共查询到20条相似文献,搜索用时 0 毫秒
1.
The catalyst in bioprocesses, i.e. the cell mass, is one of the most challenging and important variables to monitor in bioprocesses. In the present study, cell mass in cultivations with Saccharomyces cerevisiae was monitored on-line with a non-invasive in situ placed sensor measuring multi-wavelength culture fluorescence. The excitation wavelength ranged from 270 to 550 nm with 20 nm steps and the emission wavelength range was from 310 to 590 nm also with 20 nm steps. The obtained spectra were analysed chemometrically with the multi-way technique, parallel factor analysis (PARAFAC), resulting in a decomposition of the multivariate fluorescent landscape, whereby underlying spectra of the individual intrinsic fluorophors present in the cell mass were estimated. Furthermore, gravimetrically determined cell mass concentration was used together with the fluorescence spectra for calibration and validation of multivariate partial least squares (PLS) regression models. Both two- and three-way models were calculated, the models behaved similarly giving root mean square error of prediction (RMSEPs) of 0.20 and 0.19 g l(-1), respectively, when test set validation was used. Based on this work, it is evident that on-line monitoring of culture fluorescence can be used for estimation of the cell mass concentration during cultivations. 相似文献
2.
Klaus Joeris Jan-Gerd Frerichs Konstantin Konstantinov Thomas Scheper 《Cytotechnology》2002,38(1-3):129-134
The in-situ microscope is a system developed to acquire images of mammalian cells directly inside a bioreactor (in-situ) duringa fermentation process. It requires only minimal operator intervention and it is well suited for either batch or long-termperfusion fermentation runs. The system fits into a 25 mm standard port and has a retractable housing, similar to the industry standard InTrac. Therefore, it can be cleaned and serviced without interruption of the process or risking contamination. A sampling zone inside the bioreactor encloses adefined volume of culture and an image sequence is taken. The height of the sampling zone is set by the control program and canbe adjusted during the cultivation to accommodate a wide range of change in cell density. The system has an infinity correctedoptical train and uses a progressive scan CCD camera to acquirehigh quality images. Process relevant information like cell density is extracted fromthe images by digital image processing software, currently in development for mammalian cells (CHO, BHK). The first version ofthe software will be able to estimate the cell density, cellsize distribution and to give information of the degree of aggregation (single and double cells, cell clusters). 相似文献
3.
On-line monitoring of respiration in recombinant-baculovirus infected and uninfected insect cell bioreactor cultures 总被引:2,自引:0,他引:2
Respiration rates in Spodoptera frugiperda (Sf-9) cell bioreactor cultures were successfully measured on-line using two methods: The O(2) uptake rate (OUR) was determined using gas phase pO(2) values imposed by a dissolved oxygen controller and the CO(2) evolution rate (CER) was measured using an infrared detector. The measurement methods were accurate, reliable, and relatively inexpensive. The CER was routinely determined in bioreactor cultures used for the production of several recombinant proteins. Simple linear relationships between viable cell densities and both OUR and CER in exponentially growing cultures were used to predict viable cell density. Respiration measurements were also used to follow the progress of baculoviral infections in Sf-9 cultures. Infection led to increases in volumetric and per-cell respiration rates. The relationships between respiration and several other culture parameters, including viable cell density, cell protein, cell volume, glucose consumption, lactate production, viral titer, and recombinant beta-galactosidase accumulation, were examined. The extent of the increase in CER following infection and the time postinfection at which maximum CER was attained were negatively correlated with the multiplicity of infection (MOI) at multiplicities below the level required to infect all the cells in a culture. Delays in the respiration peak related to the MOI employed were correlated with delays in the peak in recombinant protein accumulation. DO levels in the range 5-100% did not exert any major effects on viable cell densities, CER, or product titer in cultures infected with a baculovirus expressing recombinant beta-galactosidase. (c) 1996 John Wiley & Sons, Inc. 相似文献
4.
Marincs F 《Applied microbiology and biotechnology》2000,53(5):536-541
Bioluminescence was used to monitor growth of Escherichia coli in batch cultures on-line. Light emission of a strain engineered for constitutive bioluminescence was monitored with a simple
set-up consisting of a photodiode, a photodetector amplifier and a recorder. Bioluminescence and colony forming units (CFU)
of the cultures increased and decreased proportionally and were correlated during every growth phase at temperatures between
28 °C and 40 °C. Up to the late log (deceleration) phase, both light emission and CFU increased rapidly. Beyond the stationary
phase these characteristics decreased very slowly at lower temperatures, while at higher ones they declined more rapidly.
Towards the end of the cultivation, light emission of the cultures dropped to undetectable levels, even though CFU were recovered.
This was particularly marked at lower temperatures where non-luminescent cultures retained very high CFU. This indicates that
the actual metabolism of cells in a culture can be at a very low level or completely shut down, yet cells retain their capability
to be culturable. The on-line technology described here has a number of potential uses in the laboratory and industry.
Received: 30 September 1999 / Received revision: 29 November 1999 / Accepted: 3 December 1999 相似文献
5.
A commercial analyzer was tested for on-line monitoring of fermentations. A new sample block was constructed to effectively degas the fermentation broth. The robust analyzer accurately measured glucose up to 110 mmol/l and lactate up to 21 mmol/l at a frequency of 1 measurement per 2 minutes directly in suspensions of mammalian and yeast cells. 相似文献
6.
7.
Blake-Coleman BC Clarke DJ Calder MR Moody SC 《Biotechnology and bioengineering》1986,28(8):1241-1249
Acoustic resonance densitometry (ARD) is reported as a method suitable not only for precise investigations into changes of specific gravity in bioreactor media but also as a technique able to provide an accurate wide range and direct determination of cellular mass in fermentation processes. It is further shown that this method can replace present optical procedures, minimizing dilution errors and operator involvement and is suitable for development as an on-line biomass monitoring system. 相似文献
8.
Soley A Lecina M Gámez X Cairó JJ Riu P Rosell X Bragós R Gòdia F 《Journal of biotechnology》2005,118(4):398-405
The application of impedance spectroscopy to estimate on-line cell concentration was studied. The estimation was based on the relative variation between electrical impedance measured at low (10 kHz) and high frequencies (10 MHz). Studies were carried out to characterise the influence of changes in physical and chemical parameters on the impedance measurement. Two different possibilities to perform on-line measurements were tested: a simple set-up, based on an in situ probe, gave good results but was not suitable for high agitation and aeration rates. An ex situ flow-through on-line measuring cell was used to overcome these problems, showing a better performance. The use of this set-up for the growth monitorisation of a Saccharomyces cerevisiae culture showed an efficient performance, having the correlation between estimated and measured S. cerevisiae a Pearson coefficient of 0.999. 相似文献
9.
A large number of assays are available to monitor viability in mammalian cell cultures with most defining loss of viability
as a loss of plasma membrane integrity, a characteristic of necrotic cell death. However, the majority of cultured cells die
by apoptosis and early apoptotic cells, although non-viable, maintain an intact plasma membrane and are thus ignored. Here
we measure the viability of cultures of a number of common mammalian cell lines by assays that measure membrane integrity
(a measure of necrotic cell death) and assays that measure apoptotic cells, and show that discrepancies in the measurement
of culture viability have a significant impact on the calculation of cell culture parameters and lead to skewed experimental
data. 相似文献
10.
Cell culture technology has become a widely accepted method used to derive therapeutic and diagnostic protein products. Mammalian cells adapted to grow in bioreactors now play an integral role in the development of these biologicals. A major limiting factor determining the output efficiency of mammalian cell cultures however, is apoptosis or programmed cell death. Methods to delay apoptosis and increase the longevity of cell cultures can lead to more economical processes. Researchers have shown that both genetic and chemical strategies to block apoptotic signals can increase cell culture productivity. Here, we discuss various strategies which have been implemented to improve cellular viabilities and productivities in batch cultures. 相似文献
11.
An intercalating fluorochrome, PicoGreen, was assessed for its ability to determine the concentration of DNA in clarified mammalian cell culture broths containing monoclonal antibodies. Fluorescent signal suppression was ameliorated by sample dilution or by performing the assay above the pI of secreted IgG. The source of fluorescence in clarified culture broth was validated by incubation with RNase A and DNase I. At least 91.8% of fluorescence was attributable to nucleic acid and pre-digestion with RNase A was shown to be a requirement for successful quantification of DNA in such samples. 相似文献
12.
On-line monitoring of insect cell cultures used for the production of recombinant proteins with the baculovirus expression vector system (BEVS) provides valuable tools for the optimization, operation, and control of the production process. The relative permittivity (epsilon') and CO(2) evolution rates (CER) were measured on-line using the biomass monitor and the infrared CO(2) analyzer, respectively. The growth and infection phases of two different cell lines, Spodoptera frugiperda (Sf-9) and Trichoplusia ni(High-5), were monitored using the above measurements. These in turn were correlated to the progress of the culture by using the off-line measurements of protein produced, virus titer, and biovolume, which is the product of viable cell density and mean cell volume. The epsilon', CER, and the biovolume profiles were closely matched during the growth phase of cells when grown in a batch or fed batch culture. The relationship became more complex when the cultures were either in stationary phase or in the postinfection phase. The epsilon' profile was found to be a good indicator of the process of synchronous baculoviral infection, showing a plateau between 18 and 24 h postinfection (hpi), the period during which budded virus is produced, and a peak at approximately 48 hpi correlated to the onset of accelerated cell lysis. The CER profile continues to increase after the growth period with a peak around the 24 hpi period, after which there is a decline in the profile corresponding to release of virus as seen from virus titer determinations. This was examined for Sf-9 cultures under conditions of cell densities from 3 to 50 x 10(6) cells/mL and MOI values ranging from 0.001 to 1000. The profiles were found to be similar also in the case of the High-5 cells. Thus both measurements give reliable information regarding the physiological status of the cells as seen from their correlation to virus and protein production. A further combination of these with the off-line measured parameters such as the biovolume and metabolite concentrations can give a more detailed understanding of the process and help in the better design and automation of these processes. 相似文献
13.
14.
Advances in on-line monitoring and control of mammalian cell cultures: Supporting the PAT initiative
In recent years, much attention has been directed towards the development of global methods for on-line process monitoring, especially since the Food and Drug Administration (FDA) launched the Process Analytical Technology (PAT) guidance, stimulating biopharmaceutical companies to update their monitoring tools to ensure a pre-defined final product quality. The ideal technologies for biopharmaceutical processes should operate in situ, be non-invasive and generate on-line information about multiple key bioprocess and/or metabolic variables. A wide range of spectroscopic techniques based on in situ probes have already been tested in mammalian cell cultures, such as near infrared (NIR), mid infrared (MIR), 2D fluorescence and dielectric capacitance spectroscopy; similarly, the electronic nose technique based on chemical array sensors has been tested for in situ off-gas analysis of mammalian cell cultures. All these methods provide series of spectra, from which meaningful information must be extracted. In this sense, data mining techniques such as principal components regression (PCR), partial least squares (PLS) or artificial neural networks (ANN) have been applied to handle the dense flow of data generated from the real-time process analyzers. Furthermore, the implementation of feedback control methods would help to improve process performance and ultimately ensure reproducibility. This review discusses the suitability of several spectroscopic techniques coupled with chemometric methods for improved monitoring and control of mammalian cell processes. 相似文献
15.
Zeiser A Bédard C Voyer R Jardin B Tom R Kamen AA 《Biotechnology and bioengineering》1999,63(1):122-126
The use of on-line relative permittivity (epsilon') measurements for monitoring cultures of Sf-9 cells was evaluated in a batch culture and a batch infected with a baculovirus expressing beta-galactosidase. It was found that viable cell density and volume essentially accounted for all the variation in epsilon' in both non-infected and synchronously infected cultures, indicating that the epsilon' of a cell suspension was sensitive only to changes in the viable cell population. Additionally the parameter provided clearly defined signposts of the progress of the infection. 相似文献
16.
17.
Two infected Sf-9 cell cultures were monitored on-line by multi-frequency permittivity measurements using the Fogale BIOMASS SYSTEM® and by applying different off-line methods (CASY®1, Vi-CELL?, packed cell volume) to measure the biovolume and the mean diameter of the cell population. During the growth phase and the early infection phase the measured permittivity at the working frequency correlated well with the different off-line methods for the biovolume. We found a value of 0.67 pF cm?1 permittivity per unit of total biovolume (CASY) (μL mL?1). After the maximum value in the permittivity was reached, i.e. when the viability of the cultures decreased significantly, we observed different time courses for the biovolume depending on the applied method. The differences were compared and could be explained by the underlying measurement principles. Furthermore, the characteristic frequency (fC) was calculated from the on-line scanning permittivity measurements. The fC may provide an indication of changes in cell diameter and membrane properties especially after infection and could also be an indicator for the onset of the virus production phase. The changes in fC were qualitatively explained by the underlying equation that is correlating fC and the properties of the cell population (cell diameter, intracellular conductivity and capacitance per membrane area). 相似文献
18.
Histone acetylation in synchronized mammalian cell cultures 总被引:2,自引:0,他引:2
19.
Nuclear counts determined by crystal violet staining from samples of stationary or microcarrier cultures of hybridomas, CHO or Vero cells were consistently and significantly higher than cell concentrations determined by the trypan blue or Coulter counter methods. This difference was attributed to the presence of a significant proportion of binucleated cells, which are assumed to be 35% of the cell population in the stationary phase of Vero cultures. The proportion of such cells during exponential growth was variable. However, continuous sub-culture of these cells induced a degree of synchrony during growth which resulted in a cyclic variation of the difference between the cell and nuclei counting techniques. This data indicates that care should be taken in interpreting cell culture profiles based solely on crystal violet nuclei staining counts. 相似文献
20.
Cell cycle kinetics of lepidopteran cell lines Sf9 (Spodoptera frugiperda) and IZDMb0503 (Mamestra brassicae) were investigated and compared to mammalian cell cycle distributions. The resting phase (G0) of mammalian cells is characterized by a 2c-DNA content whereas G0-phase of insect cell lines is characterized by a 4c-DNA content. Flow cytometric data in combination with growth curves of partially synchronized and asynchronously growing cells proved the existence of this phenomenon. Kinetics of cells labeled by the thymidine analog on 5-bromo-2′-deoxyuridine supported these results, which now render the possibility of applying cell cycle analysis in fermentation technology of insect cells. 相似文献