首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The pathology of Duchenne Muscular Dystrophy (DMD) is characterised by unstable muscle fibres and by increased cell turnover due to the absence of functional dystrophin protein. We have used skeletal muscle, primary muscle stem cell cultures (Smith and Schofield, 1994; Smith et al., paper submitted) and clonal cell lines of the mouse DMD model (mdx) and its congenic control (C57BI) to demonstrate that programmed cell death (PCD) and apoptotic morphology is increased in dystrophic (mdx) muscle and in cultured muscle cells. We also show that the peptide growth factor (IGF-II), which is thought to play a role in mammalian myogenesis, reduces PCD in mammalian skeletal muscle myoblasts both in vivo and in vitro. This is the first time that apoptosis or PCD have been demonstrated in normal mammalian skeletal muscle. We discuss the potential of this system in determining the role of PCD in mammalian myogenesis and skeletal muscle maturation, its significance in dystrophic muscle, and suggest a novel therapeutic route whereby the pathology of DMD may be alleviated using the survival properties of IGF-II.  相似文献   

2.
Summary We examined the morphological expression of dystrophin in the intrafusal muscle fibers in skeletal muscle from normal human and Duchenne muscular dystrophy (DMD) patients, using antisera against the N-terminal and C-terminal regions of dystrophin. The intrafusal fibers of normal muscle express dystrophin on their cell surface membrane, but those of DMD muscle do not.Abbreviation DMD Duchenne muscular dystrophy  相似文献   

3.
4.
Nitric oxide (NO) mediates fundamental physiological actions on skeletal muscle. The neuronal NO synthase isoform (NOS1) was reported to be located exclusively in the sarcolemma. Its loss from the sarcolemma was associated with development of Duchenne muscular dystrophy (DMD). However, new studies evidence that all three NOS isoforms-NOS1, NOS2, and NOS3-are co-expressed in the sarcoplasm both in normal and in DMD skeletal muscles. To address this controversy, we assayed NOS expression in DMD myofibers in situ cytophotometrically and found NOS expression in DMD myofibers up-regulated. These results support the hypothesis that NO deficiency with consequent muscle degeneration in DMD results from NO scavenging by superoxides rather than from reduced NOS expression.  相似文献   

5.
6.
Duchenne muscular dystrophy (DMD) is secondary to loss-of-function mutations in the dystrophin gene. The causes underlying the progression of DMD, differential muscle involvement, and the discrepancies in phenotypes among species with the same genetic defect are not understood. The mdx mouse, an animal model with dystrophin mutation, has a milder phenotype. This article reviews the available information on expression of signaling-related molecules in DMD and mdx. Extracellular matrix proteoglycans, growth factors, integrins, caveolin-3, and neuronal nitric oxide synthase expression do not show significant differences. Calcineurin is inconsistently activated in mdx. which is associated with lack of cardiomyopathy, compared to the permanent calcineurin activation in mdx/utrophin null mice that have a DMD-like cardiomyopathy. Levels of focal adhesion kinase (FAK) and extracellular regulated kinases (ERKs) differ among mdx and DMD. Further work is needed to identify the point of discrepancy in these signaling molecules' pathways in dystrophynopathies.  相似文献   

7.
Abstract: A range of tissue types has now been targeted for development of gene therapeutic procedures both to correct genetic defects and to treat acquired disease. In particular, skeletal muscle holds great importance, not exclusively for the treatment of inherited muscle disorders but also as a platform for the expression of heterologous recombinant proteins, destined to immunise the host or to serve some systemic therapeutic goal. With respect to the X-linked myopathy Duchenne muscular dystrophy (DMD), several gene therapy protocols are being developed that focus on complementing primary genetic defects in the DMD gene by introducing copies of recombinant gene constructs into muscle cells both ex vivo and in vivo. In the present study the potential use of a range of polycationic liposomes as physical gene delivery systems for skeletal muscle has been examined. Using a LacZ reporter gene under optimised conditions up to 40% transfection efficiencies were obtained with the mouse myoblast cell line C2C12. With primary cultures of normal and dystrophin-deficient mdx mouse muscle, up to 10% transfection efficiency was obtained with reporter gene constructs, and high levels of recombinant human dystrophin expression were observed following transfer of dystrophin cDNA gene constructs. These in vitro studies indicate that cationic liposomes can be used to deliver recombinant genes to muscle cells at high efficiency and form a basis to expand investigations into in vivo expression of recombinant dystrophin protein either by direct intramuscular gene transfer or via implantation of transfected myoblasts.  相似文献   

8.
Null mutation of any one of several members of the dystrophin protein complex can cause progressive, and possibly fatal, muscle wasting. Although these muscular dystrophies arise from mutation of a single gene that is expressed primarily in muscle, the resulting pathology is complex and multisystemic, which shows a broader disruption of homeostasis than would be predicted by deletion of a single-gene product. Before the identification of the deficient proteins that underlie muscular dystrophies, such as Duchenne muscular dystrophy (DMD), oxidative stress was proposed as a major cause of the disease. Now, current knowledge supports the likelihood that interactions between the primary genetic defect and disruptions in the normal production of free radicals contribute to the pathophysiology of muscular dystrophies. In this review, we focus on the pathophysiology that results from dystrophin deficiency in humans with DMD and the mdx mouse model of DMD. Current evidence indicates three general routes through which free radical production can be disrupted in dystrophin deficiency to contribute to the ensuing pathology. First, constitutive differences in free radical production can disrupt signaling processes in muscle and other tissues and thereby exacerbate pathology. Second, tissue responses to the presence of pathology can cause a shift in free radical production that can promote cellular injury and dysfunction. Finally, behavioral differences in the affected individual can cause further changes in the production and stoichiometry of free radicals and thereby contribute to disease. Unfortunately, the complexity of the free radical-mediated processes that are perturbed in complex pathologies such as DMD will make it difficult to develop therapeutic approaches founded on systemic administration of antioxidants. More mechanistic knowledge of the specific disruptions of free radicals that underlie major features of muscular dystrophy is needed to develop more targeted and successful therapeutic approaches.  相似文献   

9.
Duchenne muscular dystrophy (DMD) is a fatal and crippling disease of skeletal muscle which displays increased fibre turnover and elevated levels of programmed cell death (PCD) in muscle stem cells. Previously we showed that this cell death is inhibited by the growth factor IGF-II. To determine the functional significance of PCD to the dystrophic phenotype, we used a transgene to over-express IGF-II in the mdx mouse. We found that ectopic expression of IGF-II inhibited the elevated PCD observed in skeletal muscles in the absence of functional dystrophin and significantly ameliorates the early gross histopathological changes in skeletal muscles characteristic of the dystrophic phenotype. Replacement of the dystrophin gene abolished abnormal skeletal muscle cell PCD levels in vivo in a dose-dependent manner and in dystrophic SMS cell lines cultured in vitro. Thus elevation of stem cell PCD in dystrophic skeletal muscle is a direct consequence of the loss of functional dystrophin. Together these data demonstrate that elevated skeletal muscle cell PCD is a critical component of dystrophic pathology and is inversely correlated with both dystrophin gene dosage and with muscle fibre pathology. Targeting PCD in dystrophic muscles reduces both PCD and the classical features of dystrophic pathology in the mdx mouse suggesting that IGF-II is a strong candidate for therapeutic intervention in the dystrophinopathies.  相似文献   

10.
Duchenne muscular dystrophy (DMD) is a lethal X-linked inherited disease caused by mutations in the dystrophin gene and consequent lack of dystrophin in the skeletal, cardiac, and smooth musculature and in the nervous system. Patients die during their mid-twenties because of severe muscle loss and life-threatening respiratory and cardiac complications. The splicing modulation approach mediated by antisense oligonucleotides can restore the production of a partially functional quasi-dystrophin in skeletal muscles. We recently showed that a chronic, 12-month treatment with phosphorodiamidate morpholino oligomers efficiently restored dystrophin in widespread skeletal muscles and led to normal locomotor activity indistinguishable from that of dystrophin-expressing C57 mice. However, no detectable dystrophin expression was observed in the hearts of treated mice. In the present study, histological analyses show a more severe cardiac pathology compared with untreated animals in the face of enhanced locomotor behavior. This observation implies that the increase in locomotor activity of treated mdx mice may have a paradoxical detrimental effect on the dystrophic heart. In the context of skeletal muscle-centric therapies for DMD, our data suggest that particular vigilance should be instigated to monitor emergence of accelerated cardiac dysfunction.  相似文献   

11.
Skeletal muscle fibers are surrounded by an extracellular matrix. The extracellular matrix is composed of glycoproteins, collagen, and proteoglycans. Proteoglycans have been suggested to play an important functional role in tissue differentiation. However, an understanding of how the extracellular matrix affects skeletal muscle development and function is largely unknown. In the avian genetic muscle weakness, low score normal (LSN), a late embryonic increase in the expression of decorin is followed by a subsequent increase in collagen crosslinking. The sarcomere organization, collagen fibril diameter and organization were investigated using transmission electron microscopy. Measurements were made at 20 days of embryonic development and 6 weeks posthatch. These studies showed changes in sarcomere organization and deterioration of muscle fibril structure in the LSN pectoral muscle. In vitro satellite cell cultures were developed and assayed for mitochondrial activity, and protein synthesis and degradation. In these analyses, mitochondrial activity from LSN satellite cells was significantly higher than those from normal pectoral muscle satellite cells. Protein synthesis rates between the normal and LSN satellite cell-derived myotubes were similar, but protein degradation rates were higher in the LSN cultures. Based on the reported functions of decorin as a regulator of cell proliferation and collagen fibril organization, it is possible that the late embryonic increase in decorin may be influencing the alterations in LSN sarcomere and collagen organization.  相似文献   

12.
Duchenne muscular dystrophy (DMD) is a genetic disorder caused by the absence of dystrophin in both skeletal and cardiac muscles. This leads to severe muscle degeneration, and dilated cardiomyopathy that produces patient death, which in most cases occurs before the end of the second decade. Several lines of evidence have shown that modulators of nitric oxide (NO) pathway can improve skeletal muscle and cardiac function in the mdx mouse, a mouse model for DMD. Whole body periodic acceleration (pGz) is produced by applying sinusoidal motion to supine humans and in standing conscious rodents in a headward-footward direction using a motion platform. It adds small pulses as a function of movement frequency to the circulation thereby increasing pulsatile shear stress to the vascular endothelium, which in turn increases production of NO. In this study, we examined the potential therapeutic properties of pGz for the treatment of skeletal muscle pathology observed in the mdx mouse. We found that pGz (480 cpm, 8 days, 1 hr per day) decreased intracellular Ca2+ and Na+ overload, diminished serum levels of creatine kinase (CK) and reduced intracellular accumulation of Evans Blue. Furthermore, pGz increased muscle force generation and expression of both utrophin and the carboxy-terminal PDZ ligand of nNOS (CAPON). Likewise, pGz (120 cpm, 12 h) applied in vitro to skeletal muscle myotubes reduced Ca2+ and Na+ overload, diminished abnormal sarcolemmal Ca2+ entry and increased phosphorylation of endothelial NOS. Overall, this study provides new insights into the potential therapeutic efficacy of pGz as a non-invasive and non-pharmacological approach for the treatment of DMD patients through activation of the NO pathway.  相似文献   

13.
A chain is no stronger than its weakest link is an old idiom that holds true for muscle biology. As the name implies, skeletal muscle’s main function is to move the bones. However, for a muscle to transmit force and withstand the stress that contractions give rise to, it relies on a chain of proteins attaching the cytoskeleton of the muscle fiber to the surrounding extracellular matrix. The importance of this attachment is illustrated by a large number of muscular dystrophies caused by interruption of the cytoskeletal-extracellular matrix interaction. One of the major components of the extracellular matrix is laminin, a heterotrimeric glycoprotein and a major constituent of the basement membrane. It has become increasingly apparent that laminins are involved in a multitude of biological functions, including cell adhesion, differentiation, proliferation, migration and survival. This review will focus on the importance of laminin-211 for normal skeletal muscle function.  相似文献   

14.
Extracellular matrix (ECM) proteins, including collagen and growth factors, are greatly increased in tissue fibrosis and mainly secreted by fibroblasts. We previously demonstrated that muscle-derived fibroblasts from Duchenne muscular dystrophy (DMD) patients have a profibrotic phenotype, that includes significantly reduced expression of tissue inhibitor of metalloprotease 3 (TIMP-3) compared to control. Since TIMP-3 induces apoptosis in various cell types, we hypothesized increased resistance of DMD fibroblasts to apoptosis. To address this, we evaluated apoptotic nuclei, caspase 3, caspase 3 substrate expression, and migration and adhesion properties of muscle-derived fibroblasts, after applying different apoptosis-inducing treatments. We found that DMD fibroblasts were less susceptible to cell death, more adhesive, and had greater tendency to migrate than control fibroblasts — findings further supported by alterations in FAK and ERK/MAPK expression. Resistance to apoptosis and greater adhesion are likely to contribute to muscle fibrosis so a pharmacological treatment that targets dysregulated pathways involved in cell detachment apoptosis (anoikis) may limit the progressive fibrotic remodeling characteristic of DMD.  相似文献   

15.
The dystrophin protein complex (DPC), composed of dystrophin and associated proteins, is essential for maintaining muscle membrane integrity. The link between mutations in dystrophin and the devastating muscle failure of Duchenne's muscular dystrophy (DMD) has been well established. Less well appreciated are the accompanying cognitive impairment and neuropsychiatric disorders also presented in many DMD patients, which suggest a wider role for dystrophin in membrane-cytoskeleton function. This study provides genetic evidence of a novel role for DYS-1/dystrophin in maintaining neural organization in Caenorhabditis elegans. This neuronal function is distinct from the established role of DYS-1/dystrophin in maintaining muscle integrity and regulating locomotion. SAX-7, an L1 cell adhesion molecule (CAM) homologue, and STN-2/γ-syntrophin also function to maintain neural integrity in C. elegans. This study provides biochemical data that show that SAX-7 associates with DYS-1 in an STN-2/γ-syntrophin-dependent manner. These results reveal a recruitment of L1CAMs to the DPC to ensure neural integrity is maintained.  相似文献   

16.
Muscular dystrophies are a diverse group of severe degenerative muscle diseases. Recent interest in the role of the Golgi complex (GC) in muscle disease has been piqued by findings that several dystrophies result from mutations in putative Golgi-resident glycosyltransferases. Given this new role of the Golgi in sarcolemmal stability, we hypothesized that abnormal Golgi distribution, regulation and/or function may constitute part of the pathology of other dystrophies, where the primary defect is independent of Golgi function. Thus, we investigated GC organization in the dystrophin-deficient muscles of mdx mice, a mouse model for Duchenne muscular dystrophy. We report aberrant organization of the synaptic and extrasynaptic GC in skeletal muscles of mdx mice. The GC is mislocalized and improperly concentrated at the surface and core of mdx myofibers. Golgi complex localization is disrupted after the onset of necrosis and normal redistribution is impaired during regeneration of mdx muscle fibers. Disruption of the microtubule cytoskeleton may account in part for aberrant GC localization in mdx myofibers. Golgi complex distribution is restored to wild type and microtubule cytoskeleton organization is significantly improved by recombinant adeno-associated virus 6-mediated expression of DeltaR4-R23/DeltaCT microdystrophin showing a novel mode of microdystrophin functionality. In summary, GC distribution abnormalities are a novel component of mdx skeletal muscle pathology rescued by microdystrophin expression.  相似文献   

17.
Cell-penetrating peptide-mediated delivery of phosphorodiamidate morpholino oligomers (PMOs) has shown great promise for exon-skipping therapy of Duchenne Muscular Dystrophy (DMD). Pip6a-PMO, a recently developed conjugate, is particularly efficient in a murine DMD model, although mechanisms responsible for its increased biological activity have not been studied. Here, we evaluate the cellular trafficking and the biological activity of Pip6a-PMO in skeletal muscle cells and primary cardiomyocytes. Our results indicate that Pip6a-PMO is taken up in the skeletal muscle cells by an energy- and caveolae-mediated endocytosis. Interestingly, its cellular distribution is different in undifferentiated and differentiated skeletal muscle cells (vesicular versus nuclear). Likewise, Pip6a-PMO mainly accumulates in cytoplasmic vesicles in primary cardiomyocytes, in which clathrin-mediated endocytosis seems to be the pre-dominant uptake pathway. These differences in cellular trafficking correspond well with the exon-skipping data, with higher activity in myotubes than in myoblasts or cardiomyocytes. These differences in cellular trafficking thus provide a possible mechanistic explanation for the variations in exon-skipping activity and restoration of dystrophin protein in heart muscle compared with skeletal muscle tissues in DMD models. Overall, Pip6a-PMO appears as the most efficient conjugate to date (low nanomolar EC50), even if limitations remain from endosomal escape.  相似文献   

18.
19.
BackgroundSeveral adult stem cell populations exhibit myogenic regenerative potential, thus representing attractive candidates for therapeutic approaches of neuromuscular diseases such as Duchenne Muscular Dystrophy (DMD). We have recently shown that systemic delivery of MuStem cells, skeletal muscle-resident stem cells isolated in healthy dog, generates the remodelling of muscle tissue and gives rise to striking clinical benefits in Golden Retriever Muscular Dystrophy (GRMD) dog. This global effect, which is observed in the clinically relevant DMD animal model, leads us to question here the molecular pathways that are impacted by MuStem cell transplantation. To address this issue, we compare the global gene expression profile between healthy, GRMD and MuStem cell treated GRMD dog muscle, four months after allogenic MuStem cell transplantation.ResultsIn the dystrophic context of the GRMD dog, disease-related deregulation is observed in the case of 282 genes related to various processes such as inflammatory response, regeneration, calcium ion binding, extracellular matrix organization, metabolism and apoptosis regulation. Importantly, we reveal the impact of MuStem cell transplantation on several molecular and cellular pathways based on a selection of 31 genes displaying signals specifically modulated by the treatment. Concomitant with a diffuse dystrophin expression, a histological remodelling and a stabilization of GRMD dog clinical status, we show that cell delivery is associated with an up-regulation of genes reflecting a sustained enhancement of muscle regeneration. We also identify a decreased mRNA expression of a set of genes having metabolic functions associated with lipid homeostasis and energy. Interestingly, ubiquitin-mediated protein degradation is highly enhanced in GRMD dog muscle after systemic delivery of MuStem cells.ConclusionsOverall, our results provide the first high-throughput characterization of GRMD dog muscle and throw new light on the complex molecular/cellular effects associated with muscle repair and the clinical efficacy of MuStem cell-based therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号