首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have recently established the monoclonal antibodies (mAbs) specific to the major food allergen, ovomucoid, as mAb 7D, recognizing the carbohydrate moiety of ovomucoid, and mAb 6H, the peptide moiety (Biosci. Biothechnol. Biochem., 68, 2490–2497, (2004)). Using these mAbs, we found commercially available ovalbumin preparations contaminated with a considerable amount of ovomucoid together with other glycoproteins. To examine the contaminants, egg white was subjected to cation-exchange chromatography. An unidentified protein was found in egg white that reacted with mAb 7D but not with mAb 6H, having a molecular size of about 52 kDa and a blocked N-terminus. Two internal amino acid sequences of the fragments obtained after a lysyl endopeptidase and a hydroxylamine treatment revealed the protein to be ovalbumin Y (ovalbumin-related gene Y protein). We conclude that ovalbumin Y is a unique chimeric glycoprotein having an amino acid sequence similar to that of ovalbumin, but having a carbohydrate moiety similar to that of ovomucoid.  相似文献   

2.
We have recently established the monoclonal antibodies (mAbs) specific to the major food allergen, ovomucoid, as mAb 7D, recognizing the carbohydrate moiety of ovomucoid, and mAb 6H, the peptide moiety (Biosci. Biothechnol. Biochem., 68, 2490-2497, (2004)). Using these mAbs, we found commercially available ovalbumin preparations contaminated with a considerable amount of ovomucoid together with other glycoproteins. To examine the contaminants, egg white was subjected to cation-exchange chromatography. An unidentified protein was found in egg white that reacted with mAb 7D but not with mAb 6H, having a molecular size of about 52 kDa and a blocked N-terminus. Two internal amino acid sequences of the fragments obtained after a lysyl endopeptidase and a hydroxylamine treatment revealed the protein to be ovalbumin Y (ovalbumin-related gene Y protein). We conclude that ovalbumin Y is a unique chimeric glycoprotein having an amino acid sequence similar to that of ovalbumin, but having a carbohydrate moiety similar to that of ovomucoid.  相似文献   

3.
Chondroadherin, a leucine-rich repeat family member, contains a very C-terminal sequence CKFPTKRSKKAGRH359, now shown to bind to heparin with a KD of 13 μm. This observation led us to investigate whether chondroadherin interacts via this C-terminal heparin-binding domain with glycosaminoglycan chains of proteoglycans at the cell surface. Cells were shown to bind this heparin-binding peptide in FACS analysis, and the interaction was shown to be with glycosaminoglycans because it was abolished when sulfation was inhibited by chlorate treatment of the cells. In separate experiments, heparin and heparan sulfate inhibited the peptide interaction in a dose-dependent manner. Using a human chondrosarcoma and a murine osteoblast cell line, heparan sulfate proteoglycans were identified as the cell surface receptors involved in the binding. Different binding syndecans were identified in the two different cell lines, indicating that the same protein core of a proteoglycan may have structural and functional differences in the attached heparan sulfate chains. Upon binding to coated peptide, cells spread, demonstrating engagement of the cytoskeleton, but no focal adhesion complex was formed. The number of cells adhering via their β1 integrin receptor to collagen type II or chondroadherin was profoundly and rapidly enhanced by the addition of the heparin-binding peptide. The peptide added to the cells caused ERK phosphorylation, showing that it triggered intracellular signaling. The results show that heparan sulfate chains differ between various members of the proteoglycan families on a given cell, but also differ between the same proteoglycan on different cells with a potential for differential regulation of cellular activities.  相似文献   

4.
Once released by HIV+ cells, p17 binds heparan sulfate proteoglycans (HSPGs) and CXCR1 on leukocytes causing their dysfunction. By exploiting an approach integrating computational modeling, site-directed mutagenesis of p17, chemical desulfation of heparin, and surface plasmon resonance, we characterized the interaction of p17 with heparin, a HSPG structural analog, and CXCR1. p17 binds to heparin with an affinity (Kd = 190 nm) that is similar to those of other heparin-binding viral proteins. Two stretches of basic amino acids (basic motifs) are present in p17 N and C termini. Neutralization (Arg→Ala substitution) of the N-terminal, but not of the C-terminal basic motif, causes the loss of p17 heparin-binding capacity. The N-terminal heparin-binding motif of p17 partially overlaps the CXCR1-binding domain. Accordingly, its neutralization prevents also p17 binding to the chemochine receptor. Competition experiments demonstrated that free heparin and heparan sulfate (HS), but not selectively 2-O-, 6-O-, and N-O desulfated heparins, prevent p17 binding to substrate-immobilized heparin, indicating that the sulfate groups of the glycosaminoglycan mediate p17 interaction. Evaluation of the p17 antagonist activity of a panel of biotechnological heparins derived by chemical sulfation of the Escherichia coli K5 polysaccharide revealed that the highly N,O-sulfated derivative prevents the binding of p17 to both heparin and CXCR1, thus inhibiting p17-driven chemotactic migration of human monocytes with an efficiency that is higher than those of heparin and HS. Here, we characterized at a molecular level the interaction of p17 with its cellular receptors, laying the basis for the development of heparin-mimicking p17 antagonists.  相似文献   

5.
The amyloid β-peptide deposit found in the brain tissue of patients with Alzheimer disease is derived from a large heparin-binding protein precursor APP. The biological function of APP and its homologs is not precisely known. Here we report the x-ray structure of the E2 domain of APL-1, an APP homolog in Caenorhabditis elegans, and compare it to the human APP structure. We also describe the structure of APL-1 E2 in complex with sucrose octasulfate, a highly negatively charged disaccharide, which reveals an unexpected binding pocket between the two halves of E2. Based on the crystal structure, we are able to map, using site-directed mutagenesis, a surface groove on E2 to which heparin may bind. Our biochemical data also indicate that the affinity of E2 for heparin is influenced by pH: at pH 5, the binding appears to be much stronger than that at neutral pH. This property is likely caused by histidine residues in the vicinity of the mapped heparin binding site and could be important for the proposed adhesive function of APL-1.  相似文献   

6.
Expression of the VACM-1/cul5 gene in endothelial and in cancer cell lines in vitro inhibits cellular proliferation and decreases phosphorylation of MAPK. Structure-function analysis of the VACM-1 protein sequence identified consensus sites specific for phosphorylation by protein kinases A and C (PKA and PKC) and a Nedd8 protein modification site. Mutations at the PKA-specific site in VACM-1/Cul5 (S730AVACM-1) sequence resulted in increased cellular growth and the appearance of a Nedd8-modified VACM-1/Cul5. The aim of this study was to examine if PKA-dependent phosphorylation of VACM-1/Cul5 controls its neddylation status, phosphorylation by PKC, and ultimately growth. Our results indicate that in vitro transfection of rat adrenal medullary endothelial cells with anti-VACM-1-specific small interfering RNA oligonucleotides decreases endogenous VACM-1 protein concentration and increases cell growth. Western blot analysis of cell lysates immunoprecipitated with an antibody directed against a PKA-specific phosphorylation site and probed with anti-VACM-1-specific antibody showed that PKA-dependent phosphorylation of VACM-1 protein was decreased in cells transfected with S730AVACM-1 cDNA when compared with the cytomegalovirus-transfected cells. This change was associated with increased modification of VACM-1 protein by Nedd8. Induction of PKA activity with forskolin reduced modification of VACM-1 protein by Nedd8. Finally, rat adrenal medullary endothelial cells transfected with S730AVACM-1/cul5 cDNA and treated with phorbol 12-myristate 13-acetate (10 and 100 nm) to induce PKC activity grew significantly faster than the control cells. These results suggest that the antiproliferative effect of VACM-1/Cul5 is dependent on its posttranslational modifications and will help in the design of new anticancer therapeutics that target the Nedd8 pathway.  相似文献   

7.
Entamoeba histolytica, an intestinal amoeba that causes dysentery and liver abscesses, acquires nutrients by engulfing bacteria in the colonic lumen and phagocytoses apoptotic cells during tissue invasion. In preliminary studies to identify ligands that stimulate amoebic phagocytosis, we used ovalbumin immobilized on latex particles as a potential negative control protein. Surprisingly, ovalbumin strongly stimulated E. histolytica particle uptake. Experiments using highly purified ovalbumin confirmed the specificity of this finding. The mechanism of particle uptake was actin-dependent, and the Entamoeba phagosome marker amoebapore A localised to ovalbumin-bead containing vacuoles. The most well described amoebic receptor is a Gal/GalNAc-specific lectin, but d-galactose had no effect on ovalbumin-stimulated phagocytosis. Ovalbumin has a single N-glycosylation site (Asn292) and is modified with oligomannose and hybrid-type oligosaccharides. We used both trifluoromethanesulfonic acid and N-glycanase to deglycosylate ovalbumin and tested the effect. Both methods substantially reduced the stimulatory effect of ovalbumin. Biotinylated ovalbumin bound the surface of fixed E. histolytica trophozoites saturably; furthermore, denatured ovalbumin and native ovalbumin both specifically inhibited ovalbumin-biotin binding, but deglycosylated ovalbumin had no effect. Collectively, these data suggest that E. histolytica has a previously unrecognised surface lectin activity that binds to carbohydrates on ovalbumin and stimulates phagocytosis.  相似文献   

8.
Combinatorial peptide ligand libraries have recently allowed considerable advances in the mapping of chicken egg yolk and white proteomics. Data from literature have been regrouped and elaborated for network and pathway analyses in order to convey a unified view of these proteomes. Redundant proteins were excluded, while isoforms of the same proteins were maintained to reach a total of 260 distinct gene products for egg yolk and 148 for egg white having a match in the database. From these analyses, a role for proteins involved in cell development, proliferation and migration, cell-to-cell interaction and hematological system development emerged. Although it might turn out that, notwithstanding the extensive mapping, the currently available datasets might be still incomplete, a valuable insight could still be obtained about specific proteins playing a crucial role in antimicrobial responses, mainly histones, lysozyme and vitamin-binding proteins. In particular, SERPINB3 (ovalbumin Y, or Squamous Cell Carcinoma Antigen, SCCA1) was individuated in 8 out of 10 top score pathways in egg yolk and in 6 out 10 in egg white. SERPINB3 is a member of the ov-serpin family, participating in coagulation and inflammation responses. However, it is yet to be assessed how these observations could correlate with previous analyses about the role of egg yolk derived proteins in counteracting blood coagulation.  相似文献   

9.
Ovalbumin was detected in developing chicken eggs. The large majority of these ovalbumin molecules was found to be in a heat-stable form reminiscent of S-ovalbumin. About 83 and 90% of the ovalbumin population was in a heat-stable form in day 14 or stage 40 amniotic fluid and day 18 or stage 44 egg yolk, respectively, whereas ovalbumin in newly deposited eggs was in the heat-unstable, native form. Purified preparations of stable ovalbumin from egg white and amniotic fluid showed a less ordered configuration than native ovalbumin, as analyzed by circular dichroism and differential scanning calorimetry. In addition, mass spectrometric analysis exhibited distinct size microheterogeneity between the stable and native forms of ovalbumin. Immunohisotochemical study revealed that ovalbumin was present in the central nervous system and other embryonic organs. These results indicated that egg white ovalbumin migrates into the developing embryo while changing its higher order structure.  相似文献   

10.
A gel electrophoretic method is described for the measurement of relatively weak interactions between proteins and charged ligands, its use being illustrated with a study of the binding of phosphate to ovalbumin, not only as the pure solute but also as a component of egg white. An association equilibrium constant of 200 m?1 is assigned to the interaction of a single dibasic phosphate ion with ovalbumin under the conditions (pH 7.4, I 0.15) used to investigate the phenomenon.  相似文献   

11.
The microbial deconstruction of the plant cell wall is a critical biological process, which also provides important substrates for environmentally sustainable industries. Enzymes that hydrolyze the plant cell wall generally contain non-catalytic carbohydrate binding modules (CBMs) that contribute to plant cell wall degradation. Here we report the biochemical properties and crystal structure of a family of CBMs (CBM60) that are located in xylanases. Uniquely, the proteins display broad ligand specificity, targeting xylans, galactans, and cellulose. Some of the CBM60s display enhanced affinity for their ligands through avidity effects mediated by protein dimerization. The crystal structure of vCBM60, displays a β-sandwich with the ligand binding site comprising a broad cleft formed by the loops connecting the two β-sheets. Ligand recognition at site 1 is, exclusively, through hydrophobic interactions, whereas binding at site 2 is conferred by polar interactions between a protein-bound calcium and the O2 and O3 of the sugar. The observation, that ligand recognition at site 2 requires only a β-linked sugar that contains equatorial hydroxyls at C2 and C3, explains the broad ligand specificity displayed by vCBM60. The ligand-binding apparatus of vCBM60 displays remarkable structural conservation with a family 36 CBM (CBM36); however, the residues that contribute to carbohydrate recognition are derived from different regions of the two proteins. Three-dimensional structure-based sequence alignments reveal that CBM36 and CBM60 are related by circular permutation. The biological and evolutionary significance of the mechanism of ligand recognition displayed by family 60 CBMs is discussed.  相似文献   

12.
Factor VII-activating protease (FSAP) is a circulating protease involved in the pathogenesis of atherosclerosis, calcification, and fibrotic processes. To understand how FSAP controls the balance of local growth factors, we have investigated its effect on the regulation of bone morphogenetic proteins (BMPs). BMP-2 is produced as a large pro-form and secreted as a mature heparin-binding growth factor after intracellular processing by pro-protein convertases (PCs). In this study, we discovered that FSAP enhances the biological activity of mature BMP-2 as well as its pro-form, as shown by osteogenic differentiation of C2C12 myoblasts. These findings were complemented by knockdown of FSAP in hepatocytes, which revealed BMP-2 processing by endogenous FSAP. N-terminal sequencing indicated that pro-BMP-2 was cleaved by FSAP at the canonical PC cleavage site, giving rise to mature BMP-2 (Arg282↓Gln283), as well as in the N-terminal heparin binding region of mature BMP-2, generating a truncated mature BMP-2 peptide (Arg289↓Lys290). Similarly, mature BMP-2 was also cleaved to a truncated peptide within its N-terminal region (Arg289↓Lys290). Plasmin exhibited a similar activity, but it was weaker compared with FSAP. Thrombin, Factor VIIa, Factor Xa, and activated protein C were not effective. These results were further supported by the observation that the mutation of the heparin binding region of BMP-2 inhibited the processing by FSAP but not by PC. Thus, the proteolysis and activation of pro-BMP-2 and mature BMP-2 by FSAP can regulate cell differentiation and calcification in vasculature and may explain why polymorphisms in the gene encoding for FSAP are related to vascular diseases.  相似文献   

13.
Green fluorescent proteins (GFPs) and their derivatives are widely used as markers to visualize cells, protein localizations in in vitro and in vivo studies. The use of GFP fusion protein for visualization is generally thought to have negligible effects on cellular function. However, a number of reports suggest that the use of GFP may impact the biological activity of these proteins. Heparin is a glycosaminoglycan (GAG) that interacts with a number of proteins mediating diverse patho-physiological processes. In the heparin-based interactome studies, heparin-binding proteins are often prepared as GFP fusion proteins. In this report, we use surface plasmon resonance (SPR) spectroscopy to study the impact of the GFP tagging on the binding interaction between heparin and a heparin-binding protein, the Roundabout homolog 1 (Robo1). SPR reveals that heparin binds with higher affinity to Robo1 than GFP-tagged Robo1 and through a different kinetic mechanism. A conformational change is observed in the heparin-Robo1 interaction, but not in the heparin-Robo1-GFP interaction. Furthermore the GFP-tagged Robo1 requires a shorter (hexasaccharide) than the tag-free Robo1 (octadecasaccharide). These data demonstrate that GFP tagging can reduce the binding affinity of Robo1 to heparin and hinder heparin binding-induced Robo1 conformation change.  相似文献   

14.
15.
Solution structure of midkine, a new heparin-binding growth factor.   总被引:8,自引:0,他引:8       下载免费PDF全文
Midkine (MK) is a 13 kDa heparin-binding polypeptide which enhances neurite outgrowth, neuronal cell survival and plasminogen activator activity. MK is structurally divided into two domains, and most of the biological activities are located on the C-terminal domain. The solution structures of the two domains were determined by NMR. Both domains consist of three antiparallel beta-strands, but the C-terminal domain has a long flexible hairpin loop where a heparin-binding consensus sequence is located. Basic residues on the beta-sheet of the C-terminal domain form another heparin-binding site. Measurement of NMR signals in the presence of a heparin oligosaccharides verified that multiple amino acids in the two sites participated in heparin binding. The MK dimer has been shown to be the active form, giving signals to endothelial cells and probably to neuronal cells. We present a head-to-head dimer model of MK. The model was supported by the results of cross-linking experiments using transglutaminase. The dimer has a fused heparin-binding site at the dimer interface of the C-terminal domain, and the heparin-binding sites on MK fit the sulfate group clusters on heparin. These features are consistent with the proposed stronger heparin-binding activity and biological activity of the dimer.  相似文献   

16.
Numerous extracellular proteins, growth factors, chemokines, cytokines, enzymes, lipoproteins, involved in a variety of biological processes, interact with heparin and/or heparan sulfate at the cell surface and in the extracellular matrix (ECM). The goal of this study is to investigate the relationship(s) between affinity and kinetics of heparin–protein interactions and the localization of the proteins, their intrinsic disorder and their biological roles. Most proteins bind to heparin with a higher affinity than their fragments and form more stable complexes with heparin than with heparan sulfate. Lipoproteins and matrisome-associated proteins (e.g. growth factors and cytokines) bind to heparin with very high affinity. Matrisome-associated proteins form transient complexes with heparin. However they bind to this glycosaminoglycan with a higher affinity than the proteins of the core matrisome, which contribute to ECM assembly and organization, and than the secreted proteins which are not associated with the ECM. The association rate of proteins with heparin is related to the intrinsic disorder of heparin-binding sites. Enzyme inhibitor activity, protein dimerization, skeletal system development and pathways in cancer are functionally associated with proteins displaying a high or very high affinity for heparin (KD < 100 nM). Besides their use in investigating molecular recognition and functions, kinetics and affinity are essential to prioritize interactions in networks and to build network models as discussed for the interaction network established at the surface of endothelial cells by endostatin, a heparin-binding protein regulating angiogenesis.  相似文献   

17.
Small abalone (Haliotis diversicolor supertexta) is a high value-added shellfish. It however has been suffering Vibrio alginolyticus infections, which cause mass death of small abalone and thus great economic losses, particularly in artificial aquaculture. In this study, we attempted to treat small abalone with anti-Vibrio IgY to elicit a passive immunity directly against V. alginolyticus infections. Anti-Vibrio IgY was alginate encapsulated in egg powders as feed, which may avoid antibody inactivation in the gastrointestinal tract of small abalone. The feed was tested for the stability of anti-Vibrio IgY in a gastrointestinal mimic environment. The result showed anti-Vibrio IgY retained activity as high as 90% after 4 h exposure to pancreatic enzymes. Addition of 0, 5 or 10% anti-Vibrio IgY-encapsulated egg powders into a basal diet to form abalone diet formulae. Small abalones fed with the anti-Vibrio IgY formulae showed a relatively high respiratory burst activity than those without anti-Vibrio IgY treatments. The survival rates of small abalones fed with 5 or 10% anti-Vibrio IgY egg powders were in the range of 65–70% 14 days post-V. alginolyticus challenge (1 × 106 c.f.u.), which was significantly higher than 0% of those fed without anti-Vibrio IgY. The anti-Vibrio IgY-encapsulated formulae were thus concluded to be an effective means to prevent small abalone from V. alginolyticus infection, and may be practical in use in abalone aquaculture.  相似文献   

18.
The molecular properties of egg white ovalbumin adsorbed at the air/water interface were studied using infrared reflection absorption spectroscopy (IRRAS) and time-resolved fluorescence anisotropy (TRFA) techniques. Ovalbumin adsorbed at the air/water interface adopts a characteristic partially unfolded conformation in which the content of the beta-sheet is 10% lower compared to that of the protein in bulk solution. Adsorption to the interface leads to considerable changes in the rotational dynamics of ovalbumin. The results indicate that the end-over-end mobility of the ellipsoidal protein becomes substantially restricted. This is likely to reflect a preferential orientation of the protein at the interface. Continuous compression of surface layers of ovalbumin causes local aggregation of the protein, resulting in protein-network formation at the interface. The altered protein-protein interactions contribute to the strong increase in surface pressure observed.  相似文献   

19.
Mammalian sperm acquire fertility through a functional maturation process called capacitation, where sperm membrane molecules are drastically remodeled. In this study, we found that a wheat germ agglutinin (WGA)-reactive protein on lipid rafts, named WGA16, is removed from the sperm surface on capacitation. WGA16 is a prostate-derived seminal plasma protein that has never been reported and is deposited on the sperm surface in the male reproductive tract. Based on protein and cDNA sequences for purified WGA16, it is a homologue of human zymogen granule protein 16 (ZG16) belonging to the Jacalin-related lectin (JRL) family in crystal and primary structures. A glycan array shows that WGA16 binds heparin through a basic patch containing Lys-53/Lys-73 residues but not the conventional lectin domain of the JRL family. WGA16 is glycosylated, contrary to other ZG16 members, and comparative mass spectrometry clearly shows its unique N-glycosylation profile among seminal plasma proteins. It has exposed GlcNAc and GalNAc residues without additional Gal residues. The GlcNAc/GalNAc residues can work as binding ligands for a sperm surface galactosyltransferase, which actually galactosylates WGA16 in situ in the presence of UDP-Gal. Interestingly, surface removal of WGA16 is experimentally induced by either UDP-Gal or heparin. In the crystal structure, N-glycosylated sites and a potential heparin-binding site face opposite sides. This geography of two functional sites suggest that WGA16 is deposited on the sperm surface through interaction between its N-glycans and the surface galactosyltransferase, whereas its heparin-binding domain may be involved in binding to sulfated glycosaminoglycans in the female tract, enabling removal of WGA16 from the sperm surface.  相似文献   

20.
The functions of a large number (>435) of extracellular regulatory proteins are controlled by their interactions with heparan sulfate (HS). In the case of fibroblast growth factors (FGFs), HS binding determines their transport between cells and is required for the assembly of high affinity signaling complexes with their cognate FGF receptor. However, the specificity of the interaction of FGFs with HS is still debated. Here, we use a panel of FGFs (FGF-1, FGF-2, FGF-7, FGF-9, FGF-18, and FGF-21) spanning five FGF subfamilies to probe their specificities for HS at different levels as follows: binding parameters, identification of heparin-binding sites (HBSs) in the FGFs, changes in their secondary structure caused by heparin binding and structures in the sugar required for binding. For interaction with heparin, the FGFs exhibit KD values varying between 38 nm (FGF-18) and 620 nm (FGF-9) and association rate constants spanning over 20-fold (FGF-1, 2,900,000 m−1 s−1 and FGF-9, 130,000 m−1 s−1). The canonical HBS in FGF-1, FGF-2, FGF-7, FGF-9, and FGF-18 differs in its size, and these FGFs have a different complement of secondary HBS, ranging from none (FGF-9) to two (FGF-1). Differential scanning fluorimetry identified clear preferences in these FGFs for distinct structural features in the polysaccharide. These data suggest that the differences in heparin-binding sites in both the protein and the sugar are greatest between subfamilies and may be more restricted within a FGF subfamily in accord with the known conservation of function within FGF subfamilies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号