首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Continued gene flow is fundamental to the survival of small, isolated populations. However, geography and human intervention can often act contrary to this requirement. The Scandinavian wolf population is threatened with a loss of genetic variation yet limited in the accessibility to new immigrants by the geographical distance of this peninsular population from its nearest neighbouring population and by human reluctance to allow wolves in the northern reindeer-breeding areas. In this study, we describe the identification of immigrants into this population using autosomal microsatellites, and maternally inherited mtDNA. Samples of 14 wolves collected in the “dispersal corridor” in northern Sweden in 2002–2005 were compared with 185 resident Scandinavian wolves and 79 wolves from the neighbouring Finnish population. We identified four immigrant wolves, suggesting some westward migration, although only one of these is likely to still survive. The integration of such immigrants into the breeding population is necessary to assure the long-term survival of this isolated and inbred population and highlights the importance of genetics techniques to the management of threatened populations.  相似文献   

2.
The identification of hybrids is often a subject of primary concern for the development of conservation and management strategies, but can be difficult when the hybridizing species are closely related and do not possess diagnostic genetic markers. However, the combined use of mitochondrial DNA (mtDNA), autosomal and Y chromosome genetic markers may allow the identification of hybrids and of the direction of hybridization. We used these three types of markers to genetically characterize one possible wolf-dog hybrid in the endangered Scandinavian wolf population. We first characterized the variability of mtDNA and Y chromosome markers in Scandinavian wolves as well as in neighboring wolf populations and in dogs. While the mtDNA data suggested that the target sample could correspond to a wolf, its Y chromosome type had not been observed before in Scandinavian wolves. We compared the genotype of the target sample at 18 autosomal microsatellite markers with those expected in pure specimens and in hybrids using assignment tests. The combined results led to the conclusion that the animal was a hybrid between a Scandinavian female wolf and a male dog. This finding confirms that inter-specific hybridization between wolves and dogs can occur in natural wolf populations. A possible correlation between hybridization and wolf population density and disturbance deserves further research.  相似文献   

3.
ABSTRACT The isolated gray wolf (Canis lupus) population of the Scandinavian Peninsular is suffering from inbreeding depression. We studied dispersal of 35 wolves fitted with very high frequency (20) or Global Positioning System—global system for mobile (15) radiocollars in the neighboring Finnish wolf population. The growing wolf population in Finland has high numbers of dispersing individuals that could potentially disperse into the Scandinavian population. About half (53%) of the dispersing wolves moved total distances that could have reached the Scandinavian population if they had been straight-line moves, but because of the irregular pattern of movements, we detected no wolves successfully dispersing to the Scandinavian population. Dispersal to the Scandinavian population was also limited by high mortality of wolves in reindeer (Rangifer tarandus) management areas and by dispersal to Bothnian Bay at times of the year when ice was not present. We suggest that when a small wolf population is separated from source populations by distance, barriers, and human exploitation, wildlife managers could promote the population's viability by limiting harvest in the peripheral areas or by introducing wolves from the source population.  相似文献   

4.
European wolf (Canis lupus) populations have suffered extensive decline and range contraction due to anthropogenic culling. In Bulgaria, although wolves are still recovering from a severe demographic bottleneck in the 1970s, hunting is allowed with few constraints. A recent increase in hunting pressure has raised concerns regarding long-term viability. We thus carried out a comprehensive conservation genetic analysis using microsatellite and mtDNA markers. Our results showed high heterozygosity levels (0.654, SE 0.031) and weak genetic bottleneck signals, suggesting good recovery since the 1970s decline. However, we found high levels of inbreeding (F IS  = 0.113, SE 0.019) and a N e/N ratio lower than expected for an undisturbed wolf population (0.11, 95 % CI 0.08–0.29). We also found evidence for hybridisation and introgression from feral dogs (C. familiaris) in 10 out of 92 wolves (9.8 %). Our results also suggest admixture between wolves and local populations of golden jackals (C. aureus), but less extensive as compared with the admixture with dogs. We detected local population structure that may be explained by fragmentation patterns during the 1970s decline and differences in local ecological characteristics, with more extensive sampling needed to assess further population substructure. We conclude that high levels of inbreeding and hybridisation with other canid species, which likely result from unregulated hunting, may compromise long-term viability of this population despite its current high genetic diversity. The existence of population subdivision warrants an assessment of whether separate management units are needed for different subpopulations. Our study highlights conservation threats for populations with growing numbers but subject to unregulated hunting.  相似文献   

5.
The grey wolf (Canis lupus) was numerous on the Scandinavian peninsula in the early 19th century. However, as a result of intense persecution, the population declined dramatically and was virtually extinct from the peninsula by the 1960s. We examined historical patterns of genetic variability throughout the period of decline, from 1829 to 1979. Contemporary Finnish wolves, considered to be representative of a large eastern wolf population, were used for comparison. Mitochondrial DNA (mtDNA) variability among historical Scandinavian wolves was significantly lower than in Finland while Y chromosome variability was comparable between the two populations. This may suggest that long-distance migration from the east has been male-biased. Importantly though, as the historical population was significantly differentiated from contemporary Finnish wolves, the overall immigration rate to the Scandinavian peninsula appears to have been low. Levels of variability at autosomal microsatellite loci were high by the early 1800s but declined considerably towards the mid-20th century. At this time, approximately 40% of the allelic diversity and 30% of the heterozygosity had been lost. After 1940, however, there is evidence of several immigration events, coinciding with episodes of marked population increase in Russian Karelia and subsequent westwards migration.  相似文献   

6.
Single nucleotide polymorphisms (SNPs) have the potential to become the genetic marker of choice in studies of the ecology and conservation of natural populations because of their capacity to access variability across the genome. In this study, we provide one of the first demonstrations of SNP discovery in a wild population in order to address typical issues of importance in ecology and conservation in the recolonized Scandinavian and neighbouring Finnish wolf Canis lupus populations. Using end sequence from BAC (bacterial artificial chromosome) clones specific for dogs, we designed assays for 24 SNP loci, 20 sites of which had previously been shown to be polymorphic in domestic dogs and four sites were newly identified as polymorphic in wolves. Of the 24 assayed loci, 22 SNPs were found to be variable within the Scandinavian population and, importantly, these were able to distinguish individual wolves from one another (unbiased probability of identity of 4.33 x 10(-8)), providing equivalent results to that derived from 12 variable microsatellites genotyped in the same population. An assignment test shows differentiation between the Scandinavian and neighbouring Finnish wolf populations, although not all known immigrants are accurately identified. An exploration of the misclassification rates in the identification of relationships shows that neither 22 SNP nor 20 microsatellite loci are able to discriminate across single order relationships. Despite the remaining obstacle of SNP discovery in nonmodel organisms, the use of SNPs in ecological and conservation studies is encouraged by the advent of large scale screening methods. Furthermore, the ability to amplify extremely small fragments makes SNPs of particular use for population monitoring, where faecal and other noninvasive samples are routinely used.  相似文献   

7.
Reliable and updated population estimates are a necessity for the successful conservation and management of endangered animal populations. Citizen science has become increasingly important in wildlife monitoring and is an attractive concept due to its low costs. However, the applicability of citizen science in the monitoring of large carnivore populations is questionable for various reasons, including the difficulties associated with species identification. In Finland, where estimates of the fragmentary wolf (Canis lupus) population have varied between 140 and 280 animals in the last 10 years, population monitoring has been based on volunteer-provided data and telemetry. To compensate for a recent decrease in the proportion of territories with boundaries mapped through telemetry, a non-invasive genetics project was launched in 2016. We evaluated the experiences from this project, in which non-invasive genetic techniques were, for the first time, widely used (n?=?22 territories, 54% of the 41 apparent territories hosted by wolves in March 2017) to determine the post-hunting population estimate in early March 2017, before pack sizes began to decrease due to dispersal by sub-adult wolves. In territories where the non-invasive genetic monitoring was executed in the winter of 2016/2017, the pack sizes resulting from the volunteer-provided observations and the genetic analyses were highly correlated. By using the most typical variation in the proportion of non-residents in the wolf populations (6–20%, Fuller et al. 2003), we derived a population estimate of 150–178 wolves for early March 2016, and, by considering the known mortality during the study period, a minimum estimate of 204–234 wolves for early Aug. 2016. Despite its high costs, we recommend that non-invasive genetic monitoring should cover all known territories supporting Finland’s small and exploited wolf population. This much costlier protocol may be unrealistic in Finland. In any case, there is a need for more genetic sampling to test the quality of volunteer-provided data.  相似文献   

8.
One major concern in wolf (Canis lupus) conservation is the risk of genetic contamination due to crossbreeding with domestic dogs. Although genetic monitoring of wolf populations has become widely used, the behavioural mechanisms involved in wolf-dog hybridization and the detrimental effects of genetic introgression are poorly known. In this study we analysed Y-chromosome microsatellite variation in the recovering Italian wolf population and detected strikingly different allele frequencies between wolves and dogs. Four Y haplotypes were found in 74 analysed male wolves, and all of them were present in a focus wolf population in the Apennines. On the other hand, only 1 haplotype was found in the recolonizing wolf population from the Western Alps. The most common haplotype in a sample of domestic dogs, was also found in 5 wolves, 2 of which revealing a signature of recent hybridization. Moreover, another suspect hybrid carried a private haplotype of possible canine origin. These results give support to the idea that female wolves can breed with male stray dogs in the wild. The Y-chromosome variation in Italian wolves contrasts with the previously observed lack of mitochondrial variation. Further investigations are needed to clarify at what extent historical or recent wolf-dog hybridization events may have contributed to the observed haplotype diversity. In conclusion, the two molecular markers employed in this study represent effective means to trace directional genetic introgression into the wolves male lineage and have the noteworthy advantage of being suitable for analyses on low-quality DNA samples.  相似文献   

9.
The successful re‐introduction of grey wolves to the western United States is an impressive accomplishment for conservation science. However, the degree to which subpopulations are genetically structured and connected, along with the preservation of genetic variation, is an important concern for the continued viability of the metapopulation. We analysed DNA samples from 555 Northern Rocky Mountain wolves from the three recovery areas (Greater Yellowstone Area, Montana, and Idaho), including all 66 re‐introduced founders, for variation in 26 microsatellite loci over the initial 10‐year recovery period (1995–2004). The population maintained high levels of variation (HO = 0.64–0.72; allelic diversity k = 7.0–10.3) with low levels of inbreeding (FIS < 0.03) and throughout this period, the population expanded rapidly (n1995 = 101; n2004 = 846). Individual‐based Bayesian analyses revealed significant population genetic structure and identified three subpopulations coinciding with designated recovery areas. Population assignment and migrant detection were difficult because of the presence of related founders among different recovery areas and required a novel approach to determine genetically effective migration and admixture. However, by combining assignment tests, private alleles, sibship reconstruction, and field observations, we detected genetically effective dispersal among the three recovery areas. Successful conservation of Northern Rocky Mountain wolves will rely on management decisions that promote natural dispersal dynamics and minimize anthropogenic factors that reduce genetic connectivity.  相似文献   

10.
Interpretation of the genetic composition and taxonomic history of wolves in the western Great Lakes region (WGLR) of the United States has long been debated and has become more important to their conservation given the recent changes in their status under the Endangered Species Act. Currently, the two competing hypotheses on WGLR wolves are that they resulted from hybridization between (i) grey wolves (Canis lupus) and western coyotes (C. latrans) or (ii) between grey wolves and eastern wolves (C. lycaon). We performed a genetic analysis of sympatric wolves and coyotes from the region to assess the degree of reproductive isolation between them and to clarify the taxonomic status of WGLR wolves. Based on data from maternal, paternal and bi‐parental genetic markers, we demonstrate a clear genetic distinction between sympatric wolves and coyotes and conclude that they are reproductively isolated and that wolf–coyote hybridization in the WGLR is uncommon. The data reject the hypothesis that wolves in the WGLR derive from hybridization between grey wolves and western coyotes, and we conclude that the extant WGLR wolf population is derived from hybridization between grey wolves and eastern wolves. Grey‐eastern wolf hybrids (C. lupus × lycaon) comprise a substantial population that extends across Michigan, Wisconsin, Minnesota and western Ontario. These findings have important implications for the conservation and management of wolves in North America, specifically concerning the overestimation of grey wolf numbers in the United States and the need to address policies for hybrids.  相似文献   

11.
Despite continuous historical distribution of the grey wolf (Canis lupus) throughout Eurasia, the species displays considerable morphological differentiation that resulted in delimitation of a number of subspecies. However, these morphological discontinuities are not always consistent with patterns of genetic differentiation. Here we assess genetic distinctiveness of grey wolves from the Caucasus (a region at the border between Europe and West Asia) that have been classified as a distinct subspecies C. l. cubanensis. We analysed their genetic variability based on mtDNA control region, microsatellite loci and genome-wide SNP genotypes (obtained for a subset of the samples), and found similar or higher levels of genetic diversity at all these types of loci as compared with other Eurasian populations. Although we found no evidence for a recent genetic bottleneck, genome-wide linkage disequilibrium patterns suggest a long-term demographic decline in the Caucasian population – a trend consistent with other Eurasian populations. Caucasian wolves share mtDNA haplotypes with both Eastern European and West Asian wolves, suggesting past or ongoing gene flow. Microsatellite data also suggest gene flow between the Caucasus and Eastern Europe. We found evidence for moderate admixture between the Caucasian wolves and domestic dogs, at a level comparable with other Eurasian populations. Taken together, our results show that Caucasian wolves are not genetically isolated from other Eurasian populations, share with them the same demographic trends, and are affected by similar conservation problems.  相似文献   

12.
Abstract: After roughly a 60-year absence, wolves (Canis lupus) immigrated (1979) and were reintroduced (1995-1996) into the northern Rocky Mountains (NRM), USA, where wolves are protected under the Endangered Species Act. The wolf recovery goal is to restore an equitably distributed metapopulation of ≥30 breeding pairs and 300 wolves in Montana, Idaho, and Wyoming, while minimizing damage to livestock; ultimately, the objective is to establish state-managed conservation programs for wolf populations in NRM. Previously, wolves were eradicated from the NRM because of excessive human killing. We used Andersen–Gill hazard models to assess biological, habitat, and anthropogenic factors contributing to current wolf mortality risk and whether federal protection was adequate to provide acceptably low hazards. We radiocollared 711 wolves in Idaho, Montana, and Wyoming (e.g., NRM region of the United States) from 1982 to 2004 and recorded 363 mortalities. Overall, annual survival rate of wolves in the recovery areas was 0.750 (95% CI = 0.728-0.772), which is generally considered adequate for wolf population sustainability and thereby allowed the NRM wolf population to increase. Contrary to our prediction, wolf mortality risk was higher in the northwest Montana (NWMT) recovery area, likely due to less abundant public land being secure wolf habitat compared to other recovery areas. In contrast, lower hazards in the Greater Yellowstone Area (GYA) and central Idaho (CID) likely were due to larger core areas that offered stronger wolf protection. We also found that wolves collared for damage management purposes (targeted sample) had substantially lower survival than those collared for monitoring purposes (representative sample) because most mortality was due to human factors (e.g., illegal take, control). This difference in survival underscores the importance of human-caused mortality in this recovering NRM population. Other factors contributing to increased mortality risk were pup and yearling age class, or dispersing status, which was related to younger age cohorts. When we included habitat variables in our analysis, we found that wolves having abundant agricultural and private land as well as livestock in their territory had higher mortality risk. Wolf survival was higher in areas with increased wolf density, implying that secure core habitat, particularly in GYA and CID, is important for wolf protection. We failed to detect changes in wolf hazards according to either gender or season. Maintaining wolves in NWMT will require greater attention to human harvest, conflict resolution, and illegal mortality than in either CID or GYA; however, if human access increases in the future in either of the latter 2 areas hazards to wolves also may increase. Indeed, because overall suitable habitat is more fragmented and the NRM has higher human access than many places where wolves roam freely and are subject to harvest (e.g., Canada and AK), monitoring of wolf vital rates, along with concomitant conservation and management strategies directed at wolves, their habitat, and humans, will be important for ensuring long-term viability of wolves in the region.  相似文献   

13.
The Balkan Peninsula and the Dinaric Mountains possess extraordinary biodiversity and support one of the largest and most diverse wolf (Canis lupus) populations in Europe. Results obtained with diverse genetic markers show west‐east substructure, also seen in various other species, despite the absence of obvious barriers to movement. However, the spatial extent of the genetic clusters remains unresolved, and our aim was to combine fine‐scale sampling with population and spatial genetic analyses to improve resolution of wolf genetic clusters. We analyzed 16 autosomal microsatellites from 255 wolves sampled in Slovenia, Croatia, Bosnia and Herzegovina (BIH), and Serbia and documented three genetic clusters. These comprised (1) Slovenia and the regions of Gorski kotar and Lika in Croatia, (2) the region of Dalmatia in southern Croatia and BIH, and (3) Serbia. When we mapped the clusters geographically, we observed west‐east genetic structure across the study area, together with some specific structure in BIH–Dalmatia. We observed that cluster 1 had a smaller effective population size, consistent with earlier reports of population recovery since the 1980s. Our results provide foundation for future genomic studies that would further resolve the observed west‐east population structure and its evolutionary history in wolves and other taxa in the region and identify focal areas for habitat conservation. They also have immediate importance for conservation planning for the wolves in one of the most important parts of the species’ European range.  相似文献   

14.
European wolves (Canis lupus) show population genetic structure in the absence of geographic barriers, and across relatively short distances for this highly mobile species. Additional information on the location of and divergence between population clusters is required, particularly because wolves are currently recolonizing parts of Europe. We evaluated genetic structure in 177 wolves from 11 countries using over 67K single nucleotide polymorphism (SNP) loci. The results supported previous findings of an isolated Italian population with lower genetic diversity than that observed across other areas of Europe. Wolves from the remaining countries were primarily structured in a north-south axis, with Croatia, Bulgaria, and Greece (Dinaric-Balkan) differentiated from northcentral wolves that included individuals from Finland, Latvia, Belarus, Poland and Russia. Carpathian Mountain wolves in central Europe had genotypes intermediate between those identified in northcentral Europe and the Dinaric-Balkan cluster. Overall, individual genotypes from northcentral Europe suggested high levels of admixture. We observed high diversity within Belarus, with wolves from western and northern Belarus representing the two most differentiated groups within northcentral Europe. Our results support the presence of at least three major clusters (Italy, Carpathians, Dinaric-Balkan) in southern and central Europe. Individuals from Croatia also appeared differentiated from wolves in Greece and Bulgaria. Expansion from glacial refugia, adaptation to local environments, and human-related factors such as landscape fragmentation and frequent killing of wolves in some areas may have contributed to the observed patterns. Our findings can help inform conservation management of these apex predators and the ecosystems of which they are part.  相似文献   

15.
In the past century the Italian wolf has been repeatedly indicated as a distinct subspecies, Canis lupus italicus, due to its unique morphology and its distinctive mtDNA control region (CR) monomorphism. However, recent studies on wolf x dog hybridization in Italy documented the presence of a second mtDNA CR haplotype (W16), previously found only in wolves from Eastern Europe, casting doubts on the genetic uniqueness of the Italian wolves. To test whether this second haplotype belongs to the Italian wolf population, we genotyped 92 wolf DNA samples from Italy, Slovenia, Greece and Bulgaria at four mtDNA regions (control-region, ATP6, COIII and ND4 genes) and at 39 autosomal microsatellites. Results confirm the presence of two mtDNA multi-fragment haplotypes (WH14 and WH19) in the Italian wolves, distinct from all the other European wolves. Network analyses of the multi-fragment mtDNA haplotypes identified two strongly differentiated clades, with the Italian wolf WH14 and WH19 multi-fragment haplotypes rooted together. Finally, Bayesian clustering clearly assigned all the wolves sampled in Italy to the Italian population, regardless of the two different multi-fragment haplotypes. These results demonstrate that the W16 CR haplotype is part of the genetic pool of the Italian wolf population, reconfirming its distinctiveness from other European wolves. Overall, considering the presence of unique mtDNA and Y-linked haplotypes, the sharply different frequencies of genome-wide autosomal alleles and the distinct morphological features of Italian wolves, we believe that this population should be considered a distinct subspecies.  相似文献   

16.
Harvest can affect vital rates such as reproduction and survival, but also genetic measures of individual and population health. Grey wolves (Canis lupus) live and breed in groups, and effective population size is a small fraction of total abundance. As a result, genetic diversity of wolves may be particularly sensitive to harvest. We evaluated how harvest affected genetic diversity and relatedness in wolves. We hypothesized that harvest would (a) reduce relatedness of individuals within groups in a subpopulation but increase relatedness of individuals between groups due to increased local immigration, (b) increase individual heterozygosity and average allelic richness across groups in subpopulations and (c) add new alleles to a subpopulation and decrease the number of private alleles in subpopulations due to an increase in breeding opportunities for unrelated individuals. We found harvest had no effect on observed heterozygosity of individuals or allelic richness at loci within subpopulations but was associated with a small, biologically insignificant effect on within‐group relatedness values in grey wolves. Harvest was, however, positively associated with increased relatedness of individuals between groups and a net gain (+16) of alleles into groups in subpopulations monitored since harvest began, although the number of private alleles in subpopulations overall declined. Harvest likely created opportunities for wolves to immigrate into nearby groups and breed, thereby making groups in subpopulations more related over time. Harvest appears to affect genetic diversity in wolves at the group and population levels, but its effects are less apparent at the individual level given the population sizes we studied.  相似文献   

17.
Predation on livestock is a cause of serious and long-lasting conflict between farmers and wildlife, promoting negative public attitudes and endangering conservation of large carnivores. However, while large carnivores, especially the grey wolf (Canis lupus), are often blamed for killing sheep and other farm animals, free-ranging dogs may also act as predators. To develop appropriate measures for livestock protection, reliable methods for identifying predator species are critical. Identification of predators from visual examination of livestock wounds can be ambiguous and genetic analysis is strongly preferable for accurate species determination. To estimate the proportion of wolves and dogs implicated in sheep predation, we developed a sensitive genetic assay to distinguish between wolves and domestic dogs. A total of 183 predator saliva samples collected from killed sheep in Estonia were analysed. The assay identified the predator species in 143 cases (78%). Sheep were most often killed by wolves (81%); however, predation by dogs was substantial (15%). We compared the molecular results with field observations conducted by local environmental officials and recorded some disagreement, with the latter underestimating the role of dogs. As predator saliva samples collected from prey are often of poor quality, we suggest using mitochondrial DNA as a primary tool to maximise the number of successfully analysed samples. We also suggest adopting forensic DNA analysis more widely in livestock predation assessments as a legislative measure since misidentification that is biased against wolves can be counterproductive for conservation by enhancing conflict with society and leading to increased culling and poaching.  相似文献   

18.
Probably no conservation genetics issue is currently more controversial than the question of whether grey wolves (Canis lupus) in the Northern Rockies have recovered to genetically effective levels. Following the dispersal‐based recolonization of Northwestern Montana from Canada, and reintroductions to Yellowstone and Central Idaho, wolves have vastly exceeded population recovery goals of 300 wolves distributed in at least 10 breeding pairs in each of Wyoming, Idaho and Montana. With >1700 wolves currently, efforts to delist wolves from endangered status have become mired in legal battles over the distinct population segment (DPS) clause of the Endangered Species Act (ESA), and whether subpopulations within the DPS were genetically isolated. An earlier study by vonHoldt et al. (2008) suggested Yellowstone National Park wolves were indeed isolated and was used against delisting in 2008. Since then, wolves were temporarily delisted, and a first controversial hunting season occurred in fall of 2009. Yet, concerns over the genetic recovery of wolves in the Northern Rockies remain, and upcoming District court rulings in the summer of 2010 will probably include consideration of gene flow between subpopulations. In this issue of Molecular Ecology, vonHoldt et al. (2010) conduct the largest analysis of gene flow and population structure of the Northern Rockies wolves to date. Using an impressive sampling design and novel analytic methods, vonHoldt et al. (2010) show substantial levels of gene flow between three identified subpopulations of wolves within the Northern Rockies, clarifying previous analyses and convincingly showing genetic recovery.  相似文献   

19.
Results of previous morphometric and genetic analyses of grey wolf (Canis lupus L.) population from Serbia indicated different patterns of population subdivision. In order to explore population structure, level of genetic variability, genetic drift, inbreeding and signals of bottleneck for grey wolves from Serbia, we applied highly polymorphic genetic markers (microsatellites). Obtained data are valuable in determination of conservation units and creation of appropriate management plans. We have amplified 18 highly polymorphic microsatellites, in a total sample of 75 grey wolves, from different localities across Serbia and multilocus genotypes were analyzed using appropriate software. Observed values of the basic genetic parameters (HO = 0.69; HE = 0.75) indicated moderate level of genetic variability, similar to genetic variability in other populations belonging to the Dinaric-Balkan population of grey wolf. In STRUCTURE analysis, although ΔK was estimated to be at first peak K = 2, and second peak K = 4, CLUMPAK analyses showed that there’s no structuring for any of assumed K, and therefore the population of grey wolf from Serbia may be considered as one continuous population and treated as one conservation unit in future management plans. Signals of bottleneck haven’t been observed (Wilcoxon test two phase mutation model p = 0.247; and stepwise mutation model p = 0.815).  相似文献   

20.
Marine species with high fecundities and mortalities in the early life stages can have low effective population sizes, making them vulnerable to declines in genetic diversity when they are commercially harvested. Here, we compare levels of microsatellite and mitochondrial sequence variation in the western rock lobster (Panulirus cygnus) over a 14-year period to test whether genetic variation is being maintained. Panulirus cygnus is a strong candidate for loss of genetic variation because it is a highly fecund species that is likely to experience high variance in reproductive success due to an extended larval planktonic stage. It also supports one of the largest and most economically important fisheries in Australia, with landings of between 8,000 and 14,500 tons (~70 % of the total legal-sized biomass) being harvested in some years. We found remarkably high levels of genetic variation in all samples and no evidence of a decline in genetic diversity over the time interval we studied. Furthermore, there was no evidence of a recent genetic bottleneck, and effective population size estimates based on single sample and temporal methods were infinitely large. Analysis of molecular variance indicated no significant population structure along 960 km of coastline or genetic differentiation among temporal samples. Our results support the view that P. cygnus is a single, panmictic population, and suggest genetic drift is not strong enough to reduce neutral genetic diversity in this species if current management practices and breeding stock sizes are maintained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号