strain CS10-N2 was transformed with plasmid constructs that express enhanced green fluorescent protein (EGFP) fused to Ver-1. Analysis of transformants demonstrated that EGFP fused to Ver-1 at either the N or C terminus functionally complemented nonfunctional Ver-1 in recipient cells. Western blot analysis detected predominantly full-length Ver-1 fusion proteins in transformants. Confocal laser scanning microscopy demonstrated that Ver-1 fusion proteins localized in the cytoplasm and in the lumen of up to 80% of the vacuoles in hyphae grown for 48 h on solid media. Control EGFP (no Ver-1) expressed in transformants was observed in only 13% of the vacuoles at this time. These data support a model in which middle and late aflatoxin enzymes are synthesized in the cytoplasm and transported to vacuoles, where they participate in aflatoxin synthesis.  相似文献   

9.
Phenotypic variation in natural populations results from a combination of genetic effects, environmental effects, and gene-by-environment interactions. Despite the vast amount of genomic data becoming available, many pressing questions remain about the nature of genetic mutations that underlie functional variation. We present the results of combining genome-wide association analysis of 41 different phenotypes in ∼5,000 inbred maize lines to analyze patterns of high-resolution genetic association among of 28.9 million single-nucleotide polymorphisms (SNPs) and ∼800,000 copy-number variants (CNVs). We show that genic and intergenic regions have opposite patterns of enrichment, minor allele frequencies, and effect sizes, implying tradeoffs among the probability that a given polymorphism will have an effect, the detectable size of that effect, and its frequency in the population. We also find that genes tagged by GWAS are enriched for regulatory functions and are ∼50% more likely to have a paralog than expected by chance, indicating that gene regulation and gene duplication are strong drivers of phenotypic variation. These results will likely apply to many other organisms, especially ones with large and complex genomes like maize.  相似文献   

10.
Merlin, the product of the Neurofibromatosis type 2 (NF2) tumor-suppressor gene, is a member of the protein 4.1 superfamily that is most closely related to ezrin, radixin, and moesin (ERM). NF2 is a dominantly inherited disease characterized by the formation of bilateral acoustic schwannomas and other benign tumors associated with the central nervous system. To understand its cellular functions, we are studying a Merlin homologue in Drosophila. As is the case for NF2 tumors, Drosophila cells lacking Merlin function overproliferate relative to their neighbors. Using in vitro mutagenesis, we define functional domains within Merlin required for proper subcellular localization and for genetic rescue of lethal Merlin alleles. Remarkably, the results of these experiments demonstrate that all essential genetic functions reside in the plasma membrane– associated NH2-terminal 350 amino acids of Merlin. Removal of a seven–amino acid conserved sequence within this domain results in a dominant-negative form of Merlin that is stably associated with the plasma membrane and causes overproliferation when expressed ectopically in the wing. In addition, we provide evidence that the COOH-terminal region of Merlin has a negative regulatory role, as has been shown for ERM proteins. These results provide insights into the functions and functional organization of a novel tumor suppressor gene.  相似文献   

11.
Although the identification of inherent structure in chronic lymphocytic leukemia (CLL) gene expression data using class discovery approaches has not been extensively explored, the natural clustering of patient samples can reveal molecular subdivisions that have biological and clinical implications. To explore this, we preprocessed raw gene expression data from two published studies, combined the data to increase the statistical power, and performed unsupervised clustering analysis. The clustering analysis was replicated in 4 independent cohorts. To assess the biological significance of the resultant clusters, we evaluated their prognostic value and identified cluster-specific markers. The clustering analysis revealed two robust and stable subgroups of CLL patients in the pooled dataset. The subgroups were confirmed by different methodological approaches (non-negative matrix factorization NMF clustering and hierarchical clustering) and validated in different cohorts. The subdivisions were related with differential clinical outcomes and markers associated with the microenvironment and the MAPK and BCR signaling pathways. It was also found that the cluster markers were independent of the immunoglobulin heavy chain variable (IGVH) genes mutational status. These findings suggest that the microenvironment can influence the clinical behavior of CLL, contributing to prognostic differences. The workflow followed here provides a new perspective on differences in prognosis and highlights new markers that should be explored in this context.  相似文献   

12.
13.
14.
The Human Protein Atlas contains immunofluorescence images showing subcellular locations for thousands of proteins. These are currently annotated by visual inspection. In this paper, we describe automated approaches to analyze the images and their use to improve annotation. We began by training classifiers to recognize the annotated patterns. By ranking proteins according to the confidence of the classifier, we generated a list of proteins that were strong candidates for reexamination. In parallel, we applied hierarchical clustering to group proteins and identified proteins whose annotations were inconsistent with the remainder of the proteins in their cluster. These proteins were reexamined by the original annotators, and a significant fraction had their annotations changed. The results demonstrate that automated approaches can provide an important complement to visual annotation.  相似文献   

15.
Complex microbial ecosystems are increasingly studied through the use of metagenomics approaches. Overwhelming amounts of DNA sequence data are generated to describe the ecosystems, and allow to search for correlations between gene occurrence and clinical (e.g. in studies of the gut microbiota), physico-chemical (e.g. in studies of soil or water environments), or other parameters. Observed correlations can then be used to formulate hypotheses concerning microbial gene functions in relation to the ecosystem studied. In this context, functional metagenomics studies aim to validate these hypotheses and to explore the mechanisms involved. One possible approach is to PCR amplify or chemically synthesize genes of interest and to express them in a suitable host in order to study their function. For bacterial genes, Escherichia coli is often used as the expression host but, depending on the origin and nature of the genes of interest and the test system used to evaluate their putative function, other expression systems may be preferable. In this study, we developed a system to evaluate the role of secreted and surface-exposed proteins from Gram-positive bacteria in the human gut microbiota in immune modulation. We chose to use a Gram-positive host bacterium, Bacillus subtilis, and modified it to provide an expression background that behaves neutral in a cell-based immune modulation assay, in vitro. We also adapted an E. coli – B. subtilis shuttle expression vector for use with the Gateway high-throughput cloning system. Finally, we demonstrate the functionality of this host-vector system through the cloning and expression of a flagellin-coding sequence, and show that the expression-clone elicits an inflammatory response in a human intestinal epithelial cell line. The expression host can easily be adapted to assure neutrality in other assay systems, allowing the use of the presented presentation system in functional metagenomics of the gut and other ecosystems.  相似文献   

16.
The viscosity change of myosin A concentrated solution with or without other components was measured as the incubation time elapsed at 30°C.

The viscosity of myosin A solution increased, but that of F-actin solution did not. The shear stress at 0.04 sec?1 was not increased to 1.0 dyne/cm2 in the former, but in the latter was below 0.5 dyne/cm2.

The viscosity of myosin B solution increased slightly, but that of native tropomyosin-free myosin B solution decreased remarkably. In both the shear stress at 0.04 sec?1 was greater than or equal to 15 dynes/cm2.

The speed of the viscosity increase in the presence of 3 mm pyrophosphate and 3 mm MgCl2 was higher in concentrated solution of myosin B than in that of native tropomysin-free myosin B. The shear stress at 0.04 sec?1 after 6 hr at 30°C was 11.5 and 8.2 dynes/cm2, respectively.

The effect of native tropomyosin and actin on the viscosity change was discussed.  相似文献   

17.
ICK/MRK (intestinal cell kinase/MAK-related kinase), MAK (male germ cell-associated kinase), and MOK (MAPK/MAK/MRK-overlapping kinase) are closely related serine/threonine protein kinases in the protein kinome. The biological functions and regulatory mechanisms of the ICK/MAK/MOK family are still largely elusive. Despite significant similarities in their catalytic domains, they diverge markedly in the sequence and structural organization of their C-terminal non-catalytic domains, raising the question as to whether they have distinct, overlapping, or redundant biological functions. In order to gain insights into their biological activities and lay a fundamental groundwork for functional studies, we investigated the spatio-temporal distribution patterns and the expression dynamics of ICK/MAK/MOK protein kinases in the intestine. We found that ICK/MAK/MOK proteins display divergent expression patterns along the duodenum-to-colon axis and during postnatal murine development. Furthermore, they are differentially partitioned between intestinal epithelium and mesenchyme. A significant increase in the protein level of ICK, but not MAK, was induced in human primary colon cancer specimens. ICK protein level was up-regulated whereas MOK protein level was down-regulated in mouse intestinal adenomas as compared with their adjacent normal intestinal mucosa. These data suggest distinct roles for ICK/MAK/MOK protein kinases in the regulation of intestinal neoplasia. Taken together, our findings demonstrate that the expressions of ICK/MAK/MOK proteins in the intestinal tract can be differentially and dynamically regulated, implicating a significant functional diversity within this group of protein kinases.  相似文献   

18.
Small heat shock proteins (sHSPs) are ubiquitous chaperones that bind and sequester non-native proteins preventing their aggregation. Despite extensive studies of sHSPs chaperone activity, the location of the bound substrate within the sHSP oligomer has not been determined. In this paper, we used cryoelectron microscopy (cryoEM) to visualize destabilized mutants of T4 lysozyme (T4L) bound to engineered variants of the small heat shock protein Hsp16.5. In contrast to wild type Hsp16.5, binding of T4L to these variants does not induce oligomer heterogeneity enabling cryoEM analysis of the complexes. CryoEM image reconstruction reveals the sequestration of T4L in the interior of the Hsp16.5 oligomer primarily interacting with the buried N-terminal domain but also tethered by contacts with the α-crystallin domain shell. Analysis of Hsp16.5-WT/T4L complexes uncovers oligomer expansion as a requirement for high affinity binding. In contrast, a low affinity mode of binding is found to involve T4L binding on the outer surface of the oligomer bridging the formation of large complexes of Hsp16.5. These mechanistic principles were validated by cryoEM analysis of an expanded variant of Hsp16.5 in complex with T4L and Hsp16.5-R107G, which is equivalent to a mutant of human αB-crystallin linked to cardiomyopathy. In both cases, high affinity binding is found to involve conformational changes in the N-terminal region consistent with a central role of this region in substrate recognition.  相似文献   

19.
A putative movement protein (p7a) of tobacco necrosis Necrovirus , strain D (TNV-D), produced in Escherichia coli using an expression vector, was used to raise an antiserum. Immunoblot analysis using this antiserum showed that the p7a protein was detectable only in the combined cell wall and cell membrane fraction prepared from TNV-D infected Phaseolus vulgaris leaves. The p7a protein was detectable 1 day after inoculation and reached a maximum 3 days later, before declining, whereas coat protein was not detectable until 3 days after inoculation and continued to increase in concentration for a further 2 days before declining. Differences in the detectable amounts of both proteins may reflect their differential stability in extracts from necrotic tissue and/or the transient expression of the putative movement protein early in the replication cycle of TNV-D.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号