首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vaccines provide a primary means to limit disease but may not be effective at blocking infection and pathogen transmission. The objective of the present study was to evaluate the efficacy of commercial inactivated swine influenza A virus (IAV) vaccines and experimental live attenuated influenza virus (LAIV) vaccines against infection with H3N2 virus and subsequent indirect transmission to naive pigs. The H3N2 virus evaluated was similar to the H3N2v detected in humans during 2011-2012, which was associated with swine contact at agricultural fairs. One commercial vaccine provided partial protection measured by reduced nasal shedding; however, indirect contacts became infected, indicating that the reduction in nasal shedding did not prevent aerosol transmission. One LAIV vaccine provided complete protection, and none of the indirect-contact pigs became infected. Clinical disease was not observed in any group, including nonvaccinated animals, a consistent observation in pigs infected with contemporary reassortant H3N2 swine viruses. Serum hemagglutination inhibition antibody titers against the challenge virus were not predictive of efficacy; titers following vaccination with a LAIV that provided sterilizing immunity were below the level considered protective, yet titers in a commercial vaccine group that was not protected were above that level. While vaccination with currently approved commercial inactivated products did not fully prevent transmission, certain vaccines may provide a benefit by limitating shedding, transmission, and zoonotic spillover of antigenically similar H3N2 viruses at agriculture fairs when administered appropriately and used in conjunction with additional control measures.  相似文献   

2.
Surveillance for influenza A viruses in swine is critical to human and animal health because influenza A virus rapidly evolves in swine populations and new strains are continually emerging. Swine are able to be infected by diverse lineages of influenza A virus making them important hosts for the emergence and maintenance of novel influenza A virus strains. Sampling pigs in diverse settings such as commercial swine farms, agricultural fairs, and live animal markets is important to provide a comprehensive view of currently circulating IAV strains. The current gold-standard ante-mortem sampling technique (i.e. collection of nasal swabs) is labor intensive because it requires physical restraint of the pigs. Nasal wipes involve rubbing a piece of fabric across the snout of the pig with minimal to no restraint of the animal. The nasal wipe procedure is simple to perform and does not require personnel with professional veterinary or animal handling training. While slightly less sensitive than nasal swabs, virus detection and isolation rates are adequate to make nasal wipes a viable alternative for sampling individual pigs when low stress sampling methods are required. The proceeding protocol outlines the steps needed to collect a viable nasal wipe from an individual pig.  相似文献   

3.
Based on epidemiological data, it is believed that human-to-human transmission plays an important role in Nipah virus outbreaks. No experimental data are currently available on the potential routes of human-to-human transmission of Nipah virus. In a first dose-finding experiment in Syrian hamsters, it was shown that Nipah virus was predominantly shed via the respiratory tract within nasal and oropharyngeal secretions. Although Nipah viral RNA was detected in urogenital and rectal swabs, no infectious virus was recovered from these samples, suggesting no viable virus was shed via these routes. In addition, hamsters inoculated with high doses shed significantly higher amounts of viable Nipah virus particles in comparison with hamsters infected with lower inoculum doses. Using the highest inoculum dose, three potential routes of Nipah virus transmission were investigated in the hamster model: transmission via fomites, transmission via direct contact and transmission via aerosols. It was demonstrated that Nipah virus is transmitted efficiently via direct contact and inefficiently via fomites, but not via aerosols. These findings are in line with epidemiological data which suggest that direct contact with nasal and oropharyngeal secretions of Nipah virus infected individuals resulted in greater risk of Nipah virus infection. The data provide new and much-needed insights into the modes and efficiency of Nipah virus transmission and have important public health implications with regards to the risk assessment and management of future Nipah virus outbreaks.  相似文献   

4.
Fomites involved in influenza transmission are either hand- or droplet-contaminated. We evaluated the interactions of fomite characteristics and human behaviors affecting these routes using an Environmental Infection Transmission System (EITS) model by comparing the basic reproduction numbers (R 0) for different fomite mediated transmission pathways. Fomites classified as large versus small surface sizes (reflecting high versus low droplet contamination levels) and high versus low touching frequency have important differences. For example, 1) the highly touched large surface fomite (public tables) has the highest transmission potential and generally strongest control measure effects; 2) transmission from droplet-contaminated routes exceed those from hand-contaminated routes except for highly touched small surface fomites such as door knob handles; and 3) covering a cough using the upper arm or using tissues effectively removes virus from the system and thus decreases total fomite transmission. Because covering a cough by hands diverts pathogens from the droplet-fomite route to the hand-fomite route, this has the potential to increase total fomite transmission for highly touched small surface fomites. An improved understanding and more refined data related to fomite mediated transmission routes will help inform intervention strategies for influenza and other pathogens that are mediated through the environment.  相似文献   

5.
Person-to-person transmission of influenza viruses occurs by contact (direct and fomites) and non-contact (droplet and small particle aerosol) routes, but the quantitative dynamics and relative contributions of these routes are incompletely understood. The transmissibility of influenza strains estimated from secondary attack rates in closed human populations is confounded by large variations in population susceptibilities. An experimental method to phenotype strains for transmissibility in an animal model could provide relative efficiencies of transmission. We developed an experimental method to detect exhaled viral aerosol transmission between unanesthetized infected and susceptible ferrets, measured aerosol particle size and number, and quantified the viral genomic RNA in the exhaled aerosol. During brief 3-hour exposures to exhaled viral aerosols in airflow-controlled chambers, three strains of pandemic 2009 H1N1 strains were frequently transmitted to susceptible ferrets. In contrast one seasonal H1N1 strain was not transmitted in spite of higher levels of viral RNA in the exhaled aerosol. Among three pandemic strains, the two strains causing weight loss and illness in the intranasally infected 'donor' ferrets were transmitted less efficiently from the donor than the strain causing no detectable illness, suggesting that the mucosal inflammatory response may attenuate viable exhaled virus. Although exhaled viral RNA remained constant, transmission efficiency diminished from day 1 to day 5 after donor infection. Thus, aerosol transmission between ferrets may be dependent on at least four characteristics of virus-host relationships including the level of exhaled virus, infectious particle size, mucosal inflammation, and viral replication efficiency in susceptible mucosa.  相似文献   

6.
Influenza A virus (IAV) infections in hosts outside the main aquatic bird reservoirs occur periodically. Although most such cross-species transmission events result in limited onward transmission in the new host, sustained influenza outbreaks have occurred in poultry and in a number of mammalian species, including humans, pigs, horses, seals, and mink. Recently, two distinct strains of IAV have emerged in domestic dogs, with each circulating widely for several years. Here, we briefly outline what is known about the role of intermediate hosts in influenza emergence, summarize our knowledge of the new canine influenza viruses (CIVs) and how they provide key new information on the process of host adaptation, and assess the risk these viruses pose to human populations.  相似文献   

7.
Airborne transmission of influenza A virus (IAV) in swine is speculated to be an important route of virus dissemination, but data are scarce. This study attempted to detect and quantify airborne IAV by virus isolation and RRT-PCR in air samples collected under field conditions. This was accomplished by collecting air samples from four acutely infected pig farms and locating air samplers inside the barns, at the external exhaust fans and downwind from the farms at distances up to 2.1 km. IAV was detected in air samples collected in 3 out of 4 farms included in the study. Isolation of IAV was possible from air samples collected inside the barn at two of the farms and in one farm from the exhausted air. Between 13% and 100% of samples collected inside the barns tested RRT-PCR positive with an average viral load of 3.20E+05 IAV RNA copies/m3 of air. Percentage of exhaust positive air samples also ranged between 13% and 100% with an average viral load of 1.79E+04 RNA copies/m3 of air. Influenza virus RNA was detected in air samples collected between 1.5 and 2.1 Km away from the farms with viral levels significantly lower at 4.65E+03 RNA copies/m3. H1N1, H1N2 and H3N2 subtypes were detected in the air samples and the hemagglutinin gene sequences identified in the swine samples matched those in aerosols providing evidence that the viruses detected in the aerosols originated from the pigs in the farms under study. Overall our results indicate that pigs can be a source of IAV infectious aerosols and that these aerosols can be exhausted from pig barns and be transported downwind. The results from this study provide evidence of the risk of aerosol transmission in pigs under field conditions.  相似文献   

8.
During recent years, extensive amounts of data have become available regarding influenza A virus (IAV) in wild birds in northern Europe, while information from southern Europe is more limited. Here, we present an IAV surveillance study conducted in western Portugal 2008–2009, analyzing 1653 samples from six different species of waterfowl, with the majority of samples taken from Mallards (Anas platyrhynchos). Overall 4.4% of sampled birds were infected. The sampling results revealed a significant temporal variation in the IAV prevalence, including a pronounced peak among predominantly young birds in June, indicating that IAV circulate within breeding populations in the wetlands of western Portugal. The H10N7 and H9N2 subtypes were predominant among isolated viruses. Phylogenetic analyses of the hemagglutinin and neuraminidase sequences of H10N7, H9N2 and H11N3 virus showed that sequences from Portugal were closely related to viral sequences from Central Europe as well as to IAVs isolated in the southern parts of Africa, reflecting Portugal’s position on the European-African bird migratory flyway. This study highlights the importance of Portugal as a migratory crossroad for IAV, connecting breeding stationary waterfowl with birds migrating between continents which enable transmission and spread of IAV.  相似文献   

9.
A serum hemagglutination inhibition (HAI) titer of 40 or greater is thought to be associated with reduced influenza virus pathogenesis in humans and is often used as a correlate of protection in influenza vaccine studies. We have previously demonstrated that intramuscular vaccination of guinea pigs with inactivated influenza virus generates HAI titers greater than 300 but does not protect vaccinated animals from becoming infected with influenza virus by transmission from an infected cage mate. Only guinea pigs intranasally inoculated with a live influenza virus or a live attenuated virus vaccine, prior to challenge, were protected from transmission (A. C. Lowen et al., J. Virol. 83:2803–2818, 2009.). Because the serum HAI titer is mostly determined by IgG content, these results led us to speculate that prevention of viral transmission may require IgA antibodies or cellular immune responses. To evaluate this hypothesis, guinea pigs and ferrets were administered a potent, neutralizing mouse IgG monoclonal antibody, 30D1 (Ms 30D1 IgG), against the A/California/04/2009 (H1N1) virus hemagglutinin and exposed to respiratory droplets from animals infected with this virus. Even though HAI titers were greater than 160 1 day postadministration, Ms 30D1 IgG did not prevent airborne transmission to passively immunized recipient animals. In contrast, intramuscular administration of recombinant 30D1 IgA (Ms 30D1 IgA) prevented transmission to 88% of recipient guinea pigs, and Ms 30D1 IgA was detected in animal nasal washes. Ms 30D1 IgG administered intranasally also prevented transmission, suggesting the importance of mucosal immunity in preventing influenza virus transmission. Collectively, our data indicate that IgG antibodies may prevent pathogenesis associated with influenza virus infection but do not protect from virus infection by airborne transmission, while IgA antibodies are more important for preventing transmission of influenza viruses.  相似文献   

10.
Mice lacking surfactant protein surfactant protein D (SP-D(-/-)) and wild-type mice (SP-D(+/+)) were infected with influenza A virus (IAV) by intranasal instillation. IAV infection increased the endogenous SP-D concentration in wild-type mice. SP-D-deficient mice showed decreased viral clearance of the Phil/82 strain of IAV and increased production of inflammatory cytokines in response to viral challenge. However, the less glycosylated strain of IAV, Mem/71, which is relatively resistant to SP-D in vitro, was cleared efficiently from the lungs of SP-D(-/-) mice. Viral clearance of the Phil/82 strain of IAV and the cytokine response were both normalized by the coadministration of recombinant SP-D. Since the airway is the usual portal of entry for influenza A virus and other respiratory pathogens, SP-D is likely to play an important role in innate defense responses to IAV.  相似文献   

11.
Indirect transmission of influenza A virus (IAV) in swine is poorly understood and information is lacking on levels of environmental exposure encountered by swine and people during outbreaks of IAV in swine barns. We characterized viral load, viability and persistence of IAV in air and on surfaces during outbreaks in swine barns. IAV was detected in pigs, air and surfaces from five confirmed outbreaks with 48% (47/98) of oral fluid, 38% (32/84) of pen railing and 43% (35/82) of indoor air samples testing positive by IAV RT-PCR. IAV was isolated from air and oral fluids yielding a mixture of subtypes (H1N1, H1N2 and H3N2). Detection of IAV RNA from air was sustained during the outbreaks with maximum levels estimated between 7 and 11 days from reported onset. Our results indicate that during outbreaks of IAV in swine, aerosols and surfaces in barns contain significant levels of IAV potentially representing an exposure hazard to both swine and people.  相似文献   

12.
Oncolytic viruses (OV) have shown excellent safety and efficacy in preclinical and clinical studies. Influenza A virus (IAV) is considered a promising oncolytic virus. In this report, we generated a recombinant influenza virus expressing an immune checkpoint blockade agent targeting CTLA4. Using reverse genetics, a recombinant influenza virus, termed rFlu-CTLA4, encoding the heavy chain of a CTLA4 antibody on the PB1 segment and the light chain of the CTLA4 antibody on the PA segment was produced. RFlu-CTLA4 could replicate to high titers, and antibodies were produced in the allantoic fluid of infected eggs. Furthermore, the selective cytotoxicity of the virus was higher in various hepatocellular carcinoma cancer cell lines than in the normal cell line L02 in vitro, as indicated by MTS assays. More importantly, in a subcutaneous H22 mouse hepatocarcinoma model, intratumoral injections of rFlu-CTLA4 inhibited the growth of treated tumors and increased the overall survival of mice compared with injections of the PR8 virus. Taken together, these results warrant further exploration of this novel recombinant influenza virus for its potential use as a single or combination agent for cancer immunotherapy.  相似文献   

13.
IFIT(Interferon induced proteins with tetratricopeptide repeats)家族基因是一组较早发现的干扰素刺激基因,它在抗病毒和免疫调节中发挥了重要作用。为研究IFIT家族基因抑制A型流感病毒复制的机理,利用高通量RNA深度测序(RNA-Seq)技术发现A型流感病毒A/WSN/33(WSN)毒株感染293T细胞后,IFIT家族基因均出现明显上调。同时发现在IFIT2、IFIT3过表达后,流感病毒的复制和转录均有明显下调,并对v RNP聚合酶活性具有剂量依赖型的抑制作用。进一步研究证明在感染IFIT2、IFIT3编码蛋白与流感病毒非结构蛋白(NS1)存在细胞内共定位,证明二者存在相互作用的可能。综上所述,IFIT家族基因可以抑制A型流感病毒的复制和转录,有助于进一步阐明宿主因子对流感病毒感染的调节机制。  相似文献   

14.
Human interferon-inducible transmembrane proteins (IFITMs) were identified as restriction factors of influenza A virus (IAV). Given the important role of pigs in the zoonotic cycle of IAV, we cloned swine IFITMs (swIFITMs) and found two IFITM1-like proteins, one homologue of IFITM2, and a homologue of IFITM3. We show that swIFITM2 and swIFITM3 localize to endosomes and display potent antiviral activities. Knockdown of swIFITMs strongly reduced virus inhibition by interferon, establishing the swIFITMs as potent restriction factors in porcine cells.  相似文献   

15.
目的进一步了解新型H7N9流感病毒的致病性、传播能力以及通过何种途径进行传播。方法 H7N9病毒感染小鼠后与同居小鼠合笼,研究同居小鼠的临床变化指征、病毒复制情况、病毒在组织中的分布以及病理变化。以同居小鼠分泌物接种其他小鼠,观察同居小鼠通过何种途径传播病毒。结果 H7N9病毒可以在肺组织、肠组织和脑组织中复制,并可以在同居小鼠中传播。H7N9病毒感染小鼠其咽、眼分泌物以及粪便均具有感染性,其中尤以咽拭子的传播风险最高。结论 H7N9病毒可以不通过适应就感染小鼠,并引起小鼠间传播。被感染小鼠分泌物具有感染性。  相似文献   

16.
H9N2 avian influenza viruses continue to circulate worldwide; in Asia, H9N2 viruses have caused disease outbreaks and established lineages in land-based poultry. Some H9N2 strains are considered potentially pandemic because they have infected humans causing mild respiratory disease. In addition, some of these H9N2 strains replicate efficiently in mice without prior adaptation suggesting that H9N2 strains are expanding their host range. In order to understand the molecular basis of the interspecies transmission of H9N2 viruses, we adapted in the laboratory a wildtype duck H9N2 virus, influenza A/duck/Hong Kong/702/79 (WT702) virus, in quail and chickens through serial lung passages. We carried out comparative analysis of the replication and transmission in quail and chickens of WT702 and the viruses obtained after 23 serial passages in quail (QA23) followed by 10 serial passages in chickens (QA23CkA10). Although the WT702 virus can replicate and transmit in quail, it replicates poorly and does not transmit in chickens. In contrast, the QA23CkA10 virus was very efficient at replicating and transmitting in quail and chickens. Nucleotide sequence analysis of the QA23 and QA23CkA10 viruses compared to the WT702 virus indicated several nucleotide substitutions resulting in amino acid changes within the surface and internal proteins. In addition, a 21-amino acid deletion was found in the stalk of the NA protein of the QA23 virus and was maintained without further modification in the QA23CkA10 adapted virus. More importantly, both the QA23 and the QA23CkA10 viruses, unlike the WT702 virus, were able to readily infect mice, produce a large-plaque phenotype, showed faster replication kinetics in tissue culture, and resulted in the quick selection of the K627 amino acid mammalian-associated signature in PB2. These results are in agreement with the notion that adaptation of H9 viruses to land-based birds can lead to strains with expanded host range.  相似文献   

17.
Alveolar macrophages constitutively reside in the respiratory tracts of pigs and humans. An in vivo role of alveolar macrophages in defending against influenza viruses in mice infected with a reassorted influenza virus, 1918 HA/NA:Tx/91, was reported, but there has been no report on an in vivo role of alveolar macrophages in a natural host such as a pig using currently circulating human influenza virus. Here we show that in vivo depletion of alveolar macrophages in pigs by dichloromethylene diphosphonate (MDPCL2) treatment results in 40% mortality when pigs are infected with currently circulating human H1N1 influenza viruses, while none of the infected control pigs died. All infected pigs depleted of alveolar macrophages suffered from more severe respiratory signs than infected control pigs. Induction of tumor necrosis factor alpha in the infected pigs depleted of alveolar macrophages was significantly lower than that in the lungs of infected control pigs, and the induction of interleukin-10, an immunosuppressive cytokine, significantly increased in the lungs of infected pigs depleted of alveolar macrophages compared to infected control pigs. When we measured antibody titers and CD8(+) T lymphocytes expressing gamma interferon (IFN-gamma), lower antibody titers and a lower percentage of CD8(+) T lymphocytes expressing IFN-gamma were detectable in MDPCL2-treated infected pigs than in phosphate-buffered saline- and liposome-treated and infected pigs. Taken together, our findings suggest that alveolar macrophages are essential for controlling H1N1 influenza viruses in pigs.  相似文献   

18.
Control of swine influenza A virus (IAV) in the United States is hindered because inactivated vaccines do not provide robust cross-protection against the multiple antigenic variants cocirculating in the field. Vaccine efficacy can be limited further for vaccines administered to young pigs that possess maternally derived immunity. We previously demonstrated that a recombinant A/sw/Texas/4199-2/1998 (TX98) (H3N2) virus expressing a truncated NS1 protein is attenuated in swine and has potential for use as an intranasal live attenuated influenza virus (LAIV) vaccine. In the present study, we compared 1 dose of intranasal LAIV with 2 intramuscular doses of TX98 whole inactivated virus (WIV) with adjuvant in weanling pigs with and without TX98-specific maternally derived antibodies (MDA). Pigs were subsequently challenged with wild-type homologous TX98 H3N2 virus or with an antigenic variant, A/sw/Colorado/23619/1999 (CO99) (H3N2). In the absence of MDA, both vaccines protected against homologous TX98 and heterologous CO99 shedding, although the LAIV elicited lower hemagglutination inhibition (HI) antibody titers in serum. The efficacy of both vaccines was reduced by the presence of MDA; however, WIV vaccination of MDA-positive pigs led to dramatically enhanced pneumonia following heterologous challenge, a phenomenon known as vaccine-associated enhanced respiratory disease (VAERD). A single dose of LAIV administered to MDA-positive pigs still provided partial protection from CO99 and may be a safer vaccine for young pigs under field conditions, where dams are routinely vaccinated and diverse IAV strains are in circulation. These results have implications not only for pigs but also for other influenza virus host species.  相似文献   

19.
Zhang Y  Zhang Q  Gao Y  He X  Kong H  Jiang Y  Guan Y  Xia X  Shu Y  Kawaoka Y  Bu Z  Chen H 《Journal of virology》2012,86(18):9666-9674
Animal influenza viruses pose a clear threat to public health. Transmissibility among humans is a prerequisite for a novel influenza virus to cause a human pandemic. A novel reassortant swine influenza virus acquired sustained human-to-human transmissibility and caused the 2009 influenza pandemic. However, the molecular aspects of influenza virus transmission remain poorly understood. Here, we show that an amino acid in hemagglutinin (HA) is important for the 2009 H1N1 influenza pandemic virus (2009/H1N1) to bind to human virus receptors and confer respiratory droplet transmissibility in mammals. We found that the change from glutamine (Q) to arginine (R) at position 226 of HA, which causes a switch in receptor-binding preference from human α-2,6 to avian α-2,3 sialic acid, resulted in a virus incapable of respiratory droplet transmission in guinea pigs and reduced the virus's ability to replicate in the lungs of ferrets. The change from alanine (A) to threonine (T) at position 271 of PB2 also abolished the virus's respiratory droplet transmission in guinea pigs, and this mutation, together with the HA Q226R mutation, abolished the virus's respiratory droplet transmission in ferrets. Furthermore, we found that amino acid 271A of PB2 plays a key role in virus acquisition of the mutation at position 226 of HA that confers human receptor recognition. Our results highlight the importance of both the PB2 and HA genes on the adaptation and transmission of influenza viruses in humans and provide important insights for monitoring and evaluating the pandemic potential of field influenza viruses.  相似文献   

20.
Many cellular genes and networks induced in human lung epithelial cells infected with the influenza virus remain uncharacterized. Here, we find that p21 levels are elevated in response to influenza A virus (IAV) infection, which is independent of p53. Silencing, pharmacological inhibition or deletion of p21 promotes virus replication in vitro and in vivo, indicating that p21 is an influenza restriction factor. Mechanistically, p21 binds to the C-terminus of IAV polymerase subunit PA and competes with PB1 to limit IAV polymerase activity. Besides, p21 promotes IRF3 activation by blocking K48-linked ubiquitination degradation of HO-1 to enhance type I interferons expression. Furthermore, a synthetic p21 peptide (amino acids 36 to 43) significantly inhibits IAV replication in vitro and in vivo. Collectively, our findings reveal that p21 restricts IAV by perturbing the viral polymerase complex and activating the host innate immune response, which may aid the design of desperately needed new antiviral therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号