首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Fungal laccases are well investigated enzymes with high potential in diverse applications like bleaching of waste waters and textiles, cellulose delignification, and organic synthesis. However, they are limited to acidic reaction conditions and require eukaryotic expression systems. This raises a demand for novel laccases without these constraints. We have taken advantage of the laccase engineering database LccED derived from genome mining to identify and clone the laccase Ssl1 from Streptomyces sviceus which can circumvent the limitations of fungal laccases. Ssl1 belongs to the family of small laccases that contains only few characterized enzymes. After removal of the twin-arginine signal peptide Ssl1 was readily expressed in E. coli. Ssl1 is a small laccase with 32.5 kDa, consists of only two cupredoxin-like domains, and forms trimers in solution. Ssl1 oxidizes 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and phenolic substrates like 2,6-dimethoxy phenol, guaiacol, and syringaldazine. The kcat value for ABTS oxidation was at least 20 times higher than for other substrates. The optimal pH for oxidation reactions is substrate dependent: for phenolic substrates the highest activities were detected at alkaline conditions (pH 9.0 for 2,6-dimethoxy phenol and guaiacol and pH 8.0 for syringaldazine), while the highest reaction rates with ABTS were observed at pH 4.0. Though originating from a mesophilic organism, Ssl demonstrates remarkable stability at elevated temperatures (T1/2,60°C = 88 min) and in a wide pH range (pH 5.0 to 11.0). Notably, the enzyme retained 80% residual activity after 5 days of incubation at pH 11. Detergents and organic co-solvents do not affect Ssl1 stability. The described robustness makes Ssl1 a potential candidate for industrial applications, preferably in processes that require alkaline reaction conditions.  相似文献   

2.
The laccases (EC 1.10.3.2) secreted into solid-state culture by Lentinula edodes were analyzed. The fungus secreted at least two laccases in the solid-state culture. One laccase was purified to a homogeneous preparation using anion-exchange, hydrophobic, and size-exclusion chromatography. SDS-PAGE analysis showed that the purified laccase, Lcc6, was a monomeric protein of 58.5 kDa. The optimum pH for enzyme activity was about 3.5, and the laccase was most active at 40°C. The N-terminal amino acid sequence of Lcc6 did not correspond to the sequence of Lcc1, which was previously purified from L. edodes. Lcc6 had decolorization activity to some chemical dyes.  相似文献   

3.
The laccase genes lccα, lccβ, lccγ and lccδ encoding four isoenzymes from Trametes versicolor have been cloned and expressed in Pichia pastoris. Biochemical characterization allowed classification of these laccases into two distinct groups: Lccα and Lccβ possessed higher thermal stability, but lower catalytic activity towards 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) compared to Lccγ and Lccδ. Activities of the laccases were quite different as well. Laccase Lccδ showed highest phenolic C-C coupling activity with sinapic acid, but lowest oxidizing activity towards polycyclic aromatic hydrocarbons (PAHs). Highest activity towards PAHs was observed with Lccβ. After 72 h, more than 80% of fluorene, anthracene, acenaphthene and acenaphthylene were oxidized by Lccβ in the presence of ABTS. Investigation of the structural basis of the different activities of the laccases demonstrated the impact of positions 164 and 265 in the substrate binding site on oxidation of PAHs.  相似文献   

4.
A cDNA encoding a novel laccase from the white-rot fungus Trametes trogii was cloned and expressed in Pichia pastoris. The recombinant protein (Lcc2) exhibited kinetic parameters for both phenolic and non phenolic substrates that were different from the previously described Lcc1, the main laccase isoform expressed by T. trogii; in addition, the pH/activity profiles for phenolic substrates of Lcc2 were shifted upward by 1–1.5 pH units towards neutrality as compared to Lcc1. Comparative modeling of the two laccases (69.2% identity) showed that the overall fold of Lcc2 is very similar to Lcc1 and other laccases. The substrate cavity of Lcc2 contains the Asp residue which is thought to mediate the laccase activity at acidic pHs, whereas two hydrophobic residues (Phe, Ile) on the cavity orifice of Lcc2 replace the two polar residues (Thr, Ser) of Lcc1. These structural differences may be responsible for the unique kinetic performances of Lcc2.  相似文献   

5.
Advanced oxidation processes are currently used for the treatment of different reactive dyes which involve use of toxic catalysts. Peroxidases are reported to be effective on such dyes and require hydrogen peroxide and/or metal ions. Cyathus bulleri laccase, expressed in Pichia pastoris, catalyzes efficient degradation (78 to 85%) of reactive azo dyes (reactive black 5, reactive orange 16, and reactive red 198) in the presence of synthetic mediator ABTS [2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)]. This laccase was engineered to degrade effectively reactive blue 21 (RB21), a phthalocyanine dye reported to be decolorized only by peroxidases. The 816-bp segment (toward the C terminus) of the lcc gene was subjected to random mutagenesis and enzyme variants (Lcc35, Lcc61, and Lcc62) were selected based on increased ABTS oxidizing ability. Around 78 to 95% decolorization of RB21 was observed with the ABTS-supplemented Lcc variants in 30 min. Analysis of the degradation products by mass spectrometry indicated the formation of several low-molecular-weight compounds. Mapping the mutations on the modeled structure implicated residues both near and far from the T1 Cu site that affected the catalytic efficiency of the mutant enzymes on ABTS and, in turn, the rate of oxidation of RB21. Several inactive clones were also mapped. The importance of geometry as well as electronic changes on the reactivity of laccases was indicated.  相似文献   

6.
Ligninolytic enzyme complexes are involved in lignin degradation. Among them laccases are outstanding because they use molecular oxygen as a co-substrate instead of hydrogen peroxide as used by peroxidases. Bacterial laccase of Bacillus genus was first reported in Claus and Filip (Microbiol Res 152:209–216, 1997), since then more bacterial laccases have been found. In this research, laccase-producing bacteria were screened from pulp and paper industry wastewater, bagass and sugarcane rhizosphere. Nutrient agar medium containing 0.5 mM of guaiacol was used. It was observed that the laccase-producing strains developed brown colour from which 16 strains of Bacillus were identified. One of the isolated strains was identified as Bacillus subtilis WPI based on the results of biochemical tests and 16S rDNA sequence analysis. This strain showed laccase-like activity towards the oxidizing substrates ABTS and guaiacol. In this study guaiacol was used as the substrate of laccase activity assay. For determination of laccase activity of this isolate guaiacol was used as a substrate of assay for the first time in this study. SDS-PAGE and Native-PAGE confirmed the presence of laccase.  相似文献   

7.
Laccases are copper-containing enzymes which oxidize phenolic substrates and transfer the electrons to oxygen. Many filamentous fungi contain several laccase-encoding genes, but their biological roles are mostly not well understood. The main interest in laccases in biotechnology is their potential to be used to detoxify phenolic substances. We report here on a novel application of laccases as a reporter system in fungi. We purified a laccase enzyme from the ligno-cellulolytic ascomycete Stachybotrys chartarum. It oxidized the artificial substrate 2,2′-azino-di-(3-ethylbenzthiazolinsulfonate) (ABTS). The corresponding gene was isolated and expressed in Aspergillus nidulans, Aspergillus niger, and Trichoderma reesei. Heterologously expressed laccase activity was monitored in colorimetric enzyme assays and on agar plates with ABTS as a substrate. The use of laccase as a reporter was shown in a genetic screen for the isolation of improved T. reesei cellulase production strains. In addition to the laccase from S. charatarum, we tested the application of three laccases from A. nidulans (LccB, LccC, and LccD) as reporters. Whereas LccC oxidized ABTS (Km= 0.3 mM), LccD did not react with ABTS but with DMA/ADBP (3,5-dimethylaniline/4-amino-2,6-dibromophenol). LccB reacted with DMA/ADBP and showed weak activity with ABTS. The different catalytic properties of LccC and LccD allow simultaneous use of these two laccases as reporters in one fungal strain.  相似文献   

8.
A laccase from Coprinus cinereus is active at alkaline pH, an essential property for some potential applications. We cloned and sequenced three laccase genes (lcc1, lcc2, and lcc3) from the ink cap basidiomycete C. cinereus. The lcc1 gene contained 7 introns, while both lcc2 and lcc3 contained 13 introns. The predicted mature proteins (Lcc1 to Lcc3) are 58 to 80% identical at the amino acid level. The predicted Lcc1 contains a 23-amino-acid C-terminal extension rich in arginine and lysine, suggesting that C-terminal processing may occur during its biosynthesis. We expressed the Lcc1 protein in Aspergillus oryzae and purified it. The Lcc1 protein as expressed in A. oryzae has an apparent molecular mass of 66 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and absorption maxima at 278 and 614 nm. Based on the N-terminal protein sequence of the laccase, a 4-residue propeptide was processed during the maturation of the enzyme. The dioxygen specificity of the laccase showed an apparent Km of 21 ± 2 μM and a catalytic constant of 200 ± 10 min−1 for O2 with 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) as the reducing substrate at pH 5.5. Lcc1 from A. oryzae may be useful in industrial applications. This is the first report of a basidiomycete laccase whose biosynthesis involves both N-terminal and C-terminal processing.  相似文献   

9.
The detail understanding of physiological/biochemical characteristics of individual laccase isoenzymes in fungi is necessary for fundamental and application purposes, but our knowledge is still limited for most of fungi due to difficult to express laccases heterologously. In this study, two novel laccase genes, named lac3 and lac4, encoding proteins of 547 and 532-amino acids preceded by 28 and 16-residue signal peptides, respectively, were cloned from the edible basidiomycete Coprinus comatus. They showed 70% identity but much lower homology with other fungal laccases at protein level (less than 58%). Two novel laccase isoenzymes were successfully expressed in Pichia pastoris by fusing an additional 10 amino acids (Thr-Pro-Phe-Pro-Pro-Phe-Asn-Thr-Asn-Ser) tag at N-terminus, and the volumetric activities could be dramatically enhanced from undetectable level to 689 and 1465 IU/l for Lac3 and Lac4, respectively. Both laccases possessed the lowest K m and highest k cat/K m value towards syringaldazine, followed by ABTS, guaiacol and 2,6-dimethylphenol similar as the low redox potential laccases from other microorganisms. Lac3 and Lac4 showed resistant to SDS, and retained 31.86% and 43.08% activity in the presence of 100 mM SDS, respectively. Lac3 exhibited higher decolorization efficiency than Lac4 for eleven out of thirteen different dyes, which may attribute to the relatively higher catalytic efficiency of Lac3 than Lac4 (in terms of k cat/K m) towards syringaldazine and ABTS. The mild synergistic decolorization by two laccases was observed for triphenylmethane dyes but not for anthraquinone and azo dyes.  相似文献   

10.
Laccases have been used for the decolorization and detoxification of synthetic dyes due to their ability to oxidize a wide variety of dyes with water as the sole byproduct. A putative laccase gene (LacTT) from Thermus thermophilus SG0.5JP17-16 was screened using the genome mining approach, and it was highly expressed in Pichia pastoris, yielding a high laccase activity of 6130 U/L in a 10-L fermentor. The LacTT open reading frame encoded a protein of 466 amino acid residues with four putative Cu-binding regions. The optimal pH of the recombinant LacTT was 4.5, 6.0, 7.5 and 8.0 with 2,2''-azino-bis(3-ethylbenzothazoline-6-sulfonic acid) (ABTS), syringaldazine (SGZ), guaiacol, and 2,6-dimethoxyphenol (2,6-DMP) as the substrate, respectively. The optimal temperature of LacTT was 90°C with guaiacol as the substrate. LacTT was highly stable at pH 4.0–11.0 and thermostable at 40°C–90°C, confirming that it is a pH-stable and thermostable laccase. Furthermore, LacTT also exhibited high tolerance to halides such as NaCl, NaBr and NaF, and decolorized 100%, 94%, 94% and 73% of Congo Red, Reactive Black B and Reactive Black WNN, and Remazol Brilliant Blue R, respectively. Interestingly, addition of high concentration of NaCl increased the RBBR decolorization efficiency of LacTT. These results suggest that LacTT is a good candidate for industrial applications such as dyestuff processing and degradation of dyes in textile wastewaters.  相似文献   

11.
A new laccase (EC 1.10.3.2) produced by Streptomyces cyaneus CECT 3335 in liquid media containing soya flour (20 g per liter) was purified to homogeneity. The physicochemical, catalytic, and spectral characteristics of this enzyme, as well as its suitability for biobleaching of eucalyptus kraft pulps, were assessed. The purified laccase had a molecular mass of 75 kDa and an isoelectric point of 5.6, and its optimal pH and temperature were 4.5 and 70°C, respectively. The activity was strongly enhanced in the presence of Cu2+, Mn2+, and Mg2+ and was completely inhibited by EDTA and sodium azide. The purified laccase exhibited high levels of activity against 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) and 2,6-dimethoxyphenol and no activity against tyrosine. The UV-visible spectrum of the purified laccase was the typical spectrum of the blue laccases, with an absorption peak at 600 nm and a shoulder around 330 to 340 nm. The ability of the purified laccase to oxidize a nonphenolic compound, such as veratryl alcohol, in the presence of ABTS opens up new possibilities for the use of bacterial laccases in the pulp and paper industry. We demonstrated that application of the laccase from S. cyaneus in the presence of ABTS to biobleaching of eucalyptus kraft pulps resulted in a significant decrease in the kappa number (2.3 U) and an important increase in the brightness (2.2%, as determined by the International Standard Organization test) of pulps, showing the suitability of laccases produced by streptomycetes for industrial purposes.  相似文献   

12.
The white-rot basidiomycete Physisporinus rivulosus strain T241i is highly selective for degradation of softwood lignin, which makes this fungus suitable for biopulping. In order to promote laccase production, P. rivulosus was cultivated in nutrient-nitrogen sufficient liquid media containing either charcoal or spruce sawdust as supplements. Two laccases with distinct pI values, Lac-3.5 and Lac-4.8, were purified from peptone-spruce sawdust-charcoal cultures of P. rivulosus. Both laccases showed thermal stability at up to 60°C. Lac-4.8 was thermally activated at 50°C. Surprisingly, both laccases displayed atypically low pH optima (pH 3.0–3.5) in oxidation of the commonly used laccase substrates syringaldazine (4-hydroxy-3,5-dimethoxybenzaldehyde azine), 2,6-dimethoxyphenol and guaiacol (2-methoxyphenol). Steady-state kinetic measurements pointed to unusually low affinity to guaiacol at low pH, whereas the kinetic constants for the methoxyphenols and ABTS were within the ranges reported for other fungal laccases. The combination of thermotolerance with low pH optima for methoxylated phenol substrates suggests that the two P. rivulosus T241i laccases possess potential for use in biotechnological applications.  相似文献   

13.
《Mycoscience》2019,60(4):246-249
Lentinula edodes secretes laccase (Lcc: EC 1.10.3.2), an industrially useful enzyme. In this study, we introduced and expressed the L. edodes Lcc gene, lcc1, driven by L. edodes glyceraldehyde-3-phosphate dehydrogenase gene promoter into L. edodes. The resulting transformants showed 2-fold Lcc activity than that of the host strain, and expression of the recombinant lcc1 was confirmed by RT-PCR.  相似文献   

14.
We studied the metabolism of polycyclic aromatic hydrocarbons (PAHs) by using white rot fungi previously identified as organisms that metabolize polychlorinated biphenyls. Bran flakes medium, which has been shown to support production of high levels of laccase and manganese peroxidase, was used as the growth medium. Ten fungi grown for 5 days in this medium in the presence of anthracene, pyrene, or phenanthrene, each at a concentration of 5 μg/ml could metabolize these PAHs. We studied the oxidation of 10 PAHs by using laccase purified from Coriolopsis gallica. The reaction mixtures contained 20 μM PAH, 15% acetonitrile in 60 mM phosphate buffer (pH 6), 1 mM 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulfonate) (ABTS), and 5 U of laccase. Laccase exhibited 91% of its maximum activity in the absence of acetonitrile. The following seven PAHs were oxidized by laccase: benzo[a]pyrene, 9-methylanthracene, 2-methylanthracene, anthracene, biphenylene, acenaphthene, and phenanthrene. There was no clear relationship between the ionization potential of the substrate and the first-order rate constant (k) for substrate loss in vitro in the presence of ABTS. The effects of mediating substrates were examined further by using anthracene as the substrate. Hydroxybenzotriazole (HBT) (1 mM) supported approximately one-half the anthracene oxidation rate (k = 2.4 h−1) that ABTS (1 mM) supported (k = 5.2 h−1), but 1 mM HBT plus 1 mM ABTS increased the oxidation rate ninefold compared with the oxidation rate in the presence of ABTS, to 45 h−1. Laccase purified from Pleurotus ostreatus had an activity similar to that of C. gallica laccase with HBT alone, with ABTS alone, and with 1 mM HBT plus 1 mM ABTS. Mass spectra of products obtained from oxidation of anthracene and acenaphthene revealed that the dione derivatives of these compounds were present.  相似文献   

15.
Two laccases have been purified to apparent electrophoretic homogeneity from the extracellular medium of a 2,5-xylidine-induced culture of the white rot basidiomycete Trametes villosa (Polyporus pinsitus or Coriolus pinsitus). These proteins are dimeric, consisting of two subunits of 63 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and have typical blue laccase spectral properties. Under nondenaturing conditions, the two purified laccases have different pIs; purified laccase forms 1 and 3 have pIs of 3.5 and 6 to 6.5, respectively. A third purified laccase form 2 has the same N terminus as that of laccase form 3, but its pI is in the range of 5 to 6. The laccases have optimal activity at pH 5 to 5.5 and pH < or = 2.7 with syringaldazine and ABTS [2,2'-azinobis-(3-ethylbenzthiazoline-6-sulfonic acid)] as substrates, respectively. The genes lcc1 and lcc2 coding for the two purified laccases (forms 1 and 3) have been cloned, and their nucleotide sequences have been determined. The genes for lcc1 and lcc2 have 8 and 10 introns, respectively. The predicted proteins are 79% identical at the amino acid level. From Northern (RNA) blots containing total RNA from both induced and uninduced cultures, expression of lcc1 is highly induced, while the expression of lcc2 appears to be constitutive. Lcc1 has been expressed in Aspergillus oryzae, and the purified recombinant protein has the same pI, spectral properties, stability, and pH profiles as the purified native protein.  相似文献   

16.
The litter-degrading dung fungus Coprinopsis cinerea has the high number of seventeen different laccase genes. In this work, ten different monokaryons were compared in their ability to produce laccases in two different complete media at different temperatures. Few strains showed laccase activity at the optimal growth temperature of 37 °C. Nine of the strains gave laccase activities between 0.2 and 5.9 U mL?1 at the suboptimal temperature of 25 °C in mKjalke medium. Laccase activities in YMG/T medium were detected for only three strains (0.5–4.5 U mL?1). Zymograms of supernatants from mKjalke medium resulted in total in 10 different laccase bands but strains differed in distribution. LC–MS/MS analysis with Mascot searches of the annotated C. cinerea genome identified isoenzymes from five different genes (Lcc1, Lcc2, Lcc5, Lcc9 and Lcc10) and of Lcc1 three and of Lcc5 two distinct electrophoretical forms. Lcc1 and Lcc5 were expressed in all laccase positive strains, but not all forms were found in all of the strains. Lcc2, Lcc9 and Lcc10 occurred only in three strains as minor laccases, indicating that Lcc1 and Lcc5 are the main laccases of C. cinerea secreted in liquid mKjalke medium.  相似文献   

17.
Due to their low substrate specificity, fungal laccases have a great potential in industrial applications, including the bioremediation of colored wastewaters from textile industry. However, the presence of halides in these effluents (up to 1M NaCl) which inhibit laccases is a drawback for bioremediation processes. In order to develop an efficient enzymatic remediation process for textile dye effluent, the possibility to reduce this halide inhibition is conditioned by a better understanding of the phenomenon. The present study gives a detailed account of the kinetics of chloride inhibition of both ABTS (a model substrate) and ABu62 (an anthraquinonic acid dye) oxidations catalyzed by Trametes versicolor laccase (LacIIIb). Chloride inhibition can be described by a mixed model for ABTS and a non-competitive model for ABu62 and both inhibitions are linear suggesting a single inhibitory site for chloride. Experiments were also conducted in presence of both substrates. An apparent activation of laccase was observed in the presence of ABu62 leading to an enhancement of the oxidation rate of ABTS. The extent of activation increased in the presence of chloride anions. Finally, for the first time to our knowledge, we evidenced that inhibition of ABTS oxidation by chloride can be reduced in the presence of ABu62.  相似文献   

18.
In the culture filtrate of a Marasmius sp. strain isolated in Indonesia during a screening for fungi with the ability to decolorize textile dyes, two laccase-related enzymes (laccase-related enzyme I and II) were detected. Laccase-related enzyme I was purified to homogeneity by ion exchange and hydrophobic interaction chromatography. The native enzyme was shown to have a molecular mass of 53 kDa, an N-terminal amino acid sequence characteristically seen in laccases and an isoelectric point of pH 3.8. The enzyme accepts typical laccase substrates including 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), syringaldazine and guaiacol, but has no tyrosinase activity. The pH optimum is at pH 3.0 for ABTS and at 6.0 for syringaldazine and the enzyme is stable up to pH 10. The UV/vis spectrum of the laccase-related enzyme is non-typical for laccases and metal content analysis revealed that the enzyme contains only a single copper atom per enzyme molecule. This suggests that this enzyme could be related to the group of the so-called "white" laccases, however, no zinc or any other metal ion could be detected in this enzyme, suggesting that the enzyme is a unique laccase-related enzyme. Comparison of the bleaching activity of the whole fungus with that of the isolated laccase-related enzyme showed that this enzyme is the major bleaching enzyme produced by this Marasmius sp. strain and was able to bleach violet, red, orange and yellow dyes in addition to a number of blue dyes.  相似文献   

19.
The in vitro oxidation of the two polycyclic aromatic hydrocarbons anthracene and benzo[a]pyrene, which have ionization potentials of <=7.45 eV, is catalyzed by laccases from Trametes versicolor. Crude laccase preparations were able to oxidize both anthracene and the potent carcinogen benzo[a]pyrene. Oxidation of benzo[a]pyrene was enhanced by the addition of the cooxidant 2,2(prm1)-azinobis(3-ethylbenzthiazoline-6-sulfonate) (ABTS), while an increased anthracene oxidizing ability was observed in the presence of the low-molecular-weight culture fluid ultrafiltrate. Two purified laccase isozymes from T. versicolor were found to have similar oxidative activities towards anthracene and benzo[a]pyrene. Oxidation of anthracene by the purified isozymes was enhanced in the presence of ABTS, while ABTS was essential for the oxidation of benzo[a]pyrene. In all cases anthraquinone was identified as the major end product of anthracene oxidation. These findings indicate that laccases may have a role in the oxidation of polycyclic aromatic hydrocarbons by white rot fungi.  相似文献   

20.
Screening for novel laccase-producing microbes   总被引:4,自引:0,他引:4  
AIMS: To discover novel laccases potential for industrial applications. METHODS AND RESULTS: Fungi were cultivated on solid media containing indicator compounds that enabled the detection of laccases as specific colour reactions. The indicators used were Remazol Brilliant Blue R (RBBR), Poly R-478, guaiacol and tannic acid. The screening work resulted in isolation of 26 positive fungal strains. Liquid cultivations of positive strains confirmed that four efficient laccase producers were found in the screening. Biochemical characteristics of the four novel laccases were typical for fungal laccases in terms of molecular weight, pH optima and pI. The laccases showed good thermal stability at 60 degrees C. CONCLUSIONS: Plate-test screening based on polymeric dye compounds, guaiacol and tannic acid is an efficient way to discover novel laccase producers. The results indicated that screening for laccase activity can be performed with guaiacol and RBBR or Poly R-478. SIGNIFICANCE AND IMPACT OF THE STUDY: Laccases have many potential industrial applications including textile dye decolourization, delignification of pulp and effluent detoxification. It is essential to find novel, efficient enzymes to further develop these applications. This study showed that relatively simple plate test screening method can be used for discovery of novel laccases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号