首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Ganoderma lucidum is a medicinal mushroom that has been recognized by Traditional Chinese Medicine (TCM). Although some of the direct anticancer activities are attributed to the presence of triterpenes—ganoderic and lucidenic acids—the activity of other compounds remains elusive. Here we show that ganodermanontriol (GDNT), a Ganoderma alcohol, specifically suppressed proliferation (anchorage-dependent growth) and colony formation (anchorage-independent growth) of highly invasive human breast cancer cells MDA-MB-231. GDNT suppressed expression of the cell cycle regulatory protein CDC20, which is over-expressed in precancerous and breast cancer cells compared to normal mammary epithelial cells. Moreover, we found that CDC20 is over-expressed in tumors when compared to the tissue surrounding the tumor in specimens from breast cancer patients. GDNT also inhibited invasive behavior (cell adhesion, cell migration, and cell invasion) through the suppression of secretion of urokinase-plasminogen activator (uPA) and inhibited expression of uPA receptor. In conclusion, mushroom GDNT is a natural agent that has potential as a therapy for invasive breast cancers.  相似文献   

2.
The medicinal mushroom Ganoderma lucidum (Reishi) was tested as a potential therapeutic for Inflammatory Breast Cancer (IBC) using in vivo and in vitro IBC models. IBC is a lethal and aggressive form of breast cancer that manifests itself without a typical tumor mass. Studies show that IBC tissue biopsies overexpress E-cadherin and the eukaryotic initiation factor 4GI (eIF4GI), two proteins that are partially responsible for the unique pathological properties of this disease. IBC is treated with a multimodal approach that includes non-targeted systemic chemotherapy, surgery, and radiation. Because of its non-toxic and selective anti-cancer activity, medicinal mushroom extracts have received attention for their use in cancer therapy. Our previous studies demonstrate these selective anti-cancer effects of Reishi, where IBC cell viability and invasion, as well as the expression of key IBC molecules, including eIF4G is compromised. Thus, herein we define the mechanistic effects of Reishi focusing on the phosphoinositide-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway, a regulator of cell survival and growth. The present study demonstrates that Reishi treated IBC SUM-149 cells have reduced expression of mTOR downstream effectors at early treatment times, as we observe reduced eIF4G levels coupled with increased levels of eIF4E bound to 4E-BP, with consequential protein synthesis reduction. Severe combined immunodeficient mice injected with IBC cells treated with Reishi for 13 weeks show reduced tumor growth and weight by ∼50%, and Reishi treated tumors showed reduced expression of E-cadherin, mTOR, eIF4G, and p70S6K, and activity of extracellular regulated kinase (ERK1/2). Our results provide evidence that Reishi suppresses protein synthesis and tumor growth by affecting survival and proliferative signaling pathways that act on translation, suggesting that Reishi is a potential natural therapeutic for breast and other cancers.  相似文献   

3.
In the present study, we isolated polysaccharides from Ganoderma lucidum and investigated its effect on serum antioxidant enzymes activity in ovarian cancer rats to explore the mechanism underlying the pharmacological anti-cancer activity of the polysaccharides. Rats were grouped into the control, model and polysaccharides-treated groups. After experiment ended, serum antioxidant enzymes activity in rats were measured. Results showed that polysaccharides from G. lucidum significantly reduced MDA production and increased serum antioxidant enzymes activity. These results suggest that the antioxidant activity of polysaccharides from G. lucidum might be benefical towards ovarian cancer therapy.  相似文献   

4.
Cancer is the second leading cause of death worldwide. Edible medicinal mushrooms have been used in traditional medicine as regimes for cancer patients. Recently anti-cancer bioactive components from some mushrooms have been isolated and their anti-cancer effects have been tested. Pleurotus ferulae, a typical edible medicinal mushroom in Xinjiang China, has also been used to treat cancer patients in folk medicine. However, little studies have been reported on the anti-cancer components of Pleurotus ferulae. This study aims to extract bioactive components from Pleurotus ferulae and to investigate the anti-cancer effects of the extracts. We used ethanol to extract anti-cancer bioactive components enriched with terpenoids from Pleurotus ferulae. We tested the anti-tumour effects of ethanol extracts on the melanoma cell line B16F10, the human gastric cancer cell line BGC 823 and the immortalized human gastric epithelial mucosa cell line GES-1 in vitro and a murine melanoma model in vivo. Cell toxicity and cell proliferation were measured by MTT assays. Cell cycle progression, apoptosis, caspase 3 activity, mitochondrial membrane potential (MMP), migration and gene expression were studied in vitro. PFEC suppressed tumor cell growth, inhibited cell proliferation, arrested cells at G0/G1 phases and was not toxic to non-cancer cells. PFEC also induced cell apoptosis and necrosis, increased caspase 3 activity, reduced the MMP, prevented cell invasion and changed the expression of genes associated with apoptosis and the cell cycle. PFEC delayed tumor formation and reduced tumor growth in vivo. In conclusion, ethanol extracted components from Pleurotus ferulae exert anti-cancer effects through direct suppression of tumor cell growth and invasion, demonstrating its therapeutic potential in cancer treatment.  相似文献   

5.
6.
7.
Ganoderma lucidum are used as traditional edible and medicinal materials in China. In this study, antioxidant activities of polysaccharides from G. lucidum in China were investigated. The influence of G. lucidum polysaccharides upon activities of serum antioxidant enzymes and immunity in rats with cervical cancer. The antioxidant activity was measured by DPPH?, O?, and OH? free radicals scavenging. Results showed that G. lucidum polysaccharides exhibited the higher DPPH?, O?, and OH? free radicals scavenging activities. The results still showed that G. lucidum polysaccharides could significantly enhance the antioxidant enzyme activities (SOD, CAT and GPx), and reduce levels of IL-1β, IL-6 and TNF-α in rats with cervical cancer.  相似文献   

8.
髓源性抑制细胞(myeloid-derived suppressor cells,MDSCs)是一种异质性的免疫调节细胞。在癌症机体中,MDSCs是主要的免疫抑制细胞,通过多种途径诱导T淋巴细胞衰竭和凋亡,促进肿瘤细胞逃逸,从而导致肿瘤不受控制地生长,是癌症治疗的主要障碍。目前,MDSCs是癌症药物研究的热点和关键靶点。近年来,研究报道显示多糖可下调MDSCs在癌症患者及肿瘤实验动物体内数量和比例,并诱导免疫抑制功能丧失。食药用菌多糖是天然多糖的主要来源,可以通过多种途径激活肿瘤免疫应答,其抑制MDSCs功能的研究报道逐年增多,目前研究主要集中在香菇多糖、灵芝多糖等部分种类。因此,本文简要描述髓源性抑制细胞在癌症中的免疫抑制功能,然后详细地综述食药用菌多糖对髓源性抑制细胞作用的研究进展,以期为食药用菌多糖在肿瘤免疫药物开发及辅助增强(如免疫检查点抑制剂)等免疫治疗提供新思路。  相似文献   

9.
Cell adhesion, migration and invasion are critical steps for carcinogenesis and cancer metastasis. Ganoderma lucidum, also called Lingzhi in China, is a traditional Chinese medicine, which exhibits anti-proliferation, anti-inflammation and anti-metastasis properties. Herein, GAEE, G. lucidum extract mainly contains ganoderiol A (GA), dihydrogenated GA and GA isomer, was shown to inhibit the abilities of adhesion and migration, while have a slight influence on that of invasion in highly metastatic breast cancer MDA-MB-231 cells at non-toxic doses. Further investigation revealed that GAEE decreased the active forms of focal adhesion kinase (FAK) and disrupted the interaction between FAK and SRC, which lead to deactivating of paxillin. Moreover, GAEE treatment downregulated the expressions of RhoA, Rac1, and Cdc42, and decreased the interaction between neural Wiskott-Aldrich Syndrome protein (N-WASP) and Cdc42, which impair cell migration and actin assembly. To our knowledge, this is the first report to show that G.lucidum triterpenoids could suppress cell migration and adhesion through FAK-SRC-paxillin signaling pathway. Our study also suggests that GAEE may be a potential agent for treatment of breast cancer.  相似文献   

10.
In this work, the effects of a pair of positional isomer of ganoderic acids (GAs), namely ganoderic acid Mf (GA-Mf) and ganoderic acid S (GA-S) purified from the fermented mycelia of Ganoderma lucidum, on induction of cell apoptosis and the apoptotic pathway in HeLa cells were investigated. The results demonstrate that both isomers decreased cell population growth on various human carcinoma cell lines by MTT assay, while GA-Mf had better selectivity between normal and cancer cells. The flow cytometry analysis indicated that treatment of HeLa cells with GA-S caused cell cycle arrest in the S phase, while GA-Mf caused cell cycle arrest in the G1 phase. Compared with GA-S, GA-Mf had more potent increase in the number of early and late apoptotic cells. Treatment of HeLa cells with each isomer decreased the mitochondria membrane potential and caused the release of cytochrome c from mitochondria into the cytosol. In addition, stimulation of caspase-3 and caspase-9 activity was observed. The Bax/Bcl-2 ratio was also increased in GA-treated HeLa cells. The results demonstrated that both isomers GA-Mf and GA-S induced apoptosis of human HeLa cells through a mitochondria mediated pathway, but they had the different cell cycle arrest specificity. The findings will be helpful to the development of useful cancer chemopreventive compounds from G. lucidum.  相似文献   

11.
Prostate cancer is the most common cancer in men in Western countries, with a high incidence of bone metastasis. Ganoderic acid DM, with 5α-reductase inhibitory and androgen receptor (AR) binding activity, isolated from the ethanol extracts of Ganoderma lucidum, can inhibit prostate cancer cell growth and block osteoclastogenesis.  相似文献   

12.
In the search for alternative therapy for infections and other ailments, metallic nanoparticles, mainly silver nanoparticles (AgNPs) synthesized through bioengineered sources are extensively explored. Fungal bioactive compounds and their nanoparticles were reported with the potential biomedical application. A medicinal mushroom Ganoderma lucidum was reported as a repository of rich medicinal properties. In the current study, silver nanoparticles were synthesized using the extracts of G. lucidum and its antimicrobial activity was tested against drug-resistant Escherichia coli isolated from the catheter used for urinary tract infection (CAUTI). The GC–MS study of G. lucidum extracts showed the presence of ethyl acetoacetate ethylene acetal with the highest area percentage of 72.2% and retention time (RT 5873). Pyridine-3-ol is the second primary compound with a peak height of 6.44% and a retention time of 2.143. The third compound is l,4-Dioxane-2,3-diol, with an area of 8.09% and RT 5450. Butylated Hydroxy Toluene [BHT] is the fourth major compound with an area of 3.32%, and 9-Cedranone constitutes the fifth position in occupying the area percentage [1.88] and height 1.56%. Pyrrole is the sixth primary compound registering an area size of 0.96% and height 2.06%. The AgNPs synthesized using G. lucidum extract were in size range 23 and 58 nm as per SEM analysis and within the range wavelength 0.556–0.796 nm as per UV–Vis spectral study. FTIR Spectroscopy and X-ray diffraction analysis (XRD) were made to characterize the formed nanoparticles. The AgNPs synthesized effectively inhibited the growth of E. coli isolated from catheter-associated urinary tract infection and showed resistance to many drugs. The antioxidant potential of the synthesized nanoparticles assessed using DPPH radical scavenging activity, EC50 (µg/ml), and ARP data showed that the prepared nanoparticles were more potent in free radical scavenging activity than the standard quercetin. The cytotoxicity effect of Ag-NPs on breast cancer cell line- MDA-MB-231 confirmed its anticancer potential. The half-maximal inhibitory concentration (IC50) of Ag-NPs to inhibit 50% of the tumor was 9.2 g/mL. The synthesized GL-AgNPs was exhibited a multifocal biomedical potential.  相似文献   

13.
14.
In this study we investigated the anti-cancer effect of Moringa oleifera leaves, bark and seed extracts. When tested against MDA-MB-231 and HCT-8 cancer cell lines, the extracts of leaves and bark showed remarkable anti-cancer properties while surprisingly, seed extracts exhibited hardly any such properties. Cell survival was significantly low in both cells lines when treated with leaves and bark extracts. Furthermore, a striking reduction (about 70–90%) in colony formation as well as cell motility was observed upon treatment with leaves and bark. Additionally, apoptosis assay performed on these treated breast and colorectal cancer lines showed a remarkable increase in the number of apoptotic cells; with a 7 fold increase in MD-MB-231 to an increase of several fold in colorectal cancer cell lines. However, no significant apoptotic cells were detected upon seeds extract treatment. Moreover, the cell cycle distribution showed a G2/M enrichment (about 2–3 fold) indicating that these extracts effectively arrest the cell progression at the G2/M phase. The GC-MS analyses of these extracts revealed numerous known anti-cancer compounds, namely eugenol, isopropyl isothiocynate, D-allose, and hexadeconoic acid ethyl ester, all of which possess long chain hydrocarbons, sugar moiety and an aromatic ring. This suggests that the anti-cancer properties of Moringa oleifera could be attributed to the bioactive compounds present in the extracts from this plant. This is a novel study because no report has yet been cited on the effectiveness of Moringa extracts obtained in the locally grown environment as an anti-cancer agent against breast and colorectal cancers. Our study is the first of its kind to evaluate the anti-malignant properties of Moringa not only in leaves but also in bark. These findings suggest that both the leaf and bark extracts of Moringa collected from the Saudi Arabian region possess anti-cancer activity that can be used to develop new drugs for treatment of breast and colorectal cancers.  相似文献   

15.
A simple, reliable, high-throughput screening method was developed and used to assess the pharmaceutical effects of extracts of traditional Chinese herbal medicines (TCHMs). This method is based on 3-dimensional (3-D) cultures of mouse embryonic stem (mES) and human colon cancer and breast cancer cells expressing enhanced green fluorescent protein (EGFP) in polyethylene terephthalate (PET) fibrous scaffolds on modified 384-well plates with online monitoring of culture fluorescence for dynamic responses of cells to drugs present in culture media. Cell responses to deoxycholic acid and the extracts of 3 TCHMs (Ganoderma lucidum spores, Ginkgo biloba, and Epimedium brevicornum) at various concentrations were investigated for their effects on proliferation and cytotoxicity. The screening results, i.e., the growth responses of cancer cells to those drugs, were consistent with what have been reported in the literature, confirming the reliability of the new screening approach. Different from previous screening methods for both TCHMs and western medicines that used animal models or 2-D cell-based assays with single cell lines, this 3-D cell-based screening method employs both cancer and normal cells and thereby provides a way for quick, direct evaluation of the anticancer effects of TCHMs. This method also offers assessment on the side effects of TCHMs.  相似文献   

16.
BackgroundLing Zhi-8 (LZ-8) and GMI are two fungal immunomodulatory proteins (FIPs) with a similar structure and amino acid sequence and are respectively obtained from the medicinal mushroom Ganoderma lucidum and Ganoderma microsporum. They present the anti-cancer progression and metastasis. We previously demonstrated that LZ-8 reduces the tumor progression in lung cancer LLC1 cell-bearing mouse. However, it is unclear whether these FIPs induce changes in the protein expression profile in cancer cells and the mechanism for such a process is not defined.PurposeThis study determines the changes in the proteomic profile for tumor lesions of LLC1 cell-bearing mouse received with LZ-8 and the potential mechanism for FIPs in anti-lung cancer cells.MethodsThe proteomic profile of tumor lesions was determined using two-dimensional electrophoresis and a LTQ-OrbitrapXL mass spectrometer (LC-MS/MS). The biological processes and the signaling pathway enrichment analysis were performed using Ingenuity Pathway Analysis (IPA). The differentially expressed proteins were verified by Western blot. Cell viability was determined by MTT assay. Cell morphology was characterized using electron microscopy. Migration was detected using the Transwell assay. The apoptotic response was determined using Western blot and flow cytometry.ResultsObtained results showed that 21 proteins in the tumor lesions exhibited differential (2-fold change, p < 0.05) expression between PBS and LZ-8 treatment groups. LZ-8-induced changes in the proteomic profile that may relate to protein degradation pathways. Specifically, three heat shock proteins (HSPs), HSP60, 70 and 90, were significantly downregulated in tumor lesions of LLC1-bearing mouse received with LZ-8. Both LZ-8 and GMI reduced the protein levels for these HSPs in lung cancer cells. Functional studies showed that they inhibited cell migration but effectively induced apoptotic response in LLC1 cells in vitro. In addition, the inhibitors of HSP60 and HSP70 effectively inhibited cell migration and decreased cell viability of LLC1 cells.ConclusionsLZ-8 induced changes in the proteomic profile of tumor lesions which may regulate the HSPs-related cell viability. Moreover, inhibition of HSPs may be related to the anti-lung cancer activity.  相似文献   

17.
This article reviews and updates data on macro and trace elements and radionuclides in edible wild-grown and cultivated mushrooms. A huge biodiversity of mushrooms and spread of certain species over different continents makes the study on their multi-element constituents highly challenging. A few edible mushrooms are widely cultivated and efforts are on to employ them (largely Agaricus spp., Pleurotus spp., and Lentinula edodes) in the production of selenium-enriched food (mushrooms) or nutraceuticals (by using mycelia) and less on species used by traditional medicine, e.g., Ganoderma lucidum. There are also attempts to enrich mushrooms with other elements than Se and a good example is enrichment with lithium. Since minerals of nutritional value are common constituents of mushrooms collected from natural habitats, the problem is however their co-occurrence with some hazardous elements including Cd, Pb, Hg, Ag, As, and radionuclides. Discussed is also the problem of erroneous data on mineral compounds determined in mushrooms.  相似文献   

18.
The non-receptor tyrosine kinase ABL drives myeloid progenitor expansion in human chronic myeloid leukemia. ABL inhibition by the tyrosine kinase inhibitor nilotinib is a first-line treatment for this disease. Recently, ABL has also been implicated in the transforming properties of solid tumors, including triple negative (TN) breast cancer. TN breast cancers are highly metastatic and several cell lines derived from these tumors display high invasive activity in vitro. This feature is associated with the activation of actin-rich membrane structures called invadopodia that promote extracellular matrix degradation. Here, we investigated nilotinib effect on the invasive and migratory properties of different TN breast cancer cell lines. Nilotinib decreased both matrix degradation and invasion in the TN breast cancer cell lines MDA-MB 231 and MDA-MB 468. However, and unexpectedly, nilotinib increased by two-fold the invasive properties of the TN breast cancer cell line BT-549 and of Src-transformed fibroblasts. Both display much higher levels of ABL kinase activity compared to MDA-MB 231. Similar effects were obtained by siRNA-mediated down-regulation of ABL expression, confirming ABL central role in this process. ABL anti-tumor effect in BT-549 cells and Src-transformed fibroblasts was not dependent on EGF secretion, as recently reported in neck and squamous carcinoma cells. Rather, we identified the TRIO-RAC1 axis as an important downstream element of ABL activity in these cancer cells. In conclusion, the observation that TN breast cancer cell lines respond differently to ABL inhibitors could have implications for future therapies.  相似文献   

19.
The recognition of bacteria, viruses, fungi, and other microbes is controlled by host immune cells, which are equipped with many innate immunity receptors, such as Toll-like receptors, C-type lectin receptors, and immunoglobulin-like receptors. Our studies indicate that the immune modulating properties of many herbal drugs, for instance, the medicinal fungus Reishi (Ganoderma lucidum) and Cordyceps sinensis, could be attributed to their polysaccharide components. These polysaccharides specifically interact with and activate surface receptors involved in innate immunity. However, due to the complexity of polysaccharides and their various sources from medicinal fungi, quantitative analysis of medicinal polysaccharide extracts with regard to their functions represents a major challenge. To profile carbohydrate-immune receptor interactions, the extracellular domains of 17 receptors were cloned as Fc-fusion proteins, such that their interactions with immobilized polysaccharides could be probed in an enzyme-linked immunosorbent assay. The results show that several innate immune receptors, including Dectin-1, DC-SIGN, Langerin, Kupffer cell receptor, macrophage mannose receptor, TLR2, and TLR4, interact with the polysaccharide extracts from G. lucidum (GLPS). This analysis revealed distinct polysaccharide profiles from different sources of medicinal fungi, and the innate immune receptor-based enzyme-linked immunosorbent assay described here can serve as a high-throughput profiling method for the characterization and quality control of medicinal polysaccharides. It also provides a means to dissect the molecular mechanism of medicinal polysaccharide-induced immunomodulation events.  相似文献   

20.
The kinetics of cell growth and triterpenes production for liquid submerged fermentation of the medicinal mushroom Ganoderma lucidum were investigated. A kinetic model was developed based on the Logistic and Luedeking-Piret equations for cell growth, substrate consumption and triterpene formation. The kinetic parameters of the model were optimized by specifically designed Runge-Kutta genetic algorithms. The mathematical model simulated the experimental data well and was capable of explaining the behavior of triterpenes production. The predictions of the kinetics from this model are very good both for normal fermentation kinetics under nitrogen limitation as well as for predictions of transitions to sluggish fermentations. The resulting model is very useful for scaling up liquid submerged fermentation of the mushroom G. lucidum and its application to the industrial production of triterpene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号