首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Rationale

Semaphorin 3A (Sema3A) is a neural guidance cue that also mediates cell migration, proliferation and apoptosis, and inhibits branching morphogenesis. Because we have shown that genetic deletion of neuropilin-1, which encodes an obligatory Sema3A co-receptor, influences airspace remodeling in the smoke-exposed adult lung, we sought to determine whether genetic deletion of Sema3A altered distal lung structure.

Methods

To determine whether loss of Sema3A signaling influenced distal lung morphology, we compared pulmonary histology, distal epithelial cell morphology and maturation, and the balance between lung cell proliferation and death, in lungs from mice with a targeted genetic deletion of Sema3A (Sema3A-/-) and wild-type (Sema3A+/+) littermate controls.

Results

Genetic deletion of Sema3A resulted in significant perinatal lethality. At E17.5, lungs from Sema3A-/- mice had thickened septae and reduced airspace size. Distal lung epithelial cells had increased intracellular glycogen pools and small multivesicular and lamellar bodies with atypical ultrastructure, as well as reduced expression of type I alveolar epithelial cell markers. Alveolarization was markedly attenuated in lungs from the rare Sema3A-/- mice that survived the immediate perinatal period. Furthermore, Sema3A deletion was linked with enhanced postnatal alveolar septal cell death.

Conclusions

These data suggest that Sema3A modulates distal pulmonary epithelial cell development and alveolar septation. Defining how Sema3A influences structural plasticity of the developing lung is a critical first step for determining if this pathway can be exploited to develop innovative strategies for repair after acute or chronic lung injury.  相似文献   

2.

Background aims

Bronchopulmonary dysplasia (BPD), a chronic lung disease characterized by disrupted lung growth, is the most common complication in extreme premature infants. BPD leads to persistent pulmonary disease later in life. Alveolar epithelial type 2 cells (AEC2s), a subset of which represent distal lung progenitor cells (LPCs), promote normal lung growth and repair. AEC2 depletion may contribute to persistent lung injury in BPD. We hypothesized that induced pluripotent stem cell (iPSC)-derived AECs prevent lung damage in experimental oxygen-induced BPD.

Methods

Mouse AECs (mAECs), miPSCs/mouse embryonic stem sells, human umbilical cord mesenchymal stromal cells (hUCMSCs), human (h)iPSCs, hiPSC-derived LPCs and hiPSC-derived AECs were delivered intratracheally to hyperoxia-exposed newborn mice. Cells were pre-labeled with a red fluorescent dye for in vivo tracking.

Results

Airway delivery of primary mAECs and undifferentiated murine pluripotent cells prevented hyperoxia-induced impairment in lung function and alveolar growth in neonatal mice. Similar to hUCMSC therapy, undifferentiated hiPSCs also preserved lung function and alveolar growth in hyperoxia-exposed neonatal NOD/SCID mice. Long-term assessment of hiPSC administration revealed local teratoma formation and cellular infiltration in various organs. To develop a clinically relevant cell therapy, we used a highly efficient method to differentiate hiPSCs into a homogenous population of AEC2s. Airway delivery of hiPSC-derived AEC2s and hiPSC-derived LPCs, improved lung function and structure and resulted in long-term engraftment without evidence of tumor formation.

Conclusions

hiPSC-derived AEC2 therapy appears effective and safe in this model and warrants further exploration as a therapeutic option for BPD and other lung diseases characterized by AEC injury.  相似文献   

3.
Semaphorin III/collapsin-1 (Sema3A) guides a specific subset of neuronal growth cones as a repulsive molecule. In this study, we have investigated a possible role of non-neuronal Sema3A in lung morphogenesis. Expression of mRNAs of Sema3A and neuropilin-1 (NP-1), a Sema3A receptor, was detected in fetal and adult lungs. Sema3A-immunoreactive cells were found in airway and alveolar epithelial cells of the fetal and adult lungs. Immunoreactivity for NP-1 was seen in fetal and adult alveolar epithelial cells as well as endothelial cells. Immunoreactivity of collapsin response mediator protein CRMP (CRMP-2), an intracellular protein mediating Sema3A signaling, was localized in alveolar epithelial cells, nerve tissue and airway neuroendocrine cells. The expression of CRMP-2 increased during the fetal, neonate and adult periods, and this pattern paralleled that of NP-1. In a two-day culture of lung explants from fetal mouse lung (E11.5), with exogenous Sema3A at a dose comparable to that which induces growth cone collapse of dorsal root ganglia neurons, the number of terminal buds was reduced in a dose-dependent manner when compared with control or untreated lung explants. This decrease was not accompanied with any alteration of the bromodeoxyuridine-positive DNA-synthesizing fraction. A soluble NP-1 lacking the transmembrane and intracellular region, neutralized the inhibitory effect of Sema3A. The fetal lung explants from neuropilin-1 homozygous null mice grew normally in vitro regardless of Sema3A treatment. These results provide evidence that Sema3A inhibits branching morphogenesis in lung bud organ cultures via NP-1 as a receptor or a component of a possible multimeric Sema3A receptor complex.  相似文献   

4.
Semaphorin 3A (Sema3A) is a secreted protein involved in axon path-finding during nervous system development. Calcium signaling plays an important role during axonal growth in response to different guidance cues; however it remains unclear whether this is also the case for Sema3A. In this study we used intracellular calcium imaging to figure out whether Sema3A-induced growth cone collapse is a Ca2+ dependent process. Intracellular Ca2+ imaging results using Fura-2 AM showed Ca2+ increase in E15 mice dorsal root ganglia neurons upon Sema3A treatment. Consequently we analyzed Sema3A effect on growth cones after blocking or modifying intracellular and extracellular Ca2+ channels that are expressed in E15 mouse embryos. Our results demonstrate that Sema3A increased growth cone collapse rate is blocked by the non-selective R- and T- type Ca2+ channel blocker NiCl2 and by the selective R-type Ca2+ channel blocker SNX482. These Ca2+ channel blockers consistently decreased the Sema3A-induced intracellular Ca2+ concentration elevation. Overall, our results demonstrate that Sema3A-induced growth cone collapses are intimately related with increase in intracellular calcium concentration mediated by R-type calcium channels.  相似文献   

5.
Parathyroid hormone-related protein (PTHrP) is a growth inhibitor for alveolar type II cells and could be a regulatory factor for alveolar epithelial cell proliferation after lung injury. We investigated lung PTHrP expression in rats exposed to 85% oxygen. Lung levels of PTHrP were significantly decreased between 4 and 8 days of hyperoxia, concurrent with increased expression of proliferating cell nuclear antigen and increased incorporation of 5-bromo-2'-deoxyuridine (BrdU) into DNA in lung corner cells. PTHrP receptor was present in both normal and hyperoxic lung. To test whether the fall in PTHrP was related to cell proliferation, we instilled PTHrP into lungs on the fourth day of hyperoxia. Eight hours later, BrdU labeling in alveolar corner cells was 3.2 +/- 0.4 cells/high-power field in hyperoxic PBS-instilled rats compared with 0.5 +/- 0.3 cells/high-power field in PTHrP-instilled rats (P < 0. 01). Thus PTHrP expression changes in response to lung injury due to 85% oxygen and may regulate cell proliferation.  相似文献   

6.
7.
Although neurite outgrowth has been linked to axon guidance regulators, the effects of guidance molecules on cellular growth are not well understood. Use of the Drosophila wing imaginal disc, an epithelial tissue and a well‐characterized system for analysis of cellular growth regulation, permits analysis of the impacts of guidance molecules on cellular growth in a setting in which axon guidance is not a confounding factor. In this investigation, the impacts of Netrin A (NetA) and Semaphorin‐1a (Sema1a) signaling on cellular growth are examined during wing development. Levels of these genes were modulated in somatic clones in the developing wing disc, and clone areas, as well as individual sizes of clonal cells were assessed. NetA and Sema1a signaling were found to induce cellular growth in these assays. Furthermore, immunohistochemical analyses indicated that NetA and Sema1a signaling induce expression of several growth regulators, including myc, cycD, cdk4, PCNA, and MapK in the wing disc. These data illustrate that NetA and Sema1a can specifically promote growth through induction of key cellular growth regulators. The abilities of NetA and Sema1a to regulate cellular growth are likely critical to their functions in both nervous system development and oncogenesis. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70:473–484, 2010  相似文献   

8.
9.
Semaphorins are cell surface and soluble signals that control axonal guidance. Recently, semaphorin receptors (plexins) have been discovered and shown to be widely expressed. Their biological activities outside the nervous system and the signal transduction mechanism(s) they utilize are largely unknown. Here, we show that in epithelial cells, Semaphorin 4D (Sema 4D) triggers invasive growth, a complex programme that includes cell#150;cell dissociation, anchorage-independent growth and branching morphogenesis. Interestingly, the same response is also controlled by scatter factors through their tyrosine kinase receptors, which share striking structural homology with plexins in their extracellular domain. We found that in cells expressing the endogenous proteins, Plexin B1 (the Sema 4D Receptor) and Met (the Scatter Factor 1/ Hepatocyte Growth Factor Receptor) associate in a complex. In addition, binding of Sema 4D to Plexin B1 stimulates the tyrosine kinase activity of Met, resulting in tyrosine phosphorylation of both receptors. Finally, cells lacking Met expression do not respond to Sema 4D unless exogenous Met is expressed. This work identifies a novel biological function of semaphorins and suggests the involvement of an unexpected signalling mechanism, namely, the coupling of a plexin to a tyrosine kinase receptor.  相似文献   

10.
Semaphorins are a large class of proteins that function throughout the nervous system to guide axons. It had previously been shown that Semaphorin 5A (Sema5A) was a bifunctional axon guidance cue for mammalian midbrain neurons. We found that zebrafish sema5A was expressed in myotomes during the period of motor axon outgrowth. To determine whether Sema5A functioned in motor axon guidance, we knocked down Sema5A, which resulted in two phenotypes: a delay in motor axon extension into the ventral myotome and aberrant branching of these motor axons. Both phenotypes were rescued by injection of full-length rat Sema5A mRNA. However, adding back RNA encoding the sema domain alone significantly rescued the branching phenotype in sema5A morphants. Conversely, adding back RNA encoding the thrombospondin repeat (TSR) domain alone into sema5A morphants exclusively rescued delay in ventral motor axon extension. Together, these data show that Sema5A is a bifunctional axon guidance cue for vertebrate motor axons in vivo. The TSR domain promotes growth of developing motor axons into the ventral myotome whereas the sema domain mediates repulsion and keeps these motor axons from branching into surrounding myotome regions.  相似文献   

11.
12.
Semaphorin 3A (Sema3A) is a secreted guidance molecule initially described in the nervous system. This protein is able to control axon growth but also effects on endothelial cells migration. Here, we report that Sema3A acts as a chemorepellent factor for the rat C6 glioma cells and three different human glioma cell lines. Interestingly, Sema3A triggered a chemoattractive response in a fourth human glioma cell line. The nature of the receptor complex ensuring the appropriate signaling was dissected in C6 cells by using function blocking antibodies and gain- or loss-of function experiments using recombinant receptors. Our results demonstrate that neuropilin-1, neuropilin-2 and PlexinA1 are necessary to trigger cell repulsion. The selective blockade of neuropilin-1 or Plexin-A1 switched the chemorepulsive effect of Sema3A into a chemoattractive one. Strikingly, blocking Neuropilin-2 suppressed Sema3A-induced cell migration while overexpression of neuropilin-2 was able to convert the chemorepulsive effect of Sema3A into a chemoattractive one. Our results not only provide additional evidence for a biological function of Sema3A in glioma migration but also reveal part of the receptor complex involved. Hence, our study describes a receptor-based plasticity in cancer cells leading to opposite migration behavior in response to the same extracellular signal.Key words: semaphorin, neuropilin, glioma, cell migration, signalling, cancer  相似文献   

13.
Class 3 semaphorins were initially described as axonal growth cone guidance molecules that signal through plexin and neuropilin coreceptors and since then have been established to be regulators of vascular development. Semaphorin 3e (Sema3e) has been shown previously to repel endothelial cells and is the only class 3 semaphorin known to be capable of signaling via a plexin receptor without a neuropilin coreceptor. Sema3e signals through plexin D1 (Plxnd1) to regulate vascular patterning by modulating the cytoskeleton and focal adhesion structures. We showed recently that semaphorin 3d (Sema3d) mediates endothelial cell repulsion and pulmonary vein patterning during embryogenesis. Here we show that Sema3d and Sema3e affect human umbilical vein endothelial cells similarly but through distinct molecular signaling pathways. Time-lapse imaging studies show that both Sema3d and Sema3e can inhibit cell motility and migration, and tube formation assays indicate that both can impede tubulogenesis. Endothelial cells incubated with either Sema3d or Sema3e demonstrate a loss of actin stress fibers and focal adhesions. However, the addition of neuropilin 1 (Nrp1)-blocking antibody or siRNA knockdown of Nrp1 inhibits Sema3d-mediated, but not Sema3e-mediated, cytoskeletal reorganization, and siRNA knockdown of Nrp1 abrogates Sema3d-mediated, but not Sema3e-mediated, inhibition of tubulogenesis. On the other hand, endothelial cells deficient in Plxnd1 are resistant to endothelial repulsion mediated by Sema3e but not Sema3d. Unlike Sema3e, Sema3d incubation results in phosphorylation of Akt in human umbilical vein endothelial cells, and inhibition of the PI3K/Akt pathway blocks the endothelial guidance and cytoskeletal reorganization functions of Sema3d but not Sema3e.  相似文献   

14.
Large numbers of neurons are eliminated by apoptosis during nervous system development. For instance, in the mouse dorsal root ganglion (DRG), the highest incidence of cell death occurs between embryonic days 12 and 14 (E12-E14). While the cause of cell death and its biological significance in the nervous system is not entirely understood, it is generally believed that limiting quantities of neurotrophins are responsible for neuronal death. Between E12 and E14, developing DRG neurons pass through tissues expressing high levels of axonal guidance molecules such as Semaphorin 3A (Sema3A) while navigating to their targets. Here, we demonstrate that Sema3A acts as a death-inducing molecule in neurotrophin-3 (NT-3)-, brain-derived neurotrophic factor (BDNF)- and nerve growth factor (NGF)-dependent E12 and E13 cultured DRG neurons. We show that Sema3A most probably induces cell death through activation of the c-Jun N-terminal kinase (JNK)/c-Jun signaling pathway, and that this cell death is blocked by a moderate increase in NGF concentration. Interestingly, increasing concentrations of other neurotrophic factors, such as NT-3 or BDNF, do not elicit similar effects. Our data suggest that the number of DRG neurons is determined by a fine balance between neurotrophins and Semaphorin 3A, and not only by neurotrophin levels.  相似文献   

15.
Bronchopulmonary dysplasia (BPD) remains a major complication of prematurity resulting in significant morbidity and mortality. The pathology of BPD is multifactorial and leads to alveolar simplification and distal lung injury. Previous studies have shown a beneficial effect of systemic treatment with bone marrow-derived mesenchymal stromal cells (MSCs) and MSC-conditioned media (MSC-CM) leading to amelioration of the lung parenchymal and vascular injury in vivo in the hyperoxia murine model of BPD. It is possible that the beneficial response from the MSCs is at least in part due to activation of endogenous lung epithelial stem cells. Bronchioalveolar stem cells (BASCs) are an adult lung stem cell population capable of self-renewal and differentiation in culture, and BASCs proliferate in response to bronchiolar and alveolar lung injury in vivo. Systemic treatment of neonatal hyperoxia-exposed mice with MSCs or MSC-CM led to a significant increase in BASCs compared with untreated controls. Treatment of BASCs with MSC-CM in culture showed an increase in growth efficiency, indicating a direct effect of MSCs on BASCs. Lineage tracing data in bleomycin-treated adult mice showed that Clara cell secretory protein-expressing cells including BASCs are capable of contributing to alveolar repair after lung injury. MSCs and MSC-derived factors may stimulate BASCs to play a role in the repair of alveolar lung injury found in BPD and in the restoration of distal lung cell epithelia. This work highlights the potential important role of endogenous lung stem cells in the repair of chronic lung diseases.  相似文献   

16.
Pretreatment with keratinocyte growth factor (KGF) ameliorates experimentally induced acute lung injury in rats. Although alveolar epithelial type II cell hyperplasia probably contributes, the mechanisms underlying KGF's protective effect remain incompletely described. Therefore, we tested the hypothesis that KGF given to rats in vivo would enhance alveolar epithelial repair in vitro by nonproliferative mechanisms. After intratracheal instillation (48 h) of KGF (5 mg/kg), alveolar epithelial type II cells were isolated for in vitro alveolar epithelial repair studies. KGF-treated cells had markedly increased epithelial repair (96 +/- 22%) compared with control cells (P < 0.001). KGF-treated cells had increased cell spreading and migration at the wound edge but no increase in in vitro proliferation compared with control cells. KGF-treated cells were more adherent to extracellular matrix proteins and polystyrene. Inhibition of the epidermal growth factor (EGF) receptor with tyrosine kinase inhibitors abolished the KGF effect on epithelial repair. In conclusion, in vivo administration of KGF augments the epithelial repair rate of alveolar epithelial cells by altering cell adherence, spreading, and migration and through stimulation of the EGF receptor.  相似文献   

17.
Administration of inhaled nitric oxide (iNO) is a potential therapeutic strategy to prevent bronchopulmonary dysplasia (BPD) in premature newborns with respiratory distress syndrome. We evaluated this approach in a rat model, in which premature pups were exposed to room air, hyperoxia, or a combination of hyperoxia and NO (8.5 and 17 ppm). We investigated the anti-inflammatory effects of prolonged iNO therapy by studying survival, histopathology, fibrin deposition, and differential mRNA expression (real-time RT-PCR) of key genes involved in the development of BPD. iNO therapy prolonged median survival 1.5 days (P = 0.0003), reduced fibrin deposition in a dosage-dependent way up to 4.3-fold (P < 0.001), improved alveolar development by reducing septal thickness, and reduced the influx of leukocytes. Analysis of mRNA expression revealed an iNO-induced downregulation of genes involved in inflammation (IL-6, cytokine-induced neutrophilic chemoattractant-1, and amphiregulin), coagulation, fibrinolysis (plasminogen activator inhibitor 1 and urokinase-type plasminogen activator receptor), cell cycle regulation (p21), and an upregulation of fibroblast growth factor receptor-4 (alveolar formation). We conclude that iNO therapy improves lung pathology and prolongs survival by reducing septum thickness, inhibiting inflammation, and reducing alveolar fibrin deposition in premature rat pups with neonatal hyperoxic lung injury.  相似文献   

18.
Glycogen synthase kinase (GSK)-3 is a serine/threonine kinase that has been implicated in several aspects in embryonic development and several growth factor signaling cascades. We now report that an inactive phosphorylated pool of the enzyme colocalizes with F-actin in both neuronal and nonneuronal cells. Semaphorin 3A (Sema 3A), a molecule that inhibits axonal growth, activates GSK-3 at the leading edge of neuronal growth cones and in Sema 3A-responsive human breast cancer cells, suggesting that GSK-3 activity might play a role in coupling Sema 3A signaling to changes in cell motility. We show that three different GSK-3 antagonists (LiCl, SB-216763, and SB-415286) can inhibit the growth cone collapse response induced by Sema 3A. These studies reveal a novel compartmentalization of inactive GSK-3 in cells and demonstrate for the first time a requirement for GSK-3 activity in the Sema 3A signal transduction pathway.  相似文献   

19.
Supplemental oxygen inhalation is frequently used to treat severe respiratory failure; however, prolonged exposure to hyperoxia causes hyperoxic acute lung injury (HALI), which induces acute respiratory distress syndrome and leads to high mortality rates. Recent investigations suggest the possible role of NLRP3 inflammasomes, which regulate IL-1β production and lead to inflammatory responses, in the pathophysiology of HALI; however, their role is not fully understood. In this study, we investigated the role of NLRP3 inflammasomes in mice with HALI. Under hyperoxic conditions, NLRP3−/− mice died at a higher rate compared with wild-type and IL-1β−/− mice, and there was no difference in IL-1β production in their lungs. Under hyperoxic conditions, the lungs of NLRP3−/− mice exhibited reduced inflammatory responses, such as inflammatory cell infiltration and cytokine expression, as well as increased and decreased expression of MMP-9 and Bcl-2, respectively. NLRP3−/− mice exhibited diminished expression and activation of Stat3, which regulates MMP-9 and Bcl-2, in addition to increased numbers of apoptotic alveolar epithelial cells. In vitro experiments revealed that alveolar macrophages and neutrophils promoted Stat3 activation in alveolar epithelial cells. Furthermore, NLRP3 deficiency impaired the migration of neutrophils and chemokine expression by macrophages. These findings demonstrate that NLRP3 regulates Stat3 signaling in alveolar epithelial cells by affecting macrophage and neutrophil function independent of IL-1β production and contributes to the pathophysiology of HALI.  相似文献   

20.
We have previously demonstrated that mice exposed to sublethal hyperoxia (an atmosphere of >95% oxygen for 4 days, followed by return to room air) have significantly impaired pulmonary innate immune response. Alveolar macrophages (AM) from hyperoxia-exposed mice exhibit significantly diminished antimicrobial activity and markedly reduced production of inflammatory cytokines in response to stimulation with LPS compared with AM from control mice in normoxia. As a consequence of these defects, mice exposed to sublethal hyperoxia are more susceptible to lethal pneumonia with Klebsiella pneumoniae than control mice. Granulocyte/macrophage colony-stimulating factor (GM-CSF) is a growth factor produced by normal pulmonary alveolar epithelial cells that is critically involved in maintenance of normal AM function. We now report that sublethal hyperoxia in vivo leads to greatly reduced alveolar epithelial cell GM-CSF expression. Systemic treatment of mice with recombinant murine GM-CSF during hyperoxia exposure preserved AM function, as indicated by cell surface Toll-like receptor 4 expression and by inflammatory cytokine secretion following stimulation with LPS ex vivo. Treatment of hyperoxic mice with GM-CSF significantly reduced lung bacterial burden following intratracheal inoculation with K. pneumoniae, returning lung bacterial colony-forming units to the level of normoxic controls. These data point to a critical role for continuous GM-CSF activity in the lung in maintenance of normal AM function and demonstrate that lung injury due to hyperoxic stress results in significant impairment in pulmonary innate immunity through suppression of alveolar epithelial cell GM-CSF expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号