首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

As the multipotent progenitor population of the airway epithelium, human airway basal cells (BC) replenish the specialized differentiated cell populations of the mucociliated airway epithelium during physiological turnover and repair. Cultured primary BC divide a limited number of times before entering a state of replicative senescence, preventing the establishment of long-term replicating cultures of airway BC that maintain their original phenotype.

Methods

To generate an immortalized human airway BC cell line, primary human airway BC obtained by brushing the airway epithelium of healthy nonsmokers were infected with a retrovirus expressing human telomerase (hTERT). The resulting immortalized cell line was then characterized under non-differentiating and differentiating air-liquid interface (ALI) culture conditions using ELISA, TaqMan quantitative PCR, Western analysis, and immunofluorescent and immunohistochemical staining analysis for cell type specific markers. In addition, the ability of the cell line to respond to environmental stimuli under differentiating ALI culture was assessed.

Results

We successfully generated an immortalized human airway BC cell line termed BCi-NS1 via expression of hTERT. A single cell derived clone from the parental BCi-NS1 cells, BCi-NS1.1, retains characteristics of the original primary cells for over 40 passages and demonstrates a multipotent differentiation capacity into secretory (MUC5AC, MUC5B), goblet (TFF3), Clara (CC10) and ciliated (DNAI1, FOXJ1) cells on ALI culture. The cells can respond to external stimuli such as IL-13, resulting in alteration of the normal differentiation process.

Conclusion

Development of immortalized human airway BC that retain multipotent differentiation capacity over long-term culture should be useful in understanding the biology of BC, the response of BC to environmental stress, and as a target for assessment of pharmacologic agents.  相似文献   

2.
3.
4.

Background

Articular cartilage displays a poor repair capacity. The aim of cell-based therapies for cartilage defects is to repair damaged joint surfaces with a functional replacement tissue. Currently, chondrocytes removed from a healthy region of the cartilage are used but they are unable to retain their phenotype in expanded culture. The resulting repair tissue is fibrocartilaginous rather than hyaline, potentially compromising long-term repair. Mesenchymal stem cells, particularly bone marrow stromal cells (BMSC), are of interest for cartilage repair due to their inherent replicative potential. However, chondrocyte differentiated BMSCs display an endochondral phenotype, that is, can terminally differentiate and form a calcified matrix, leading to failure in long-term defect repair. Here, we investigate the isolation and characterisation of a human cartilage progenitor population that is resident within permanent adult articular cartilage.

Methods and Findings

Human articular cartilage samples were digested and clonal populations isolated using a differential adhesion assay to fibronectin. Clonal cell lines were expanded in growth media to high population doublings and karyotype analysis performed. We present data to show that this cell population demonstrates a restricted differential potential during chondrogenic induction in a 3D pellet culture system. Furthermore, evidence of high telomerase activity and maintenance of telomere length, characteristic of a mesenchymal stem cell population, were observed in this clonal cell population. Lastly, as proof of principle, we carried out a pilot repair study in a goat in vivo model demonstrating the ability of goat cartilage progenitors to form a cartilage-like repair tissue in a chondral defect.

Conclusions

In conclusion, we propose that we have identified and characterised a novel cartilage progenitor population resident in human articular cartilage which will greatly benefit future cell-based cartilage repair therapies due to its ability to maintain chondrogenicity upon extensive expansion unlike full-depth chondrocytes that lose this ability at only seven population doublings.  相似文献   

5.

Background

Fluorescent reporters are useful for assaying gene expression in living cells and for identifying and isolating pure cell populations from heterogeneous cultures, including embryonic stem (ES) cells. Multiple fluorophores and genetic selection markers exist; however, a system for creating reporter constructs that preserve the regulatory sequences near a gene''s native ATG start site has not been widely available.

Methodology

Here, we describe a series of modular marker plasmids containing independent reporter, bacterial selection, and eukaryotic selection components, compatible with both Gateway recombination and lambda prophage bacterial artificial chromosome (BAC) recombineering techniques. A 2A self-cleaving peptide links the reporter to the native open reading frame. We use an emerald GFP marker cassette to create a human BAC reporter and ES cell reporter line for the early cardiac marker NKX2-5. NKX2-5 expression was detected in differentiating mouse ES cells and ES cell-derived mice.

Conclusions

Our results describe a NKX2-5 ES cell reporter line for studying early events in cardiomyocyte formation. The results also demonstrate that our modular marker plasmids could be used for generating reporters from unmodified BACs, potentially as part of an ES cell reporter library.  相似文献   

6.

Background

Multipotent neural stem cells (NSCs) have been isolated from neurogenic regions of the adult brain. Reportedly, these cells can be expanded in vitro under prolonged mitogen stimulation without propensity to transform. However, the constitutive activation of the cellular machinery required to bypass apoptosis and senescence places these cells at risk for malignant transformation.

Methodology/Principal Findings

Using serum-free medium supplemented with epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF), we established clonally derived NS/progenitor cell (NS/PC) cultures from the olfactory bulb (OB) of five adult patients. The NS/PC cultures obtained from one OB specimen lost growth factor dependence and neuronal differentiation at early passage. These cells developed glioblastoma tumors upon xenografting in immunosuppressed mice. The remaining NS/PC cultures were propagated either as floating neurospheres or as adherent monolayers with mainteinance of growth factor dependence and multipotentiality at late passage. These cells were engrafted onto the CNS of immunosuppressed rodents. Overall, the grafted NS/PCs homed in the host parenchyma showing ramified morphology and neuronal marker expression. However, a group of animals transplanted with NS/PCs obtained from an adherent culture developed fast growing tumors histologically resembling neuroesthesioblastoma. Cytogenetic and molecular analyses showed that the NS/PC undergo chromosomal changes with repeated in vitro passages under mitogen stimulation, and that up-regulation of hTERT and NOTCH1 associates with in vivo tumorigenicity.

Conclusions/Significance

Using culturing techniques described in current literature, NS/PCs arise from the OB of adult patients which in vivo either integrate in the CNS parenchyma showing neuron-like features or initiate tumor formation. Extensive xenografting studies on each human derived NS cell line appear mandatory before any use of these cells in the clinical setting.  相似文献   

7.

Purpose

It is assumed that the non-pigmented ciliary epithelium plays a role in regulating intraocular pressure via its neuroendocrine activities. To test this hypothesis, we investigated the effect on a human trabecular meshwork (TM) cell line (NTM) of co-culture with a human non-pigmented ciliary epithelium cell line (ODM-2).

Methods

The cellular cross-talk between ODM-2 and NTM cells was studied in a co-culture system in which the two cell types were co-cultured for 5 to 60min or 2, 4 and 8h and then removed from the co-culture and analyzed. Analyses of the ERK and p38 mitogen-activated protein kinase (MAPK) pathways and of the activity of TM phosphatases and matrix metalloproteins (MMPs) were performed. Acid and alkaline phosphatase activity was determined by the DiFMUP (6, 8-difluoro-4-methylumbelliferyl phosphate) assay. MMP levels were determined by gelatin zymography.

Results

Exposure of NTM cells to ODM-2 cells led to the activation of the MAPK signal transduction pathways in NTM cells within 5min of co-culture. Phosphorylation of ERK1/ERK2 and p38 peaked at 10 and 15min and then decreased over time. Interaction between ODM-2 and NTM cells promoted the expression of MMP-9 in the NTM cells after 4h of co-culture.

Conclusions

Our findings provide support for the hypothesis that crosstalk does indeed take place between ODM-2 and NTM cells. Future studies should be designed to determine the relationship between the MMP system, MAPK kinases and phosphatases. Manipulation of these signaling molecules and the related NTM signal transduction pathways may provide targets for developing improved treatments for glaucoma.  相似文献   

8.
Liu XH  Xu W  Russ J  Eiden LE  Eiden MV 《PloS one》2011,6(3):e18072

Background

Gammaretroviruses and gammaretroviral vectors, in contrast to lentiviruses and lentiviral vectors, are reported to be restricted in their ability to infect growth-arrested cells. The block to this restriction has never been clearly defined. The original assessment of the inability of gammaretroviruses and gammaretroviral vectors to infect growth-arrested cells was carried out using established cell lines that had been growth-arrested by chemical means, and has been generalized to neurons, which are post-mitotic. We re-examined the capability of gammaretroviruses and their derived vectors to efficiently infect terminally differentiated neuroendocrine cells and primary cortical neurons, a target of both experimental and therapeutic interest.

Methodology/Principal Findings

Using GFP expression as a marker for infection, we determined that both growth-arrested (NGF-differentiated) rat pheochromocytoma cells (PC12 cells) and primary rat cortical neurons could be efficiently transduced, and maintained long-term protein expression, after exposure to murine leukemia virus (MLV) and MLV-based retroviral vectors. Terminally differentiated PC12 cells transduced with a gammaretroviral vector encoding the anti-apoptotic protein Bcl-xL were protected from cell death induced by withdrawal of nerve growth factor (NGF), demonstrating gammaretroviral vector-mediated delivery and expression of genes at levels sufficient for therapeutic effect in non-dividing cells. Post-mitotic rat cortical neurons were also shown to be susceptible to transduction by murine replication-competent gammaretroviruses and gammaretroviral vectors.

Conclusions/Significance

These findings suggest that the host range of gammaretroviruses includes post-mitotic and other growth-arrested cells in mammals, and have implications for re-direction of gammaretroviral gene therapy to neurological disease.  相似文献   

9.

Background

DNA aptamers generated by cell-SELEX offer an attractive alternative to antibodies, but generating aptamers to specific, known membrane protein targets has proven challenging, and has severely limited the use of aptamers as affinity reagents for cell identification and purification.

Methodology

We modified the BJAB lymphoblastoma cell line to over-express the murine c-kit cell surface receptor. After six rounds of cell-SELEX, high-throughput sequencing and bioinformatics analysis, we identified aptamers that bound BJAB cells expressing c-kit but not wild-type BJAB controls. One of these aptamers also recognizes c-kit endogenously expressed by a mast cell line or hematopoietic progenitor cells, and specifically blocks binding of the c-kit ligand stem cell factor (SCF). This aptamer enables better separation by fluorescence-activated cell sorting (FACS) of c-kit+ hematopoietic progenitor cells from mixed bone marrow populations than a commercially available antibody, suggesting that this approach may be broadly useful for rapid isolation of affinity reagents suitable for purification of other specific cell types.

Conclusions/Significance

Here we describe a novel procedure for the efficient generation of DNA aptamers that bind to specific cell membrane proteins and can be used as high affinity reagents. We have named the procedure STACS (Specific TArget Cell-SELEX).  相似文献   

10.

Background

Matrix metalloproteinases (MMPs) have recently been considered to be involved in the neurogenic response of adult neural stem/progenitor cells. However, there is a lack of information showing direct association between the activation of MMPs and the development of neuronal progenitor cells involving proliferation and/or further differentiation in vulnerable (Cornus Ammoni-CA1) and resistant (dentate gyrus-DG) to ischemic injury areas of the brain hippocampus.

Principal Findings

We showed that dynamics of MMPs activation in the dentate gyrus correlated closely with the rate of proliferation and differentiation of progenitor cells into mature neurons. In contrast, in the damaged CA1 pyramidal cells layer, despite the fact that some proliferating cells exhibited antigen specific characteristic of newborn neuronal cells, these did not attain maturity. This coincides with the low, near control-level, activity of MMPs. The above results are supported by our in vitro study showing that MMP inhibitors interfered with both the proliferation and differentiation of the human neural stem cell line derived from umbilical cord blood (HUCB-NSCs) toward the neuronal lineage.

Conclusion

Taken together, the spatial and temporal profiles of MMPs activity suggest that these proteinases could be an important component in neurogenesis-associated processes in post-ischemic brain hippocampus.  相似文献   

11.

Background

In-vitro expansion of functional beta cells from adult human islets is an attractive approach for generating an abundant source of cells for beta-cell replacement therapy of diabetes. Using genetic cell-lineage tracing we have recently shown that beta cells cultured from adult human islets undergo rapid dedifferentiation and proliferate for up to 16 population doublings. These cells have raised interest as potential candidates for redifferentiation into functional insulin-producing cells. Previous work has associated dedifferentiation of cultured epithelial cells with epithelial-mesenchymal transition (EMT), and suggested that EMT generates cells with stem cell properties. Here we investigated the occurrence of EMT in these cultures and assessed their stem cell potential.

Methodology/Principal Findings

Using cell-lineage tracing we provide direct evidence for occurrence of EMT in cells originating from beta cells in cultures of adult human islet cells. These cells express multiple mesenchymal markers, as well as markers associated with mesenchymal stem cells (MSC). However, we do not find evidence for the ability of such cells, nor of cells in these cultures derived from a non-beta-cell origin, to significantly differentiate into mesodermal cell types.

Conclusions/Significance

These findings constitute the first demonstration based on genetic lineage-tracing of EMT in cultured adult primary human cells, and show that EMT does not induce multipotency in cells derived from human beta cells.  相似文献   

12.

Background

Inherited and acquired retinal degenerations are frequent causes of visual impairment and photoreceptor cell replacement therapy may restore visual function to these individuals. To provide a source of new retinal neurons for cell based therapies, we developed methods to derive retinal progenitors from human ES cells.

Methodology/Physical Findings

In this report we have used a similar method to direct induced pluripotent stem cells (iPS) from human fibroblasts to a retinal progenitor fate, competent to generate photoreceptors. We also found we could purify the photoreceptors derived from the iPS cells using fluorescence activated cell sorting (FACS) after labeling photoreceptors with a lentivirus driving GFP from the IRBP cis-regulatory sequences. Moreover, we found that when we transplanted the FACS purified iPSC derived photoreceptors, they were able to integrate into a normal mouse retina and express photoreceptor markers.

Conclusions

This report provides evidence that enriched populations of human photoreceptors can be derived from iPS cells.  相似文献   

13.
14.

Background

Circulating epithelial progenitor cells are important for repair of the airway epithelium in a mouse model of tracheal transplantation. We therefore hypothesized that circulating epithelial progenitor cells would also be present in normal human subjects and could be important for repair of the airway after lung injury. As lung transplantation is associated with lung injury, which is severe early on and exacerbated during episodes of infection and rejection, we hypothesized that circulating epithelial progenitor cell levels could predict clinical outcome following lung transplantation.

Methodology/Principal Findings

Quantitative Real Time PCR was performed to determine peripheral blood mRNA levels of cytokeratin 5, a previously characterized marker of circulating epithelial progenitor cells. Cytokeratin 5 levels were evaluated in healthy human subjects, in lung transplant recipients immediately post-transplant and serially thereafter, and in heart transplant recipients. All normal human subjects examined expressed cytokeratin 5 in their buffy coat in amounts that were not significantly influenced by age or gender. There was a profound, statistically significant decrease in cytokeratin 5 mRNA expression levels in lung transplant patients compared to healthy human subjects (p = 3.1×10−13) and to heart transplant recipients. There was a moderate negative correlation between improved circulating cytokeratin 5 mRNA levels in lung transplant recipients with recovering lung function, as measured by improved FEV1 values (rho = −0.39).

Conclusions/Significance

Levels of cytokeratin 5 mRNA, a proxy marker for circulating epithelial progenitor cells, inversely correlated with disease status in lung transplant recipients. It may therefore serve as a biomarker of the clinical outcome of lung transplant patients and potentially other patients with airway injury.  相似文献   

15.

Rationale

Pluripotent stem cell–derived cardiac progenitor cells (CPCs) have emerged as a powerful tool to study cardiogenesis in vitro and a potential cell source for cardiac regenerative medicine. However, available methods to induce CPCs are not efficient or require high-cost cytokines with extensive optimization due to cell line variations.

Objective

Based on our in-vivo observation that early endodermal cells maintain contact with nascent pre-cardiac mesoderm, we hypothesized that direct physical contact with endoderm promotes induction of CPCs from pluripotent cells.

Method and Result

To test the hypothesis, we cocultured mouse embryonic stem (ES) cells with the endodermal cell line End2 by co-aggregation or End2-conditioned medium. Co-aggregation resulted in strong induction of Flk1+ PDGFRa+ CPCs in a dose-dependent manner, but the conditioned medium did not, indicating that direct contact is necessary for this process. To determine if direct contact with End2 cells also promotes the induction of committed cardiac progenitors, we utilized several mouse ES and induced pluripotent (iPS) cell lines expressing fluorescent proteins under regulation of the CPC lineage markers Nkx2.5 or Isl1. In agreement with earlier data, co-aggregation with End2 cells potently induces both Nkx2.5+ and Isl1+ CPCs, leading to a sheet of beating cardiomyocytes. Furthermore, co-aggregation with End2 cells greatly promotes the induction of KDR+ PDGFRa+ CPCs from human ES cells.

Conclusions

Our co-aggregation method provides an efficient, simple and cost-effective way to induce CPCs from mouse and human pluripotent cells.  相似文献   

16.

Background

Filum terminale (FT) is a structure that is intimately associated with conus medullaris, the most caudal part of the spinal cord. It is well documented that certain regions of the adult human central nervous system contains undifferentiated, progenitor cells or multipotent precursors. The primary objective of this study was to describe the distribution and progenitor features of this cell population in humans, and to confirm their ability to differentiate within the neuroectodermal lineage.

Methodology/Principal Findings

We demonstrate that neural stem/progenitor cells are present in FT obtained from patients treated for tethered cord. When human or rat FT-derived cells were cultured in defined medium, they proliferated and formed neurospheres in 13 out of 21 individuals. Cells expressing Sox2 and Musashi-1 were found to outline the central canal, and also to be distributed in islets throughout the whole FT. Following plating, the cells developed antigen profiles characteristic of astrocytes (GFAP) and neurons (β-III-tubulin). Addition of PDGF-BB directed the cells towards a neuronal fate. Moreover, the cells obtained from young donors shows higher capacity for proliferation and are easier to expand than cells derived from older donors.

Conclusion/Significance

The identification of bona fide neural progenitor cells in FT suggests a possible role for progenitor cells in this extension of conus medullaris and may provide an additional source of such cells for possible therapeutic purposes.Filum terminale, human, progenitor cells, neuron, astrocytes, spinal cord.  相似文献   

17.

Objectives

Kidney disease is emerging as a critical medical problem worldwide. Because of limited treatment options for the damaged kidney, stem cell treatment is becoming an alternative therapeutic approach. Of many possible human stem cell sources, pluripotent stem cells are most attractive due to their self-renewal and pluripotent capacity. However, little is known about the derivation of renal lineage cells from human pluripotent stem cells (hPSCs). In this study, we developed a novel protocol for differentiation of nephron progenitor cells (NPCs) from hPSCs in a serum- and feeder-free system.

Materials and Methods

We designed step-wise protocols for differentiation of human pluripotent stem cells toward primitive streak, intermediate mesoderm and NPCs by recapitulating normal nephrogenesis. Expression of key marker genes was examined by RT-PCR, real time RT-PCR and immunocytochemistry. Each experiment was independently performed three times to confirm its reproducibility.

Results

After modification of culture period and concentration of exogenous factors, hPSCs can differentiate into NPCs that markedly express specific marker genes such as SIX2, GDNF, HOXD11, WT1 and CITED1 in addition to OSR1, PAX2, SALL1 and EYA1. Moreover, NPCs possess the potential of bidirectional differentiation into both renal tubular epithelial cells and glomerular podocytes in defined culture conditions. In particular, approximately 70% of SYN-positive cells were obtained from hPSC-derived NPCs after podocytes induction. NPCs can also form in vitro tubule-like structures in three dimensional culture systems.

Conclusions

Our novel protocol for hPSCs differentiation into NPCs can be useful for producing alternative sources of cell replacement therapy and disease modeling for human kidney diseases.  相似文献   

18.
19.
20.

Background

Therapy for neural lesions or degenerative diseases relies mainly on finding transplantable active precursor cells. Identifying them in peripheral tissues accessible for biopsy, outside the central nervous system, would circumvent the serious immunological and ethical concerns impeding cell therapy.

Methodology/Principal Findings

In this study, we isolated neural progenitor cells in cultured adult skeletal muscle from transgenic mice in which nestin regulatory elements control GFP expression. These cells also expressed the early neural marker Tuj1 and light and heavy neurofilament but not S100β, indicating that they express typical neural but not Schwann cell markers. GFP+/Tuj1+ cells were also negative for the endothelial and pericyte markers CD31 and α-smooth muscle actin, respectively. We established their a) functional response to glutamate in patch-clamp recordings; b) interstitial mesenchymal origin; c) replicative capacity; and d) the environment necessary for their survival after fluorescence-activated cell sorting.

Conclusions/Significance

We propose that the decline in nestin-GFP expression in muscle progenitor cells and its persistence in neural precursor cells in muscle cultures provide an invaluable tool for isolating a population of predifferentiated neural cells with therapeutic potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号