首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 87 毫秒
1.
声景包含重要的生态信息,具有实时性强、信息密度高的特点,有重要研究价值。现有的声景研究中,音频及相关环境参数采集和分析仍需要大量的人工作业,耗时耗力。基于多传感集成、边缘计算和深度学习技术,建立了一套声景大数据在线采集与分析系统,包括边缘计算节点和中心计算服务器。并通过3个实验站点,进行了近1年的技术验证,实现了声景大数据的自动化在线采集、传输和分析。该系统能适应户外恶劣的自然环境,能根据任务需求持续不断地进行声景大数据在线采集和分析,稳定性好。声学指数可以反映声景变化,但因指数侧重点不同,不同的声学指数之间变化特征差异较大,需要组合使用。通过声纹特征图能直观地识别出不同发声源,对物种的快速识别、声源的分类等具有较强的借鉴意义。系统借助VGGish网络提取的高维声景特征图能很好地识别不同站点和不同时间的声景变化,在不同站点和昼夜上具有较高的区分精度,有快速和直观地反映不同生态系统的类型特征、生态系统动态变化的潜力。丰富声纹特征库、优化声景特征分析神经网络、建设声景长期监测共享网络,有助于扩展系统在物种识别、生物多样性快速分析、生物与环境相互作用机制方面的应用。研究为声景大数据的在线采集...  相似文献   

2.
流感传播速度快,病原变异频繁,影响范围广,对其快速反应与防范对全球来说仍然是一个严重的挑战。医疗卫生和高通量测序技术的组合产生了非常复杂可变的海量的异质异构数据集,对其实现整合挖掘分析是个重要任务。现有逐级上报方式的流感监测体系存在分析结果滞后(1~2周)的问题,与流感病毒变异和传播速度快形成尖锐矛盾。因此,实时而全面的了解其流行动态非常必要。基于以上原因,建立统一的大数据平台,整合不同来源、不同结构的监测数据和特定算法及模型,对信息加以分析利用,并对病毒的流行、发展、变异、控制和反馈进行全生命周期的监控,通过时间、地域、环境和病毒之间的关联性等综合分析,形成一个高效安全、快速稳定,且准确及时的流感地理信息图谱预测预警系统,成为提升流感中心信息管理水平的必由之路。  相似文献   

3.
合成生物通过"设计-构建-测试-学习"闭环研究积累海量数据,推动合成生物数据储存、共享和分析等方面的发展.该文以合成生物数据库和数据智能分析为核心内容,描述了合成生物数据库建设的现状,讨论了合成生物数据质控和标准、存储和共享等方面的瓶颈问题和未来发展;另一方面,概述了人工智能技术在合成生物大数据智能分析方面的关键进展,...  相似文献   

4.
分析了医疗大数据的价值与教学之间的关系,探讨面向数据价值的眼科临床教学模式。通过建立基于大数据技术的临床、教学、科研、管理过程中产生的数据进行优化组合的眼科临床教学体系,发挥大数据价值,重建眼科临床教学体系,将信息时代的医疗、科研电子数据作为眼科教学的主体,拓宽眼科教学途径,简化教学流程,更大限度提供给眼科医学生自主学习所需的各种资源。  相似文献   

5.
流感传播速度快,病原变异频繁,影响范围广,对其快速反应与防范对全球来说仍然是一个严重的挑战。医疗卫生和高通量测序技术的组合产生了非常复杂可变的海量的异质异构数据集,对其实现整合挖掘分析是个重要任务。现有逐级上报方式的流感监测体系存在分析结果滞后(1~2周)的问题,与流感病毒变异和传播速度快形成尖锐矛盾。因此,实时而全面的了解其流行动态非常必要。基于以上原因,建立统一的大数据平台,整合不同来源、不同结构的监测数据和特定算法及模型,对信息加以分析利用,并对病毒的流行、发展、变异、控制和反馈进行全生命周期的监控,通过时间、地域、环境和病毒之间的关联性等综合分析,形成一个高效安全、快速稳定,且准确及时的流感地理信息图谱预测预警系统,成为提升流感中心信息管理水平的必由之路。  相似文献   

6.
7.
生态环境大数据面临的机遇与挑战   总被引:2,自引:0,他引:2  
刘丽香  张丽云  赵芬  赵苗苗  赵海凤  邵蕊  徐明 《生态学报》2017,37(14):4896-4904
随着大数据时代的到来和大数据技术的迅猛发展,生态环境大数据的建设和应用已初露端倪。为了全面推进生态环境大数据的建设和应用,综述了生态环境大数据在解决生态环境问题中的机遇和优势,并分析了生态环境大数据在应用中所面临的挑战。总结和概括了大数据的概念与特征,又结合生态环境领域的特点,分析了生态环境大数据的特殊性和复杂性。重点阐述了生态环境大数据在减缓环境污染、生态退化和气候变化中的机遇,主要从数据存储、处理、分析、解释和展示等方面阐述生态环境大数据相较于传统数据的优势,通过这些优势说明生态环境大数据将有助于全面提高生态环境治理的综合决策水平。虽然生态环境大数据的应用前景广阔,但也面临着重重挑战,在数据共享和开放、应用创新、数据管理、技术创新和落地、专业人才培养和资金投入等方面还存在着许多问题和困难。在以上分析的基础上,提出了生态环境大数据未来的发展方向,包括各类生态环境数据的标准化、建设生态环境大数据存储与处理分析平台和推动国内外生态环境大数据平台的对接。  相似文献   

8.
在介观尺度上,小鼠大脑图像的数据量可达到10 TB量级,人脑数据量则达到惊人的几十PB,从海量脑图像数据中识别和分析神经元的形态是一项复杂且具有挑战的任务。当前研究人员提出了基于传统机器学习和深度学习的神经元识别算法,其中传统机器学习方法存在迁移、泛化能力较差的问题,基于深度学习的算法虽然可以通过海量精确标注的训练数据提高模型的泛化性,但缺乏精确且丰富的图像标记数据集,因此同样存在过拟合和泛化能力弱等问题。本文提出了一种基于深度学习的弱监督神经元识别方案,仅需要少量有标注的数据,即可通过迭代策略获取海量神经元图像的精确识别结果,具备较强的泛化能力,并最大限度减少人工参与量。该方法在fMOST、BigNeuron等数据集上进行了实验,自动识别精度F1值分别为0.9247和0.8318,优于其他对比的神经元识别算法。  相似文献   

9.
海榄雌瘤斑螟Ptyomaxia syntaractis,红树植物白骨壤Avicennia marina最重要害虫,严重影响白骨壤生长和生态功能的发挥。为高效监测海榄雌瘤斑螟的种群发生动态,实时获得预警信息,本研究通过引入目标检测算法YOLO V5进行深度学习,对监测设备上的海榄雌瘤斑螟进行识别与计数,实时发布种群数量。采用黑光灯诱捕装置获取海榄雌瘤斑螟成虫图像,构建两种不同图像大小的数据集,采用旋转、增噪等方式增强图像数据集;对比了不同训练模型对采集图像的检测性能和不同图像大小对数据集识别结果的影响,用精确率、召回率、F1值、平均精度评估各模型的差异。测试结果表明,模型YOLO V5s对海榄雌瘤斑螟识别的精确率、召回率和F1值分别为96.13%、92.06%和0.93,并且能够很好的识别原始尺寸的图像。基于YOLO V5网络模型设计的海榄雌瘤斑螟识别计数模型识别准确率高,可满足海榄雌瘤斑螟种群监测与预警。  相似文献   

10.
数据非依赖采集(DIA)是蛋白质组学领域近年来快速发展的质谱采集技术,其通过无偏碎裂隔离窗口内的所有母离子采集二级谱图,理论上可实现蛋白质样品的深度覆盖,同时具有高通量、高重现性和高灵敏度的优点。现有的DIA数据采集方法可以分为全窗口碎裂方法、隔离窗口序列碎裂方法和四维DIA数据采集方法(4D-DIA)3大类。针对DIA数据的不同特点,主要数据解析方法包括谱库搜索方法、蛋白质序列库直接搜索方法、伪二级谱图鉴定方法和从头测序方法4大类。解析得到的肽段鉴定结果需要进行可信度评估,包括使用机器学习方法的重排序和对报告结果集合的假发现率估计两个步骤,实现对数据解析结果的质控。本文对DIA数据的采集方法、数据解析方法及软件和鉴定结果可信度评估方法进行了整理和综述,并展望了未来的发展方向。  相似文献   

11.
Developments in biotechnology are increasingly dependent on the extensive use of big data, generated by modern high‐throughput instrumentation technologies, and stored in thousands of databases, public and private. Future developments in this area depend, critically, on the ability of biotechnology researchers to master the skills required to effectively integrate their own contributions with the large amounts of information available in these databases. This article offers a perspective of the relations that exist between the fields of big data and biotechnology, including the related technologies of artificial intelligence and machine learning and describes how data integration, data exploitation, and process optimization correspond to three essential steps in any future biotechnology project. The article also lists a number of application areas where the ability to use big data will become a key factor, including drug discovery, drug recycling, drug safety, functional and structural genomics, proteomics, pharmacogenetics, and pharmacogenomics, among others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号