首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The traditional group-selection model for the maintenance of sex is based upon the assumption that the long-term evolutionary benefits of sexual reproduction result in asexual lineages having a higher extinction rate than sexual species. This model is reexamined, as is a related model that incorporates the possibility that sexual and asexual lines differ in their speciation rates. In these models, the long-term advantage of sex is opposed by a strong short-term disadvantage arising from the twofold reproductive cost of producing males. It is shown that once some sexual lines become established, then group selection can act to maintain sex despite its short-term disadvantage. The short-term disadvantage is included in the model by assuming that, if asexual individuals arise by mutation within a previously completely sexual species, then the asexuals quickly displace their sexual conspecifics and the species is transformed to asexuality. The probability of this event is given by the transition rate, us. If the value of us varies between lineages, then one of the effects of group selection is to favor groups (i.e., species) with the lowest values of us. This occurs because lines that do convert to asexuality (because of a high us) are doomed to a high rate of extinction, and in the long term only those that do not convert to asexuality (because of a low us) survive. The net result of group selection is that sex is maintained because of its lower extinction rate (or higher speciation rate) and because asexual mutants only rarely arise.  相似文献   

2.
Neutral models characterize evolutionary or ecological patterns expected in the absence of specific causal processes, such as natural selection or ecological interactions. In this study, we describe and evaluate three neutral models that can, in principle, help to explain the apparent 'twigginess' of asexual lineages on phylogenetic trees without involving the negative consequences predicted for the absence of recombination and genetic exchange between individuals. Previously, such phylogenetic twiggyness of asexual lineages has been uncritically interpreted as evidence that asexuality is associated with elevated extinction rates and thus represents an evolutionary dead end. Our first model uses simple phylogenetic simulations to illustrate that, with sexual reproduction as the ancestral state, low transition rates to stable asexuality, or low rates of ascertained 'speciation' in asexuals, can generate twiggy distributions of asexuality, in the absence of high extinction rates for asexual lineages. The second model, developed by Janko et   al . (2008 ), shows that a dynamic equilibrium between origins and neutral losses of asexuals can, under some conditions, generate a relatively low mean age of asexual lineages. The third model posits that the risk of extinction for asexual lineages may be higher than that of sexuals simply because asexuals inhabit higher latitudes or altitudes, and not due to effects of their reproductive systems. Such neutral models are useful in that they allow quantitative evaluation of whether empirical data, such as phylogenetic and phylogeographic patterns of sex and asexuality, indeed support the idea that asexually reproducing lineages persist over shorter evolutionary periods than sexual lineages, due to such processes as mutation accumulation, slower rates of adaptive evolution, or relatively lower levels of genetic variability.  相似文献   

3.
Explaining the overwhelming success of sex among eukaryotes is difficult given the obvious costs of sex relative to asexuality. Different studies have shown that sex can provide benefits in spatially heterogeneous environments under specific conditions, but whether spatial heterogeneity commonly contributes to the maintenance of sex in natural populations remains unknown. We experimentally manipulated habitat heterogeneity for sexual and asexual thrips lineages in natural populations and under seminatural mesocosm conditions by varying the number of hostplants available to these herbivorous insects. Asexual lineages rapidly replaced the sexual ones, independently of the level of habitat heterogeneity in mesocosms. In natural populations, the success of sexual thrips decreased with increasing habitat heterogeneity, with sexual thrips apparently only persisting in certain types of hostplant communities. Our results illustrate how genetic diversity‐based mechanisms can favor asexuality instead of sex when sexual lineages co‐occur with genetically variable asexual lineages.  相似文献   

4.
Amoebae are generally assumed to be asexual. We argue that this view is a relict of early classification schemes that lumped all amoebae together inside the 'lower' protozoa, separated from the 'higher' plants, animals and fungi. This artificial classification allowed microbial eukaryotes, including amoebae, to be dismissed as primitive, and implied that the biological rules and theories developed for macro-organisms need not apply to microbes. Eukaryotic diversity is made up of 70+ lineages, most of which are microbial. Plants, animals and fungi are nested among these microbial lineages. Thus, theories on the prevalence and maintenance of sex developed for macro-organisms should in fact apply to microbial eukaryotes, though the theories may need to be refined and generalized (e.g. to account for the variation in sexual strategies and prevalence of facultative sex in natural populations of many microbial eukaryotes). We use a revised phylogenetic framework to assess evidence for sex in several amoeboid lineages that are traditionally considered asexual, and we interpret this evidence in light of theories on the evolution of sex developed for macro-organisms. We emphasize that the limited data available for many lineages coupled with natural variation in microbial life cycles overestimate the extent of asexuality. Mapping sexuality onto the eukaryotic tree of life demonstrates that the majority of amoeboid lineages are, contrary to popular belief, anciently sexual, and that most asexual groups have probably arisen recently and independently. Additionally, several unusual genomic traits are prevalent in amoeboid lineages, including cyclic polyploidy, which may serve as alternative mechanisms to minimize the deleterious effects of asexuality.  相似文献   

5.
The loss of sexual recombination and segregation in asexual organisms has been portrayed as an irreversible process that commits asexually reproducing lineages to reduced diversification. We test this hypothesis by estimating rates of speciation, extinction, and transition between sexuality and functional asexuality in the evening primroses. Specifically, we estimate these rates using the recently developed BiSSE (Binary State Speciation and Extinction) phylogenetic comparative method, which employs maximum likelihood and Bayesian techniques. We infer that net diversification rates (speciation minus extinction) in functionally asexual evening primrose lineages are roughly eight times faster than diversification rates in sexual lineages, largely due to higher speciation rates in asexual lineages. We further reject the hypothesis that a loss of recombination and segregation is irreversible because the transition rate from functional asexuality to sexuality is significantly greater than zero and in fact exceeded the reverse rate. These results provide the first empirical evidence in support of the alternative theoretical prediction that asexual populations should instead diversify more rapidly than sexual populations because they are free from the homogenizing effects of sexual recombination and segregation. Although asexual reproduction may often constrain adaptive evolution, our results show that the loss of recombination and segregation need not be an evolutionary dead end in terms of diversification of lineages.  相似文献   

6.
The short-term advantages of sexual reproduction are unclear, but the existence of groups that are capable of producing either meiotic or ameiotic eggs (cyclic parthenogenesis, CP) might indicate that short-term advantages to sex exist. Alternatively, CP might be an unstable transitory stage between asexuality and sex, or a phylogenetically favoured life cycle (i.e. clade selection). The extensive knowledge of breeding systems and population genetics in branchiopod crustaceans makes them a useful group to test phylogenetic predictions of these hypotheses. Several proponents favour the hypothesis that CP has evolved multiple times in five orders of branchiopod crustaceans. We inferred the first robust branchiopod phylogeny from nuclear rRNA sequence (SSU and LSU), morphology, and complex rRNA stem–loop structures to assess the phylogenetic distribution of cyclic parthenogenesis. The sequence-based, structural rRNA and total evidence phylogenies are concordant and suggest that cyclic parthenogenesis arose once in the branchiopods, that this clade is long-lived (at least since the Permian), and that it has radiated extensively into nearly every aqueous habitat without reverting to strict sexuality and only rarely transforming to strict asexuality. These results are consistent with the clade selection hypothesis but inconsistent with the predictions of the hypothesis that CP is a transitory stage that leads to strict sexual reproduction. The evidence also indicates that clade selection for CP is a viable alternative explanation for the maintenance of sex in CP life cycles.  相似文献   

7.
Finite populations of asexual and highly selfing species suffer from a reduced efficacy of selection. Such populations are thought to decline in fitness over time due to accumulating slightly deleterious mutations or failing to adapt to changing conditions. These within‐population processes that lead nonrecombining species to extinction may help maintain sex and outcrossing through species level selection. Although inefficient selection is proposed to elevate extinction rates over time, previous models of species selection for sex assumed constant diversification rates. For sex to persist, classic models require that asexual species diversify at rates lower than sexual species; the validity of this requirement is questionable, both conceptually and empirically. We extend past models by allowing asexual lineages to decline in diversification rates as they age, that is nonrecombining lineages “senesce” in diversification rates. At equilibrium, senescing diversification rates maintain sex even when asexual lineages, at young ages, diversify faster than their sexual progenitors. In such cases, the age distribution of asexual lineages contains a peak at intermediate values rather than showing the exponential decline predicted by the classic model. Coexistence requires only that the average rate of diversification in asexuals be lower than that of sexuals.  相似文献   

8.
Although evolutionary transitions from sexual to asexual reproduction are frequent in eukaryotes, the genetic bases of such shifts toward asexuality remain largely unknown. We addressed this issue in an aphid species where both sexual and obligate asexual lineages coexist in natural populations. These sexual and asexual lineages may occasionally interbreed because some asexual lineages maintain a residual production of males potentially able to mate with the females produced by sexual lineages. Hence, this species is an ideal model to study the genetic basis of the loss of sexual reproduction with quantitative genetic and population genomic approaches. Our analysis of the co-segregation of ∼300 molecular markers and reproductive phenotype in experimental crosses pinpointed an X-linked region controlling obligate asexuality, this state of character being recessive. A population genetic analysis (>400-marker genome scan) on wild sexual and asexual genotypes from geographically distant populations under divergent selection for reproductive strategies detected a strong signature of divergent selection in the genomic region identified by the experimental crosses. These population genetic data confirm the implication of the candidate region in the control of reproductive mode in wild populations originating from 700 km apart. Patterns of genetic differentiation along chromosomes suggest bidirectional gene flow between populations with distinct reproductive modes, supporting contagious asexuality as a prevailing route to permanent parthenogenesis in pea aphids. This genetic system provides new insights into the mechanisms of coexistence of sexual and asexual aphid lineages.  相似文献   

9.
Weigand MR  Sundin GW 《Genetics》2009,181(1):199-208
Mutagenic DNA repair (MDR) employs low-fidelity DNA polymerases capable of replicating past DNA lesions resulting from exposure to high-energy ultraviolet radiation (UVR). MDR confers UVR tolerance and activation initiates a transient mutator phenotype that may provide opportunities for adaptation. To investigate the potential role of MDR in adaptation, we have propagated parallel lineages of the highly mutable epiphytic plant pathogen Pseudomonas cichorii 302959 with daily UVR activation (UVR lineages) for ~500 generations. Here we examine those lineages through the measurement of relative fitness and observation of distinct colony morphotypes that emerged. Isolates and population samples from UVR lineages displayed gains in fitness relative to the ancestor despite increased rates of inducible mutation to rifampicin resistance. Regular activation of MDR resulted in the maintenance of genetic diversity within UVR lineages, including the reproducible diversification and coexistence of “round” and “fuzzy” colony morphotypes. These results suggest that inducible mutability may present a reasonable strategy for adaptive evolution in stressful environments by contributing to gains in relative fitness and diversification.  相似文献   

10.

Background

Tumorigenesis requires multiple genetic changes. Mutator mutations are mutations that increase genomic instability, and according to the mutator hypothesis, accelerate tumorigenesis by facilitating oncogenic mutations. Alternatively, repeated lineage selection and expansion without increased mutation frequency may explain observed cancer incidence. Mutator lineages also risk increased deleterious mutations, leading to extinction, thus providing another counterargument to the mutator hypothesis. Both selection and extinction involve changes in lineage fitness, which may be represented as “trajectories” through a “fitness landscape” defined by genetics and environment.

Methodology/Principal Findings

Here I systematically analyze the relative efficiency of tumorigenesis with and without mutator mutations by evaluating archetypal fitness trajectories using deterministic and stochastic mathematical models. I hypothesize that tumorigenic mechanisms occur clinically in proportion to their relative efficiency. This work quantifies the relative importance of mutator pathways as a function of experimentally measurable parameters, demonstrating that mutator pathways generally enhance efficiency of tumorigenesis. An optimal mutation rate for tumor evolution is derived, and shown to differ from that for species evolution.

Conclusions/Significance

The models address the major counterarguments to the mutator hypothesis, confirming that mutator mechanisms are generally more efficient routes to tumorigenesis than non-mutator mechanisms. Mutator mutations are more likely to occur early, and to occur when more oncogenic mutations are required to create a tumor. Mutator mutations likely occur in a minority of premalignant lesions, but these mutator premalignant lesions are disproportionately likely to develop into malignant tumors. Tumor heterogeneity due to mutator mutations may contribute to therapeutic resistance, and the degree of heterogeneity of tumors may need to be considered when therapeutic strategies are devised. The model explains and predicts important biological observations in bacterial and mouse systems, as well as clinical observations.  相似文献   

11.
A life-history transition to asexuality is typically viewed as leading to a heightened extinction risk, and a number of studies have evaluated this claim by examining the relative ages of asexual versus closely related sexual lineages. Surprisingly, a rigorous assessment of the age of an asexual plant lineage has never been published, although asexuality is extraordinarily common among plants. Here, we estimate the ages of sexual diploids and asexual polyploids in the fern genus Astrolepis using a well-supported plastid phylogeny and a relaxed-clock dating approach. The 50 asexual polyploid samples we included were conservatively estimated to comprise 19 distinct lineages, including a variety of auto- and allopolyploid genomic combinations. All were either the same age or younger than the crown group comprising their maternal sexual-diploid parents based simply on their phylogenetic position. Node ages estimated with the relaxed-clock approach indicated that the average maximum age of asexual lineages was 0.4 My, and individual lineages were on average 7 to 47 times younger than the crown- and total-ages of their sexual parents. Although the confounding association between asexuality and polyploidy precludes definite conclusions regarding the effect of asexuality, our results suggest that asexuality limits evolutionary potential in Astrolepis.  相似文献   

12.
Asexual lineages are thought to be subject to rapid extinction because they cannot generate recombinant offspring. Accordingly, extant asexual lineages are expected to be of recent derivation from sexual individuals. We examined this prediction by using mitochondrial DNA sequence data to estimate asexual lineage age in populations of a freshwater snail (Potamopyrgus antipodarum) native to New Zealand and characterized by varying frequency of sexual and asexual individuals. We found considerable variation in the amount of genetic divergence of asexual lineages from sexual relatives, pointing to a wide range of asexual lineage ages. Most asexual lineages had close genetic ties (approximately 0.1% sequence divergence) to haplotypes found in sexual representatives, indicating a recent origin from sexual progenitors. There were, however, two asexual clades that were quite genetically distinct (> 1.2% sequence divergence) from sexual lineages and may have diverged from sexual progenitors more than 500,000 years ago. These two clades were found in lakes that had a significantly lower frequency of sexual individuals than lakes without the old clades, suggesting that the conditions that favor sex might select against ancient asexuality. Our results also emphasize the need for large sample sizes and spatially representative sampling when hypotheses for the age of asexual lineages are tested to adequately deal with potential biases in age estimates.  相似文献   

13.
An asexual lineage that reproduces by automictic thelytokous parthenogenesis has a problem: rapid loss of heterozygosity resulting in effective inbreeding. Thus, the circumstances under which rare asexual lineages thrive provide insights into the trade-offs that shape the evolution of alternative reproductive strategies across taxa. A socially parasitic lineage of the Cape honey bee, Apis mellifera capensis, provides an example of a thelytokous lineage that has endured for over two decades. It has been proposed that cytological adaptations slow the loss of heterozygosity in this lineage. However, we show that heterozygosity at the complementary sex determining (csd) locus is maintained via selection against homozygous diploid males that arise from recombination. Further, because zygosity is correlated across the genome, it appears that selection against diploid males reduces loss of homozygosity at other loci. Selection against homozygotes at csd results in substantial genetic load, so that if a thelytokous lineage is to endure, unusual ecological circumstances must exist in which asexuality permits such a high degree of fecundity that the genetic load can be tolerated. Without these ecological circumstances, sex will triumph over asexuality. In A. m. capensis, these conditions are provided by the parasitic interaction with its conspecific host, Apis mellifera scutellata.  相似文献   

14.
Genomic signatures of ancient asexual lineages   总被引:9,自引:0,他引:9  
Ancient asexuals – organisms that have lived without sex for millions of years – offer unique opportunities for discriminating among the various theories of the maintenance of sex. The last few years have seen molecular studies of a number of putative ancient asexual lineages, including bdelloid rotifers, Darwinulid ostracods, and mycorrhizal fungi. To help make sense of the diverse findings of such studies, we present a review and classification of the predicted effects of loss of sex on the eukaryotic genome. These include: (1) direct effects on the genetic structure of individuals and populations; (2) direct effects on the mutation rate due to the loss of the sexual phase; (3) decay of genes specific to sex and recombination; (4) effects of the cessation of sexual selection; (5) dis-adaptation due to the reduced efficiency of selection; and (6) adaptations to asexuality. We discuss the utility of the various predictions for detecting ancient asexuality, for testing hypotheses of the reversibility of a transition to asexuality, and for discriminating between theories of sex. In addition, we review the current status of putative ancient asexuals.  © 2003 The Linnean Society of London. Biological Journal of the Linnean Society 2003, 79 , 69–84.  相似文献   

15.
Models for the origin of the sex incorporate either obligate or facultative sexual cycles. The relevance of each assumption to the ancestral sexual population can be examined by surveying the sexual cycles of eukaryotes, and by determining the first lineage to diverge after sexuality evolved. Two protistan groups, the parabasalids and the oxymonads, have been suggested to be early-branching sexual lineages. A maximum-likelihood analysis of elongation factor-1α sequences shows that the parabasalids diverged prior to the oxymonads and thus represent the earliest sexual lineage of eukaryotes. Since both of these protist lineages and most other eukaryotes are facultatively sexual, it is likely that the common ancestor of all known eukaryotes was facultatively sexual as well. This finding has important implications for the ``Best-Man hypothesis' and other models for the origin of sex. Received: 21 August 1998 / Accepted: 26 December 1998  相似文献   

16.
Important questions remain about the long-term survival and adaptive significance of eukaryotic asexual lineages. Numerous papers dealing with sex advantages still continued to compare parthenogenetic populations versus sexual populations arguing that sex demonstrates a better fitness. Because asexual lineages do not possess any recombination mechanisms favoring rapid changes in the face of severe environmental conditions, they should be considered as an evolutionary dead-end. Nevertheless, reviewing literature dealing with asexual reproduction, it is possible to draw three stimulating conclusions. (1) Asexual reproduction in eukaryotes considerably differs from prokaryotes which experience recombination but neither meiosis nor syngamy. Recombination and meiosis would be a driving force for sexual reproduction. Eukaryotes should therefore be considered as a continuum of sexual organisms that are more or less capable (and sometimes incapable) of sexual reproduction. (2) Rather than revealing ancestral eukaryotic forms, most known lineages of asexual eukaryotes have lost sex due to a genomic conflict affecting their sexual capacity. Thus, it could be argued that hybridization is a major cause of their asexuality. Asexuality may have evolved as a reproductive mechanism reducing conflict within organisms. (3) It could be proposed that, rather than being generalists, parthenogenetic hybrid lineages could be favored when exploiting peculiar restricted ecological niches, following the “frozen niche variation” model. Although hybrid events may result in sex loss, probably caused by genomic conflict, asexual hybrids could display new original adaptive traits, and the rapid colonization of environments through clonal reproduction could favor their long-term survival, leading to evolutionary changes and hybrid speciation. Examination of the evolutionary history of asexual lineages reveals that evolutionary processes act through transitional stages in which even very small temporary benefits may be enough to counter the expected selective disadvantages.  相似文献   

17.
In the Origin of Species Darwin hypothesized that the “manufactory” of species operates at different rates in different lineages and that the richness of taxonomic units is autocorrelated across levels of the taxonomic hierarchy. We confirm the manufactory hypothesis using a database of all the world''s extant avian subspecies, species and genera. The hypothesis is confirmed both in correlations across all genera and in paired comparisons controlling for phylogeny. We also find that the modern risk of extinction, as measured by “Red List” classifications, differs across the different categories of genera identified by Darwin. Specifically, species in “manufactory” genera are less likely to be threatened, endangered or recently extinct than are “weak manufactory” genera. Therefore, although Darwin used his hypothesis to investigate past evolutionary processes, we find that the hypothesis also foreshadows future changes to the evolutionary tree.  相似文献   

18.
Polymorphisms can lead to genetic isolation if there is differential mating success among conspecifics divergent for a trait. Polymorphism for sex‐determining system may fall into this category, given strong selection for the production of viable males and females and the low success of heterogametic hybrids when sex chromosomes differ (Haldane''s rule). Here we investigated whether populations exhibiting polymorphism for sex determination are genetically isolated, using the viviparous snow skink Carinascincus ocellatus. While a comparatively high elevation population has genotypic sex determination, in a lower elevation population there is an additional temperature component to sex determination. Based on 11,107 SNP markers, these populations appear genetically isolated. “Isolation with Migration” analysis also suggests these populations diverged in the absence of gene flow, across a period encompassing multiple Pleistocene glaciations and likely greater geographic proximity of populations. However, further experiments are required to establish whether genetic isolation may be a cause or consequence of differences in sex determination. Given the influence of temperature on sex in one lineage, we also discuss the implications for the persistence of this polymorphism under climate change.  相似文献   

19.
Cyclical parthenogens, including aphids, are important models for studying the evolution of sex. However, little is known about transitions to asexuality in aphids, although the mode of origin of asexual lineages has important consequences for their level of genetic diversity, ecological adaptability and the outcome of competition with their sexual relatives. Thus, we surveyed nuclear, mitochondrial and biological data obtained on cyclical and obligate parthenogens of the bird cherry-oat aphid, Rhopalosiphum padi (L), to investigate the frequency of transitions from sexuality to permanent asexuality. Many instances of asexual lineages retaining the ability to produce males are known in aphids, so particular attention was paid to the existence of occasional matings between females from sexual lineages and males produced by asexual lineages, which have the potential to produce new asexual lineages. Phylogenetic inference based on microsatellite and mitochondrial data indicates at least three independent origins of asexuality in R. padi, yielding the strongest evidence to date for multiple origins of asexuality in an aphid. Moreover, several lines of evidence demonstrate that transitions to asexuality result from two mechanisms: a complete spontaneous loss of sex and repeated gene flow from essentially asexual lineages into sexual ones.  相似文献   

20.

Background

Carotenoids are multifunctional, taxonomically widespread and biotechnologically important pigments. Their biosynthesis serves as a model system for understanding the evolution of secondary metabolism. Microbial carotenoid diversity and evolution has hitherto been analyzed primarily from structural and biosynthetic perspectives, with the few phylogenetic analyses of microbial carotenoid biosynthetic proteins using either used limited datasets or lacking methodological rigor. Given the recent accumulation of microbial genome sequences, a reappraisal of microbial carotenoid biosynthetic diversity and evolution from the perspective of comparative genomics is warranted to validate and complement models of microbial carotenoid diversity and evolution based upon structural and biosynthetic data.

Methodology/Principal Findings

Comparative genomics were used to identify and analyze in silico microbial carotenoid biosynthetic pathways. Four major phylogenetic lineages of carotenoid biosynthesis are suggested composed of: (i) Proteobacteria; (ii) Firmicutes; (iii) Chlorobi, Cyanobacteria and photosynthetic eukaryotes; and (iv) Archaea, Bacteroidetes and two separate sub-lineages of Actinobacteria. Using this phylogenetic framework, specific evolutionary mechanisms are proposed for carotenoid desaturase CrtI-family enzymes and carotenoid cyclases. Several phylogenetic lineage-specific evolutionary mechanisms are also suggested, including: (i) horizontal gene transfer; (ii) gene acquisition followed by differential gene loss; (iii) co-evolution with other biochemical structures such as proteorhodopsins; and (iv) positive selection.

Conclusions/Significance

Comparative genomics analyses of microbial carotenoid biosynthetic proteins indicate a much greater taxonomic diversity then that identified based on structural and biosynthetic data, and divides microbial carotenoid biosynthesis into several, well-supported phylogenetic lineages not evident previously. This phylogenetic framework is applicable to understanding the evolution of specific carotenoid biosynthetic proteins or the unique characteristics of carotenoid biosynthetic evolution in a specific phylogenetic lineage. Together, these analyses suggest a “bramble” model for microbial carotenoid biosynthesis whereby later biosynthetic steps exhibit greater evolutionary plasticity and reticulation compared to those closer to the biosynthetic “root”. Structural diversification may be constrained (“trimmed”) where selection is strong, but less so where selection is weaker. These analyses also highlight likely productive avenues for future research and bioprospecting by identifying both gaps in current knowledge and taxa which may particularly facilitate carotenoid diversification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号