首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A gene encoding a putative sialidase was identified in the genome of the opportunistic fungal pathogen, Aspergillus fumigatus. Computational analysis showed that this protein has Asp box and FRIP domains, it was predicted to have an extracellular localization, and a mass of 42 kDa, all of which are characteristics of sialidases. Structural modeling predicted a canonical 6-bladed β-propeller structure with the model’s highly conserved catalytic residues aligning well with those of an experimentally determined sialidase structure. The gene encoding the putative Af sialidase was cloned and expressed in Escherichia coli. Enzymatic characterization found that the enzyme was able to cleave the synthetic sialic acid substrate, 4-methylumbelliferyl α-D-N-acetylneuraminic acid (MUN), and had a pH optimum of 3.5. Further kinetic characterization using 4-methylumbelliferyl α-D-N-acetylneuraminylgalactopyranoside revealed that Af sialidase preferred α2-3-linked sialic acids over the α2-6 isomers. No trans-sialidase activity was detected. qPCR studies showed that exposure to MEM plus human serum induced expression. Purified Af sialidase released sialic acid from diverse substrates such as mucin, fetuin, epithelial cell glycans and colominic acid, though A. fumigatus was unable to use either sialic acid or colominic acid as a sole source of carbon. Phylogenetic analysis revealed that the fungal sialidases were more closely related to those of bacteria than to sialidases from other eukaryotes.  相似文献   

2.
Trypanosoma cruzi is a hemoflagellate protozoan that causes Chagas’ disease. The life cycle of T. cruzi is complex and involves different evolutive forms that have to encounter different environmental conditions provided by the host. Herein, we performed a functional assessment of mitochondrial metabolism in the following two distinct evolutive forms of T. cruzi: the insect stage epimastigote and the freshly isolated bloodstream trypomastigote. We observed that in comparison to epimastigotes, bloodstream trypomastigotes facilitate the entry of electrons into the electron transport chain by increasing complex II-III activity. Interestingly, cytochrome c oxidase (CCO) activity and the expression of CCO subunit IV were reduced in bloodstream forms, creating an “electron bottleneck” that favored an increase in electron leakage and H2O2 formation. We propose that the oxidative preconditioning provided by this mechanism confers protection to bloodstream trypomastigotes against the host immune system. In this scenario, mitochondrial remodeling during the T. cruzi life cycle may represent a key metabolic adaptation for parasite survival in different hosts.  相似文献   

3.
Summary. New N-acyl D-amino acids were isolated from Bacillus pumilus IM 1801. Their structures were determined by chemical analysis and mass spectrometry. The lipid part was identified as a mixture of fatty acids with 11, 12, 13, 15, and 16 carbon atoms in the iso, anteiso or n configuration linked by an amide bond with a D-asparagine. They exhibited surfactant properties.  相似文献   

4.
The bifunctional enzyme UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) is the key enzyme for the biosynthesis of sialic acids, terminal components of glycoconjugates associated with a variety of physiological and pathological processes. Different protein isoforms of human and mouse GNE, deriving from splice variants, were predicted recently: GNE1 represents the GNE protein described in several studies before, GNE2 and GNE3 are proteins with extended and deleted N-termini, respectively. hGNE2, recombinantly expressed in insect and mamalian cells, displayed selective reduction of UDP-GlcNAc 2-epimerase activity by the loss of its tetrameric state, which is essential for full enzyme activity. hGNE3, which had to be expressed in Escherichia coli, only possessed kinase activity, whereas mGNE1 and mGNE2 showed no significant differences. Our data therefore suggest a role of GNE1 in basic supply of cells with sialic acids, whereas GNE2 and GNE3 may have a function in fine-tuning of the sialic acid pathway.  相似文献   

5.
Nucleoside N-phosphoamino acids were synthesized through Atherton-Todd reaction of nucleoside H-phosphonate with amino acids, and their structures were confirmed by NMR and ESI-MS. After nucleoside N-phosphoamino acid was incubated in anhydrous methanol at 40 °C for 72 h, di- to tetra-peptide derivatives were detected by ESI-MS, and their structures were further identified by multistage mass spectrometry. These and previously published studies in aqueous solution suggest that nucleoside N-phosphoamino acids could have been prebiotic precursors of oligopeptides.  相似文献   

6.
In this paper, the reactions of bovine insulin and small peptides, such as actin binding domain of thymosin β4 and Growth Hormone Releasing Factor (GRF 1–29 amino acids) with diisopropyloxyphosphite (DIPPH) and dimethyloxyphosphite (DMPH) were studied by modified Todd reaction. The MALDI-TOF or ESI-MS results showed that lysine, histidine and arginine residues in insulin could be phosphorylated under the water/ethanol system. The N,N,N-diisopropyloxyphosphorylated insulin analogues were characterized using MALDI-TOF and 31P NMR. These insulin analogues with different phosphorylation degree were separated and identified through LC-ESI-MS. In addition, circular dichroism (CD) spectra showed that the conformation of N,N,N-dimethyloxyphosphorylated insulin were only changed a little, whereas, that of N,N,N-diisopropyloxyphosphorylated insulin was changed completely.  相似文献   

7.
Sialate-O-acetylesterase was purified almost 900-fold from particle-free supernatants of horse liver by gel filtration, ion-exchange chromatography and isoelectric focussing. The native enzyme on gel filtration exhibits a molecular weight of 54,000 Da. It was separated by isoelectric focussing into two forms with pI values of 4.8 and 5.7, respectively. The esterase with a lower pI hydrolyses only 9-O-acetyl groups from sialic acids (KM 1.1 mM), while that with the higher pI esterifies both 4- and 9-O-acetylated monosaccharides at similar rates (KM 0.3 M and 1.3 mM, respectively). Both forms are inactive with 7-O-acetylated N-acetylneuraminic acid. Enzyme assays were carried out at the pH optimum (pH 8.4–8.6) using free O-acetylated sialic acids followed by direct analysis of the reaction products by isocratic anion-exchange HPLC. Glycosidically bound sialic acids can also be de-O-acetylated. Horse liver esterase seems to be an essential enzyme for the catabolism of 4-O-acetylated sialoglycoconjugates, since sialidase from this tissue cannot act on 4-O-acetylated sialic acids.  相似文献   

8.
Chondroitinase ABC is a lyase that degrades chondroitin sulfate, dermatan sulfate and hyaluronic acid into disaccharides. The purpose of this study was to determine the ability of chondroitinase ABC to degrade chondroitin sulfate in which the N-acetyl groups are substituted with different acyl groups. The bovine tracheal chondroitin sulfate A (bCSA) was N-deacetylated by hydrazinolysis, and the free amino groups derivatized into N-formyl, N-propionyl, N-butyryl, N-hexanoyl or N-benzoyl amides. Treatment of the N-acyl or N-benzoyl derivatives of bCSA with chondroitinase ABC and analysis of the products showed that the N-formyl, N-hexanoyl and N-benzoyl derivatives are completely resistant to the enzyme. In contrast, the N-propionyl or N-butyryl derivatives were degraded into disaccharides with slower kinetics compared to that of unmodified bCSA. The rate of degradation of bCSA derivatives by the enzyme was found to be in the order of N-acetyl>N-propionyl>>N-butyryl bCSA. These results have important implications for understanding the interaction of N-acetyl groups of glycosaminoglycans with chondroitinase ABC.  相似文献   

9.
Abtsract Comamonas strain D1 enzymatically inactivates quorum-sensing (QS) signal molecules of the N-acyl homoserine lactone (N-AHSL) family, and exhibits the broadest inactivation range of known bacteria. It degrades N-AHSL with acyl-side chains ranging from 4 to 16 carbons, with or without 3-oxo or 3-hydroxy substitutions. N-AHSL degradation yields HSL but not N-acyl homoserine: strain D1 therefore harbors an amidohydrolase activity. Strain D1 is the fifth bacterium species in which an N-AHSL amidohydrolase is described. Consistent with its N-AHSL degradation ability, strain D1 efficiently quenches various QS-dependent functions in other bacteria, such as violacein production by Chromobacterium violaceum and pathogenicity and antibiotic production in Pectobacterium.  相似文献   

10.
The expression of sialoglycoconjugates in Fonsecaea pedrosoi conidia, mycelia, and sclerotic cells was analyzed using influenza A and C virus strains, sialidase treatment, and lectin binding. Conidium and mycelium whole cells were recognized by Limax flavus (LFA), Maackia amurensis (MAA), and Sambucus nigra (SNA) lectins, denoting the presence of surface sialoglycoconjugates containing 2,3- and 2,6-sialylgalactosyl sequences. Sialidase-treated conidia reacted more intensively with peanut agglutinin (PNA), confirming the occurrence of sialyl-galactosyl linkages. Conidial cells agglutinated in the presence of influenza A and C virus strains, which confirmed the results obtained from lectin-binding experiments and revealed the presence of sialoglycoconjugates bearing 9-O-acetyl-N-acetylneuraminic acid (Neu5,9Ac2) surface structures. Western blotting analysis with peroxidase-labeled LFA demonstrated the occurrence of sialylglycoproteins in protein extracts from conidia and mycelia, with molecular masses corresponding to 56 and 40 kDa. An additional band of 77 kDa was detected in conidial extracts, suggesting an association between sialic acid expression and morphogenesis. Synthesis of sialic acids was correlated with sialidase expression, since both conidial and mycelial morphological stages presented secreted and cell-associated enzyme activity. Sialoglycoconjugates were not detected in F. pedrosoi sclerotic cells from in vitro and in vivo sources, which also do not express sialidase activity. The surface sialyl residues in F. pedrosoi are apparently involved in the fungal interaction with immune effector cells, since sialidase-treated conidia were less resistant to phagocytosis by human neutrophils from healthy individuals. These findings suggest that sialic acid expression in F. pedrosoi varies according to the morphological transition and may protect infecting propagules against immune destruction by host cells.  相似文献   

11.
Peculiarities of the rat behavior were studied in a series of experimental stress models after a systemic administration of new N-uronoyl derivatives of amino acids. The psychotropic effect was shown to be determined by the nature of the amino acid fragment. N-(1,2:3,4-Di-O-isopropylidene-α-D-galactopyraneuronoyl)-glycylglycine exhibited an anxiolytic effect more pronounced than that of pyracetam, whereas N-(1,2:3,4-di-O-isopropilidene-α-D-galactopyranuronoyl)-glycylglutamic acid has antidepressant action stronger than that of amitriptyline. Mechanisms for the psychotropic effects of the examined derivatives are discussed.  相似文献   

12.
Biotransformation of flavonoids using Escherichia coli harboring nucleotide sugar-dependent uridine diphosphate-dependent glycosyltransferases (UGTs) commonly results in the production of a glucose conjugate because most UGTs are specific for UDP-glucose. The Arabidopsis enzyme AtUGT78D2 prefers UDP-glucose as a sugar donor and quercetin as a sugar acceptor. However, in vitro, AtUGT78D2 could use UDP-N-acetylglucosamine as a sugar donor, and whole cell biotransformation of quercetin using E. coli harboring AtUGT78D2 produced quercetin 3-O-N-acetylglucosamine. In order to increase the production of quercetin 3-O-N-acetylglucosamine via biotransformation, two E. coli mutant strains deleted in phosphoglucomutase (pgm) or glucose-1-phosphate uridylyltransferase (galU) were created. The galU mutant produced up to threefold more quercetin 3-O-N-acetylglucosamine than wild type, resulting in the production of 380-mg/l quercetin 3-O-N-acetylglucosamine and a negligible amount of quercetin 3-O-glucoside. These results show that construction of bacterial strains for the synthesis of unnatural flavonoid glycosides is possible through rational selection of the nucleotide sugar-dependent glycosyltransferase and engineering of the nucleotide sugar metabolic pathway in the host strain.  相似文献   

13.
NanC is an Escherichia coli outer membrane protein involved in sialic acid (Neu5Ac, i.e., N-acetylneuraminic acid) uptake. Expression of the NanC gene is induced and controlled by Neu5Ac. The transport mechanism of Neu5Ac is not known. The structure of NanC was recently solved (PDB code: 2WJQ) and includes a unique arrangement of positively charged (basic) side chains consistent with a role in acidic sugar transport. However, initial functional measurements of NanC failed to find its role in the transport of sialic acids, perhaps because of the ionic conditions used in the experiments. We show here that the ionic conditions generally preferred for measuring the function of outer-membrane porins are not appropriate for NanC. Single channels of NanC at pH 7.0 have: (1) conductance 100 pS to 800 pS in 100 mM KCl to 3 M KCl), (2) anion over cation selectivity (V reversal = +16 mV in 250 mM KCl || 1 M KCl), and (3) two forms of voltage-dependent gating (channel closures above ±200 mV). Single-channel conductance decreases by 50% when HEPES concentration is increased from 100 μM to 100 mM in 250 mM KCl at pH 7.4, consistent with the two HEPES binding sites observed in the crystal structure. Studying alternative buffers, we find that phosphate interferes with the channel conductance. Single-channel conductance decreases by 19% when phosphate concentration is increased from 0 mM to 5 mM in 250 mM KCl at pH 8.0. Surprisingly, TRIS in the baths reacts with Ag|AgCl electrodes, producing artifacts even when the electrodes are on the far side of agar–KCl bridges. A suitable baseline solution for NanC is 250 mM KCl adjusted to pH 7.0 without buffer.  相似文献   

14.
Toxoplasma gondii is an intracellular parasite able to both promote and inhibit apoptosis. T. gondii renders infected cells resistant to programmed cell death induced by multiple apoptotic triggers. On the other hand, increased apoptosis of immune cells after in vivo infection with T. gondii may suppress the immune response to the parasite. Glycosylphosphatidylinositol (GPI)-anchored proteins dominate the surface of T. gondii tachyzoites and GPIs are involved in the pathogenicity of protozoan parasites. In this report, we determine if GPIs are responsible for inhibition or induction of host cell apoptosis. We show here that T. gondii GPIs fail to block apoptosis that was triggered in human-derived cells via extrinsic or intrinsic apoptotic pathways. Furthermore, characteristics of apoptosis, e.g. caspase-3/7 activity, phosphatidylserine exposition at the cell surface or DNA strand breaks, were not observed in the presence of T. gondii GPIs. These results indicate that T. gondii GPIs are not involved in survival or in apoptosis of host cells. This absence of effect on apoptosis could be a feature common to GPIs of other parasites.  相似文献   

15.
Studying Pneumocystis has proven to be a challenge from the perspective of propagating a significant amount of the pathogen in a facile manner. The study of several fungal pathogens has been aided by the use of invertebrate model hosts. Our efforts to infect the invertebrate larvae Galleria mellonella with Pneumocystis proved futile since P. murina neither caused disease nor was able to proliferate within G. mellonella. It did, however, show that the pathogen could be rapidly cleared from the host.  相似文献   

16.
Trypanosoma cruzi, the agent of Chagas disease, expresses a unique enzyme, the trans-sialidase (TcTS) involved in the transfer of sialic acid from host glycoconjugates to mucins of the parasite. The enzyme is shed to the medium and may affect the immune system of the host. We have previously described that lactose derivatives effectively inhibited the transfer of sialic acid to N-acetyllactosamine. Lactitol also prevented the apoptosis caused by the TcTS, although it is rapidly eliminated from the circulatory system. In this paper we report covalent conjugation of polyethylene glycol (PEG) with lactose, lactobionolactone and benzyl β-D-galactopyranosyl-(1→6)-2-amino-2-deoxy-α-D-glucopyranoside (1) with the hope to improve the bioavailability, though retaining their inhibitory properties. Different conjugation methods have been used and the behavior of the PEGylated products in the TcTS reaction was studied.  相似文献   

17.
The O-acetylation of sialic acids is one of the most frequent modifications of these monosaccharides and modulates many cell biological and pathological events. Sialic acid-specific O-acetyltransferases and O-acetylesterases are responsible for the metabolism of esterified sialic acids. Assays were developed for the analysis of the activities and specificities of these enzymes. The methods had to be varied in dependence on the substrate assayed, the kind of biological source, and the state of enzyme purity. With the new techniques the primary site of O-acetyl incorporation at C-7, catalyzed by the animal sialate-O-acetyltransferases studied, was ascertained. Correspondingly, this enzyme, for example from bovine submandibular gland, can be denominated as AcCoA:sialate-7-O-acetyltransferase (EC 2.3.1.45). Methods for assaying the activity of esterases de-O-acetylating sialic acids and their metabolic cooperation with the O-acetyltransferases are presented.  相似文献   

18.
Trypanosoma cruzi has many molecules that need metallic elements to work, allowing cell invasion and the establishment of infection, causing Chagas disease. Nonetheless, knowledge regarding how the parasites address metals and maintain homeostasis is lacking. To study this relationship, zinc, cadmium and mercury were chosen. Epimastigote, trypomastigote and intracellular forms of T. cruzi were incubated with these metals for different times and at different concentrations. In general, epimastigotes were the most sensitive and trypomastigotes the most resistant to metals. ZnCl2 induced low toxic effects to all parasite forms. Although the parasites were very sensitive to the toxic effects of CdCl2 and HgCl2, pretreatment with ZnCl2 decreased the death rate. The trypomastigotes pretreated with CdCl2 were unable to infect the host cells, and the treated intracellular forms were damaged after 2 h of incubation, when the toxic effects were poorly reverted. New insights on metal toxicity mechanisms are provided, helping to understand how metallic ions influence the parasite’s biochemical and physiological processes.  相似文献   

19.
Histones of trypanosomes are quite divergent when compared to histones of most eukaryotes. Nevertheless, the histone H4 of Trypanosoma cruzi, the protozoan that causes Chagas’ disease, is acetylated in the N terminus at lysines 4, 10, and 14. Here, we investigated the cellular distribution of histone H4 containing each one of these posttranslational modifications by using specific antibodies. Histone H4 acetylated at lysine 4 (H4-K4ac) is found in the entire nuclear space preferentially at dense chromatin regions, excluding the nucleolus of replicating epimastigote forms of the parasite. In contrast, histone H4 acetylated either at K10 or K14 is found at dispersed foci all over the nuclei and at the interface between dense and nondense chromatin areas as observed by ultrastructural immunocytochemistry. The level of acetylation at K4 decreases in nonreplicating forms of the parasites when compared to K10 and K14 acetylations. Antibodies recognizing the K14 acetylation strongly labeled cells at G2 and M stages of the cell cycle. Besides that, hydroxyurea synchronized parasites show an increased acetylation at K4, K10, and K14 after S phase. Moreover, we do not observed specific colocalization of K4 modifications with the major sites of RNA polymerase II. Upon γ-irradiation that stops parasite replication until the DNA is repaired, dense chromatin disappears and K4 acetylation decreases, while K10 and K14 acetylation increase. These results indicate that each lysine acetylation has a different role in T. cruzi. While K4 acetylation occurs preferentially in proliferating situations and accumulates in packed chromatin, K10 and K14 acetylations have a particular distribution probably at the boundaries between packed and unpacked chromatin. Sheila Cristina Nardelli and Julia Pinheiro Chagas da Cunha contributed equally to this work.  相似文献   

20.
Trypanosoma cruzi epimastigote forms concentrate their major protease, cruzipain, in the same compartment where these parasites store macromolecules obtained from medium and for this ability these organelles were named as reservosomes. Intracellular digestion occurs mainly inside reservosomes and seems to be modulated by cruzipain and its natural inhibitor chagasin that also concentrates in reservosomes. T. cruzi mammalian forms, trypomastigotes and amastigotes, are unable to capture macromolecules by endocytosis, but also express cruzipain and chagasin, whose role in infectivity has been described. In this paper, we demonstrate that trypomastigotes and amastigotes also concentrate cruzipain, chagasin as well as serine carboxypeptidase in hydrolase-rich compartments of acidic nature. The presence of P-type proton ATPase indicates that this compartment is acidified by the same enzyme as epimastigote endocytic compartments. Electron microscopy analyzes showed that these organelles are placed at the posterior region of the parasite body, are single membrane bound and possess an electron-dense matrix with electronlucent inclusions. Three-dimensional reconstruction showed that these compartments have different size and shape in trypomastigotes and amastigotes. Based on these evidences, we suggest that all T. cruzi developmental stages present lysosome-related organelles that in epimastigotes have the additional and unique ability of storing cargo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号