首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations in the HFE gene result in hereditary hemochromatosis, a disorder of iron metabolism characterized by increased intestinal iron absorption. Based on the observation that ectopic expression of HFE strongly inhibits apical iron uptake (Arredondo et al., 2001, FASEB J 15, 1276–1278), a negative regulation of HFE on the apical membrane transporter DMT1 was proposed as a mechanism by which HFE regulates iron absorption. To test this hypothesis, we investigated: (i) the effect of HFE antisense oligonucleotides on apical iron uptake by polarized Caco-2 cells; (ii) the apical/basolateral membrane distribution of HFE, β-2 microglobulin and DMT1; (iii) the putative molecular association between HFE and DMT1. We found that HFE antisense treatment reduced HFE expression and increased apical iron uptake, whereas transfection with wild-type HFE inhibited iron uptake. Thus, an inverse relationship was established between HFE levels and apical iron uptake activity. Selective apical or basolateral biotinylation indicated preferential localization of DMT1 to the apical membrane and of HFE and β-2 microglobulin (β2m) to the basolateral membrane. Ectopic expression of HFE resulted in increased distribution of HFE–β2m to the apical membrane. The amount of HFE–β2m in the apical membrane inversely correlated with apical iron uptake rates. Immunoprecipitations of HFE or β2m with specific antibodies resulted in the co-precipitation of DMT1. These results sustain a model by which direct interaction between DMT1 and HFE–β2m in the apical membrane of Caco-2 cells result in down-regulation of apical iron uptake activity.  相似文献   

2.
Local Ca(2+) signaling requires proper targeting of the Ca(2+) signaling toolkit to specific cellular locales. Different isoforms of the plasma membrane Ca(2+) pump (PMCA) are responsible for Ca(2+) extrusion at the apical and basolateral membrane of polarized epithelial cells, but the mechanisms and signals for differential targeting of the PMCAs are not well understood. Recent work demonstrated that the alternatively spliced w-insert in PMCA2 directs this pump to the apical membrane. We now show that inserting the w-insert into the corresponding location of the PMCA4 isoform confers apical targeting to this normally basolateral pump. Mutation of a di-leucine motif in the C-tail thought to be important for basolateral targeting did not enhance apical localization of the chimeric PMCA4(2w)/b. In contrast, replacing the C-terminal Val residue by Leu to optimize the PDZ ligand site for interaction with the scaffolding protein NHERF2 enhanced the apical localization of PMCA4(2w)/b, but not of PMCA4x/b. Functional studies showed that both apical PMCA4(2w)/b and basolateral PMCA4x/b handled ATP-induced Ca(2+) signals with similar kinetics, suggesting that isoform-specific functional characteristics are retained irrespective of membrane targeting. Our results demonstrate that the alternatively spliced w-insert provides autonomous apical targeting information in the PMCA without altering its functional characteristics.  相似文献   

3.
PDZ proteins retain and regulate membrane transporters in polarized epithelial cell membranes. Am J Physiol Cell Physiol 288: C20–C29, 2005; doi:10.1152/ajpcell.00368.2004.—The plasma membrane of epithelial cells is subdivided into two physically separated compartments known as the apical and basolateral membranes. To obtain directional transepithelial solute transport, membrane transporters (i.e., ion channels, cotransporters, exchangers, and ion pumps) need to be targeted selectively to either of these membrane domains. In addition, the transport properties of an epithelial cell will be maintained only if these membrane transporters are retained and properly regulated in their specific membrane compartments. Recent reports have indicated that PDZ domain-containing proteins play a dual role in these processes and, in addition, that different apical and basolateral PDZ proteins perform similar tasks in their respective membrane domains. First, although PDZ-based interactions are dispensable for the biosynthetic targeting to the proper membrane domain, the PDZ network ensures that the membrane proteins are efficiently retained at the cell surface. Second, the close spatial positioning of functionally related proteins (e.g., receptors, kinases, channels) into a signal transduction complex (transducisome) allows fast and efficient control of membrane transport processes. retention of apical and basolateral membrane proteins; transducisomes; protein complex formation  相似文献   

4.
The membrane localization of the plasma membrane Ca2+-ATPase isoform 2 (PMCA2) in polarized cells is determined by alternative splicing; the PMCA2w/b splice variant shows apical localization, whereas the PMCA2z/b and PMCA2x/b variants are mostly basolateral. We previously reported that PMCA2b interacts with the PDZ protein Na+/H+ exchanger regulatory factor 2 (NHERF2), but the role of this interaction for the specific membrane localization of PMCA2 is not known. Here we show that co-expression of NHERF2 greatly enhanced the apical localization of GFP-tagged PMCA2w/b in polarized Madin-Darby canine kidney cells. GFP-PMCA2z/b was also redirected to the apical membrane by NHERF2, whereas GFP-PMCA2x/b remained exclusively basolateral. In the presence of NHERF2, GFP-PMCA2w/b co-localized with the actin-binding protein ezrin even after disruption of the actin cytoskeleton by cytochalasin D or latrunculin B. Surface biotinylation and fluorescence recovery after photobleaching experiments demonstrated that NHERF2-mediated anchorage to the actin cytoskeleton reduced internalization and lateral mobility of the pump. Our results show that the specific interaction with NHERF2 enhances the apical concentration of PMCA2w/b by anchoring the pump to the apical membrane cytoskeleton. The data also suggest that the x/b splice form of PMCA2 contains a dominant lateral targeting signal, whereas the targeting and localization of the z/b form are more flexible and not fully determined by intrinsic sequence features.  相似文献   

5.
Matriptase is a type II transmembrane serine protease. This protease is strongly expressed in simple epithelial cells such as enterocytes and kidney tubular cells in which the plasma membranes are separated into apical and basolateral domains. Although matriptase was found previously to occur exclusively on the basolateral membrane of enterocytes, the underlying mechanism of localization is unclear. In the present study, a full-length rat matriptase and a chimera consisting of the cytoplasmic and transmembrane regions of the protease and green fluorescent protein (designated as 1–86GFP) were found to localize exclusively to the basolateral membrane domain when expressed in Madin–Darby canine kidney epithelial cells. Mutagenesis analysis of 1–86GFP revealed that the matriptase cytoplasmic juxtamembrane amino acid residues (Lys45, Val47, and Arg50) play a role in mediating the localization in the cells. This study provides the first evidence that matriptase carries information for its localization in simple epithelia.  相似文献   

6.
Syntaxins, integral membrane proteins that are part of the ubiquitous membrane fusion machinery, are thought to act as target membrane receptors during the process of vesicle docking and fusion. Several isoforms of the syntaxin family have been previously identified in mammalian cells, some of which are localized to the plasma membrane. We investigated the subcellular localization of these putative plasma membrane syntaxins in polarized epithelial cells, which are characterized by the presence of distinct apical and basolateral plasma membrane domains. Syntaxins 2, 3, and 4 were found to be endogenously present in Madin-Darby canine kidney cells. The localization of syntaxins 1A, 1B, 2, 3, and 4 in stably transfected Madin-Darby canine kidney cell lines was studied with confocal immunofluorescence microscopy. Each syntaxin isoform was found to have a unique pattern of localization. Syntaxins 1A and 1B were present only in intracellular structures, with little or no apparent plasma membrane staining. In contrast, syntaxin 2 was found on both the apical and basolateral surface, whereas the plasma membrane localization of syntaxins 3 and 4 were restricted to the apical or basolateral domains, respectively. Syntaxins are therefore the first known components of the plasma membrane fusion machinery that are differentially localized in polarized cells, suggesting that they may play a central role in targeting specificity.  相似文献   

7.
Plasma membrane Ca(2+)-ATPases (PMCAs) are involved in local Ca(2+) signaling and in the spatial control of Ca(2+) extrusion, but how different PMCA isoforms are targeted to specific membrane domains is unknown. In polarized MDCK epithelial cells, a green fluorescent protein-tagged PMCA4b construct was targeted to the basolateral membrane, whereas a green fluorescent protein-tagged PMCA2b construct was localized to both the apical and basolateral domain. The PDZ protein-binding COOH-terminal tail of PMCA2b was not responsible for its apical membrane localization, as a chimeric pump made of an NH(2)-terminal portion from PMCA4 and a COOH-terminal tail from PMCA2b was targeted to the basolateral domain. Deletion of the last six residues of the COOH terminus of either PMCA2b or PMCA4b did not alter their membrane targeting, suggesting that PDZ protein interactions are not essential for proper membrane localization of the pumps. Instead, we found that alternative splicing affecting the first cytosolic loop determined apical membrane targeting of PMCA2. Only the "w" form, which contains a 45-amino acid residue insertion, showed prominent apical membrane localization. By contrast, the x and z splice variants containing insertions of 14 and 0 residues, respectively, localized to the basolateral membrane. The w splice insert was the crucial determinant of apical PMCA2 localization, and this was independent of the splice configuration at the COOH-terminal end of the pump; both PMCA2w/b and PMCA2w/a showed prominent apical targeting, whereas PMCA2x/b, PMCA2z/b, and PMCA2z/a were confined to the basolateral membrane. These data report the first differential effect of alternative splicing within the first cytosolic loop of PMCA2 and help explain the selective enrichment of specific PMCA2 isoforms in specialized membrane compartments such as stereocilia of auditory hair cells.  相似文献   

8.
In polarized epithelial cells syntaxin 3 is at the apical plasma membrane and is involved in delivery of proteins from the trans-Golgi network to the apical surface. The highly related syntaxin 4 is at the basolateral surface. The complementary distribution of these syntaxins suggests that they play a role in the specificity of membrane traffic to the two surfaces. We constructed a chimeric syntaxin where we removed the N-terminal 29 residues of syntaxin 3 and replaced it with the corresponding portion of syntaxin 4. When expressed in polarized epithelial cells, this chimera was exclusively localized to the basolateral surface. This indicates that the N-terminal domain of syntaxin 3 contains information for its polarized localization. In contrast to the apical localization of syntaxin 3, the basolateral localization of syntaxin 4 was not dependent on its N-terminal domain. Syntaxin 3 normally binds to Munc18b, but not to the related Munc18c. Overexpression of the chimera together with overexpression of Munc18b caused membrane and secretory proteins that are normally sent primarily to the apical surface to exhibit increased delivery to the basolateral surface. We suggest that syntaxins may play a role in determining the specificity of membrane targeting by permitting fusion with only certain target membranes.  相似文献   

9.
Transforming growth factor-alpha (TGF-alpha) is the major autocrine EGF receptor ligand in vivo. In polarized epithelial cells, proTGF-alpha is synthesized and then delivered to the basolateral cell surface. We previously reported that Naked2 interacts with basolateral sorting determinants in the cytoplasmic tail of a Golgi-processed form of TGF-alpha and that TGF-alpha is not detected at the basolateral surface of Madin-Darby canine kidney (MDCK) cells expressing myristoylation-deficient (G2A) Naked2. By high-resolution microscopy, we now show that wild-type, but not G2A, Naked2-associated vesicles fuse at the plasma membrane. We further demonstrate that Naked2-associated vesicles are delivered to the lower lateral membrane of polarized MDCK cells independent of mu1B adaptin. We identify a basolateral targeting segment within Naked2; residues 1-173 redirect NHERF-1 from the apical cytoplasm to the basolateral membrane, and internal deletion of residues 37-104 results in apical mislocalization of Naked2 and TGF-alpha. Short hairpin RNA knockdown of Naked2 leads to a dramatic reduction in the 16-kDa cell surface isoform of TGF-alpha and increased cytosolic TGF-alpha immunoreactivity. We propose that Naked2 acts as a cargo recognition and targeting (CaRT) protein to ensure proper delivery, tethering, and fusion of TGF-alpha-containing vesicles to a distinct region at the basolateral surface of polarized epithelial cells.  相似文献   

10.
The Na,K-ATPases and the H,K-ATPases are two potassium-dependent homologous heterodimeric P2-type pumps that catalyze active transport of Na+ in exchange for K+ (Na,K-ATPase) or H+ in exchange for K+ (H,K-ATPase). The ubiquitous Na,K-ATPase maintains intracellular ion balance and membrane potential. The gastric H,K-ATPase is responsible for acid secretion by the parietal cell of the stomach. Both pumps consist of a catalytic α-subunit and a glycosylated β-subunit that is obligatory for normal pump maturation and trafficking. Individual N-glycans linked to the β-subunits of the Na,K-ATPase and H,K-ATPase are important for stable membrane integration of their respective α subunits, folding, stability, subunit assembly, and enzymatic activity of the pumps. They are also essential for the quality control of unassembled β-subunits that results in either the exit of the subunits from the ER or their ER retention and subsequent degradation. Overall, the importance of N-glycans for the␣maturation and quality control of the H,K-ATPase is greater than that of the Na,K-ATPase. The roles of individual N-glycans of the β-subunits in the post-ER trafficking, membrane targeting and plasma membrane retention of the Na,K-ATPase and H,K-ATPase are different. The Na,K-ATPase β 1-subunit is the major β-subunit isoform in cells with lateral location of the pump. All three N-glycans of the Na,K-ATPase β 1-subunit are important for the lateral membrane retention of the pump due to glycan-mediated interaction between the β 1-subunits of the two neighboring cells in the cell monolayer and cytosolic linkage of the α-subunit to the cytoskeleton. This intercellular β 1β 1 interaction is also important for formation of cell–cell contacts. In contrast, the N-glycans unique to the Na,K-ATPase β 2-subunit,which has up to eight N-glycosylation sites, contain apical sorting information. This is consistent with the apical location of the Na,K-ATPase in normal and malignant epithelial cells with high abundance of the β 2-subunit. Similarly, all seven N-glycans of the gastric H,K-ATPase β-subunit determine apical sorting of this subunit. Supported in part by NIH grants DK46917, DK58333, D53642, and USVA  相似文献   

11.
Generation of epithelial cell polarity requires mechanisms to sort plasma membrane proteins to the apical and basolateral domains. Sorting involves incorporation into specific vesicular carriers and subsequent fusion to the correct target membranes mediated by specific SNARE proteins. In polarized epithelial cells, the SNARE protein syntaxin 4 localizes exclusively to the basolateral plasma membrane and plays an important role in basolateral trafficking pathways. However, the mechanism of basolateral targeting of syntaxin 4 itself has remained poorly understood. Here we show that newly synthesized syntaxin 4 is directly targeted to the basolateral plasma membrane in polarized Madin-Darby canine kidney (MDCK) cells. Basolateral targeting depends on a signal that is centered around residues 24-29 in the N-terminal domain of syntaxin 4. Furthermore, basolateral targeting of syntaxin 4 is dependent on the epithelial cell-specific clathrin adaptor AP1B. Disruption of the basolateral targeting signal of syntaxin 4 leads to non-polarized delivery to both the apical and basolateral surface, as well as partial intercellular retention in the trans-Golgi network. Importantly, disruption of the basolateral targeting signal of syntaxin 4 leads to the inability of MDCK cells to establish a polarized morphology which suggests that restriction of syntaxin 4 to the basolateral domain is required for epithelial cell polarity.  相似文献   

12.
Epithelial polarization involves the segregation of apical and basolateral membrane domains, which are stabilized and maintained by tight junctions and membrane traffic. We report that unlike most apical and basolateral proteins in MDCK cells, which separate only after junctions have formed, the apical marker gp135 signifies an early level of polarized membrane organization established already in single cells. We identified gp135 as the dog orthologue of podocalyxin. With a series of domain mutants we show that the COOH-terminal PSD-95/Dlg/ZO-1 (PDZ)-binding motif is targeting podocalyxin to the free surface of single cells as well as to a subdomain of the terminally polarized apical membrane. This special localization of podocalyxin is shared by the cytoplasmic PDZ-protein Na+/H+ exchanger regulatory factor (NHERF)-2. Depleting podocalyxin by RNA interference caused defects in epithelial polarization. Together, our data suggest that podocalyxin and NHERF-2 function in epithelial polarization by contributing to an early apical scaffold based on PDZ domain-mediated interactions.  相似文献   

13.
Melanoma cell adhesion molecule (MCAM), an adhesion molecule belonging to the Ig superfamily, is an endothelial marker and is expressed in different epithelia. MCAM is expressed as two isoforms differing by their cytoplasmic domain: MCAM-l and MCAM-s (long and short). In order to identify the respective role of each MCAM isoform, we analyzed MCAM isoform targeting in polarized epithelial Madin-Darby canine kidney (MDCK) cells using MCAM-GFP chimeras. Confocal microscopy revealed that MCAM-s and MCAM-l were addressed to the apical and basolateral membranes, respectively. Transfection of MCAM-l mutants established that a single dileucine motif (41-42) of the cytoplasmic domain was required for MCAM-l basolateral targeting in MDCK cells. Although double labelling experiments showed that MCAM-l is not a component of adherens junctions and focal adhesions, its expression on basolateral membranes suggests that MCAM-l is involved in epithelium insuring.  相似文献   

14.
Membrane cofactor protein (MCP), a widely distributed complement regulatory protein, is expressed on the basolateral surface of polarized epithelial cells, and it is not endocytosed. The carboxyl-terminal tetrapeptide (FTSL) is required for polarized surface expression. The ability of this tetrapeptide to serve as an autonomous sorting signal has been analyzed by adding this sequence motif to the C terminus of an apical membrane protein, the influenza A virus hemagglutinin (HA). The recombinant protein HA-FTSL retained the apical localization of the parental HA protein. Substitution of the complete cytoplasmic tail of MCP for the cytoplasmic tail of HA resulted in the targeting of the chimeric protein (HA/MCP) to the basolateral surface suggesting that the carboxyl-terminal FTSL motif is a weak sorting signal that requires additional targeting information from the membrane-proximal part of the cytoplasmic tail of MCP for redirecting an apical protein to the basolateral membrane domain. In contrast to the native HA, the HA-FTSL protein was subject to endocytosis. The basolateral HA/MCP was also found to be internalized and thus differed from the basolateral MCP. This result suggests that the carboxyl-terminal FTSL motif serves as an internalization signal and that in native MCP sorting information outside the cytoplasmic tail counteracts this endocytosis signal. Substitution of a tyrosine for the phenylalanine dramatically increased the internalization with most of the HA-YTSL protein being present intracellularly. Our results are consistent with the view that the interplay of multiple sorting signals and the modification of a well known targeting signal (YTSL) by amino acid exchange (FTSL) determine the constitutive expression of MCP on the basolateral surface of polarized epithelial cells.  相似文献   

15.
《The Journal of cell biology》1993,121(5):1031-1039
Glycosylphosphatidylinositol (GPI) acts as an apical targeting signal in MDCK cells and other kidney and intestinal cell lines. In striking contrast with these model polarized cell lines, we show here that Fischer rat thyroid (FRT) epithelial cells do not display a preferential apical distribution of GPI-anchored proteins. Six out of nine detectable endogenous GPI-anchored proteins were localized on the basolateral surface, whereas two others were apical and one was not polarized. Transfection of several model GPI proteins, previously shown to be apically targeted in MDCK cells, also led to unexpected results. While the ectodomain of decay accelerating factor (DAF) was apically secreted, 50% of the native, GPI-anchored form, of this protein was basolateral. Addition of a GPI anchor to the ectodomain of Herpes simplex gD-1, secreted without polarity, led to basolateral localization of the fusion protein, gD1-DAF. Targeting experiments demonstrated that gD1-DAF was delivered vectorially from the Golgi apparatus to the basolateral surface. These results indicate that FRT cells have fundamental differences with MDCK cells with regard to the mechanisms for sorting GPI-anchored proteins: GPI is not an apical signal but, rather, it behaves as a basolateral signal. The "mutant" behavior of FRT cells may provide clues to the nature of the mechanisms that sort GPI-anchored proteins in epithelial cells.  相似文献   

16.
In polarized epithelial cells, newly synthesized membrane proteins are delivered on specific pathways to either the apical or basolateral domains, depending on the sorting motifs present in these proteins. Because myosin VI has been shown to facilitate secretory traffic in nonpolarized cells, we investigated its role in biosynthetic trafficking pathways in polarized MDCK cells. We observed that a specific splice isoform of myosin VI with no insert in the tail domain is required for the polarized transport of tyrosine motif containing basolateral membrane proteins. Sorting of other basolateral or apical cargo, however, does not involve myosin VI. Site-directed mutagenesis indicates that a functional complex consisting of myosin VI, optineurin, and probably the GTPase Rab8 plays a role in the basolateral delivery of membrane proteins, whose sorting is mediated by the clathrin adaptor protein complex (AP) AP-1B. Our results suggest that myosin VI is a crucial component in the AP-1B-dependent biosynthetic sorting pathway to the basolateral surface in polarized epithelial cells.  相似文献   

17.
Retinal pigment epithelial (RPE) cells apically polarize proteins that are basolateral in other epithelia. This reversal may be generated by the association of RPE with photoreceptors and the interphotoreceptor matrix, postnatal expansion of the RPE apical surface, and/or changes in RPE sorting machinery. We compared two proteins exhibiting reversed, apical polarities in RPE cells, neural cell adhesion molecule (N-CAM; 140-kD isoform) and extracellular matrix metalloproteinase inducer (EMMPRIN), with the cognate apical marker, p75-neurotrophin receptor (p75-NTR). N-CAM and p75-NTR were apically localized from birth to adulthood, contrasting with a basolateral to apical switch of EMMPRIN in developing postnatal rat RPE. Morphometric analysis demonstrated that this switch cannot be attributed to expansion of the apical surface of maturing RPE because the basolateral membrane expanded proportionally, maintaining a 3:1 apical/basolateral ratio. Kinetic analysis of polarized surface delivery in MDCK and RPE-J cells showed that EMMPRIN has a basolateral signal in its cytoplasmic tail recognized by both cell lines. In contrast, the basolateral signal of N-CAM is recognized by MDCK cells but not RPE-J cells. Deletion of N-CAM''s basolateral signal did not prevent its apical localization in vivo. The data demonstrate that the apical polarity of EMMPRIN and N-CAM in mature RPE results from suppressed decoding of specific basolateral signals resulting in randomized delivery to the cell surface.  相似文献   

18.
《The Journal of cell biology》1990,111(6):2365-2373
A polarized cell, to maintain distinct basolateral and apical membrane domains, must tightly regulate vesicular traffic terminating at either membrane domain. In this study we have examined the extent to which microtubules regulate such traffic in polarized cells. Using the polymeric immunoglobulin receptor expressed in polarized MDCK cells, we have examined the effects of nocodazole, a microtubule-disrupting agent, on three pathways that deliver proteins to the apical surface and two pathways that deliver proteins to the basolateral surface. The biosynthetic and transcytotic pathways to the apical surface are dramatically altered by nocodazole in that a portion of the protein traffic on each of these two pathways is misdirected to the basolateral surface. The apical recycling pathway is slowed in the presence of nocodazole but targeting is not disrupted. In contrast, the biosynthetic and recycling pathways to the basolateral surface are less affected by nocodazole and therefore appear to be more resistant to microtubule disruption.  相似文献   

19.
Oligodendrocytes possess two distinct membrane compartments--uncompacted plasma membrane (cell body, processes) and compact myelin. Specific targeting mechanisms must exist to establish and maintain these membrane domains. Polarized epithelial cells have the best characterized system for targeting components to apical and basolateral compartments. Since oligodendrocytes arise from neuroepithelial cells, we investigated whether they might utilize targeting paradigms similar to polarized epithelial cells. Myelin/oligodendrocyte glycoprotein (MOG) is a transmembrane Ig-like molecule restricted to uncompacted oligodendroglial plasma membrane. We stably expressed MOG in Madin-Darby canine kidney (MDCK) Type II epithelial cells, which have been extensively used in protein-targeting studies. Data from surface biotinylation assays and confocal microscopy revealed that MOG sorts exclusively to the basolateral membrane of MDCK cells. Expression vectors containing progressive truncations of MOG from the cytoplasmic C-terminus were expressed in MDCK cells to localize basolateral sorting signals. A loss of only four C-terminal residues results in some MOG expression at the apical surface. More strikingly, removal of the C-terminal membrane associated hydrophobic domain from MOG results in complete loss of basolateral sorting and specific targeting to the apical membrane. These data suggest that myelinating oligodendrocytes may utilize a sorting mechanism similar to that of polarized epithelia.  相似文献   

20.
The sodium-bicarbonate cotransporter NBC1 is targeted exclusively at the basolateral membrane. Mutagenesis of a dihydrophobic FL motif (residues 1013–1014) in the C-terminal domain disrupts the targeting of NBC1. In the present study, we determined the precise constraints of the FL motif required for basolateral targeting of NBC1 by expressing epitope-tagged wild-type and mutant NBC1 in MDCK cells and RNA-injected Xenopus oocytes and examining their subcellular localization. We assayed the functional activity of the mutants by measuring bicarbonate-induced currents in oocytes. Wild-type NBC1 (containing PFLS) was expressed exclusively on the basolateral membrane in MDCK cells. Reversal of the FL motif (PLFS) had no effect on basolateral targeting or activity. Shifting the FL motif one residue upstream (FLPS) resulted in mistargeting of the apical membrane but the FLPS mutant retained its functional activity in oocytes. Shifting the FL motif one residue downstream resulted in a mutant (PSFL) that did not efficiently translocate to the plasma membrane and was instead colocalized with the ER marker, protein disulfide isomerase (PDI). Analysis of circular dichroism (CD) revealed that a short peptide, 20 amino acid residues, of wild-type NBC1 contained a significant α-helical structure, whereas peptides in which the FL motif was reversed or C-terminally shifted were disordered. We therefore propose that the specific orientation and the precise location of the FL motif in the primary sequence of NBC1 are strict requirements for the α-helical structure of the C-terminal cytoplasmic domain and for targeting of NBC1 to the basolateral membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号