首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Discovery of a sensitive blood biochemical marker of copper status would be valuable for assessing marginal copper intakes. Rodent models were used to investigate whether erythrocyte concentrations of copper,zinc-superoxide dismutase (SOD), and the copper metallochaperone for SOD (CCS) were sensitive to dietary copper changes. Several models of copper deficiency were studied in postweanling male Holtzman rats, male Swiss Webster mice offspring, and both rat and mouse dams. Treatment resulted in variable but significantly altered copper status as evaluated by the presence of anemia, and lower liver copper and higher liver iron concentrations in copper-deficient compared with copper-adequate animals. Associated with this copper deficiency were consistent reductions in immunoreactive SOD and robust enhancements in CCS. In most cases, the ratio of CCS:SOD was several-fold higher in red blood cell extracts from copper-deficient compared with copper-adequate rodents. Determination of red cell CCS:SOD may be useful for assessing copper status of humans.  相似文献   

2.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive motor neuron degeneration, paralysis, and death. Mutant Cu,Zn-superoxide dismutase (SOD1) causes a subset of ALS by an unidentified toxic property. Increasing evidence suggests that chaperone dysfunction plays a role in motor neuron degeneration in ALS. To investigate the relationship between mutant SOD1 expression and chaperone dysfunction, we measured chaperone function in central nervous system tissue lysates from normal mice and transgenic mice expressing human SOD1 variants. We observed a significant decrease in chaperone activity in tissues from mice expressing ALS-linked mutant SOD1 but not control mice expressing human wild type SOD1. This decrease was detected only in the spinal cord, became apparent by 60 days of age (before the onset of muscle weakness and significant motor neuron loss), and persisted throughout the late stages. In addition, this impairment of chaperone activity occurred only in cytosolic but not in mitochondrial and nuclear fractions. Furthermore, multiple recombinant human SOD1 mutants with differing biochemical and biophysical properties inhibited chaperone function in a cell-free extract of normal mouse spinal cords. Thus, mutant SOD1 proteins may impair chaperone function independent of gene expression in vivo, and this inhibition may be a shared property of ALS-linked mutant SOD1 proteins.  相似文献   

3.
Although antioxidants are used to treat an overdose of the analgaesic/antipyretic drug APAP (acetaminophen), roles of antioxidant enzymes in APAP-induced hepatotoxicity remain controversial. Our objective was to determine impacts of knockout of SOD1 (superoxide dismutase; Cu,Zn-SOD) alone or in combination with selenium-dependent GPX1 (glutathione peroxidase-1) on APAP-induced hepatotoxicity. All SOD1-null (SOD1-/-) and SOD1- and GPX1-double-knockout mice survived an intraperitoneal injection of 600 mg of APAP per kg of body mass, whereas 75% of WT (wild-type) and GPX1-null mice died within 20 h. Survival time of SOD1-/- mice injected with 1200 mg of APAP per kg of body mass was longer than that of the WT mice (934 compared with 315 min, P<0.05). The APAP-treated SOD1-/- mice had less (P<0.05) plasma ALT (alanine aminotransferase) activity increase and attenuated (P<0.05) hepatic glutathione depletion than the WT mice. The protection conferred by SOD1 deletion was associated with a block of the APAP-mediated hepatic protein nitration and a 50% reduction (P<0.05) in activity of a key APAP metabolism enzyme CYP2E1 (cytochrome P450 2E1) in liver. The SOD1 deletion also caused moderate shifts in the APAP metabolism profiles. In conclusion, deletion of SOD1 alone or in combination with GPX1 greatly enhanced mouse resistance to APAP overdose. Our results suggest a possible pro-oxidant role for the physiological level of SOD1 activity in APAP-mediated hepatotoxicity.  相似文献   

4.
In an effort to characterize the insect molting hormone bursicon from the cockroach, Periplaneta americana, amino acid sequences with high identity of Cu,Zn-superoxide dismutase (SOD) of Drosophila virilis were identified. Antisera against a conserved region of SOD, and a sequence unique to Periplaneta SOD were produced and used to test whether bursicon might be a form of SOD. Western blots of one- and two-dimensional gels revealed that the dimeric form of SOD and bursicon have a similar molecular mass (30 kDa). The two proteins can be separated, however, according to their different isoelectric points. Bursicon is identified in two-dimensional gels by elution from four unique spots not labeled by the anti-SOD antisera. In sections of Periplaneta nerve cords the antisera labeled glial material surrounding neuronal somata close to the neural sheath. Bursicon, however, is contained in unique cell pairs in the ganglia of the ventral nerve cord. These neurons were labeled with new antisera produced against novel sequences of one of the four above-mentioned bursicon active spots. The results show unequivocally that SOD and bursicon are distinctly different proteins. Furthermore, the anti-SOD antisera provided a tool to isolate and sequence bursicon.  相似文献   

5.
6.
Insertion of copper into superoxide dismutase 1 (SOD1) in vivo requires the copper chaperone for SOD1 (CCS). CCS encompasses three protein domains: copper binding Domains I and III at the amino and carboxyl termini, and a central Domain II homologous to SOD1. Using a yeast interaction mating system, yeast CCS was seen to physically interact with SOD1, and this interaction required sequences at the predicted dimer interface of CCS Domain II. Interactions with SOD1 also required sequences of Domain III, but not Domain I. Mutations were introduced at the dimer interface of yeast SOD1, and the corresponding mutant failed to interact with CCS. When loaded with copper independent of CCS, this mutant SOD1 exhibited superoxide scavenging activity, but was normally inactive in vivo because CCS failed to recognize the enzyme. Activation of SOD1 by CCS was also examined using an in vivo assay for copper incorporation into SOD1. Yeast CCS was observed to insert copper into a pre-existing pool of apoSOD1 without the need for new SOD1 synthesis or for protein unfolding by the major SSA cytosolic heat shock proteins. Our data are consistent with a model in which prefolded dimers of apoSOD1 serve as substrate for the CCS copper chaperone.  相似文献   

7.
Point mutations of Cu,Zn-superoxide dismutase (SOD) have been linked to familial amyotrophic lateral sclerosis (FALS). We reported that the Swedish FALS Cu,Zn-SOD mutant, D90A, exhibited an enhanced hydroxyl radical-generating activity, while its dismutation activity was identical to that of the wild-type enzyme (Kim et al. 1998a; 1998b). Transgenic mice that express a mutant Cu,Zn-SOD, Gly93 --> Ala (G93A), have been shown to develop amyotrophic lateral sclerosis (ALS) symptoms. We cloned the cDNA for the FALS G93A mutant, overexpressed the protein in E. coli cells, purified the protein, and studied its enzymic activities. Our results showed that the G93A, the D90A, and the wild-type enzymes have identical dismutation activity. However, the hydroxyl radical-generating activity of the G93A mutant was enhanced relative to those of the D90A and the wild-type enzyme (wild-type < D90A < G93A). These higher free radical-generating activities of mutants facilitated the release of copper ions from their own molecules (wild-type < D90A < G93A). The released copper ions can enhance the Fenton-like reaction to produce hydroxyl radicals and play a major role in the oxidative damage of macromolecules. Thus, the FALS symptoms may be associated with the enhancements in both the free radical-generating activity and the releasing of copper ions from the mutant enzyme.  相似文献   

8.
The reconstitution of Cu,Zn-superoxide dismutase from the copper-free protein by the Cu(I).GSH complex was monitored by: (a) EPR and optical spectroscopy upon reoxidation of the enzyme-bound copper; (b) NMR spectroscopy following the broadening of the resonances of the Cu(I).GSH complex after addition of Cu-free,Zn-superoxide dismutase; and (c) NMR spectroscopy of the Cu-free,Co(II) enzyme following the appearance of the isotropically shifted resonances of the Cu(I), Co enzyme, Cu(I).GSH was found to be a very stable complex in the presence of oxygen and a more efficient copper donor to the copper-free enzyme than other low molecular weight Cu(II) complexes. In particular, 100% reconstitution was obtained with stoichiometric copper at any GSH:copper ratio between 2 and 500. Evidence was obtained for the occurrence of a Cu(I).GSH.protein intermediate in the reconstitution process. In view of the inability of copper-thionein to reconstitute Cu,Zn-superoxide dismutase and of the detection of copper.GSH complexes in copper-over-loaded hepatoma cells (Freedman, J.H., Ciriolo, M.R., and Peisach, J. (1989) J. Biol. Chem. 264, 5598-5605), Cu(I).GSH is proposed as a likely candidate for copper donation to Cu-free,Zn-superoxide dismutase in vivo.  相似文献   

9.
Chu CC  Lee WC  Guo WY  Pan SM  Chen LJ  Li HM  Jinn TL 《Plant physiology》2005,139(1):425-436
The copper chaperone for superoxide dismutase (CCS) has been identified as a key factor integrating copper into copper/zinc superoxide dismutase (CuZnSOD) in yeast (Saccharomyces cerevisiae) and mammals. In Arabidopsis (Arabidopsis thaliana), only one putative CCS gene (AtCCS, At1g12520) has been identified. The predicted AtCCS polypeptide contains three distinct domains: a central domain, flanked by an ATX1-like domain, and a C-terminal domain. The ATX1-like and C-terminal domains contain putative copper-binding motifs. We have investigated the function of this putative AtCCS gene and shown that a cDNA encoding the open reading frame predicted by The Arabidopsis Information Resource complemented only the cytosolic and peroxisomal CuZnSOD activities in the Atccs knockout mutant, which has lost all CuZnSOD activities. However, a longer AtCCS cDNA, as predicted by the Munich Information Centre for Protein Sequences and encoding an extra 66 amino acids at the N terminus, could restore all three, including the chloroplastic CuZnSOD activities in the Atccs mutant. The extra 66 amino acids were shown to direct the import of AtCCS into chloroplasts. Our results indicated that one AtCCS gene was responsible for the activation of all three types of CuZnSOD activity. In addition, a truncated AtCCS, containing only the central and C-terminal domains without the ATX1-like domain failed to restore any CuZnSOD activity in the Atccs mutant. This result indicates that the ATX1-like domain is essential for the copper chaperone function of AtCCS in planta.  相似文献   

10.
Cu,Zn-superoxide dismutase (Cu,Zn-SOD) is a ubiquitous enzyme with an essential role in antioxidant defense. To better understand structural factors at the origin of the highly efficient superoxide dismutation mechanism, we analyzed the consequence of copper reduction on the electronic properties of the backbone and individual amino acids by using electrochemistry coupled to Fourier transform infrared spectroscopy. Comparison of data recorded with bovine erythrocyte and recombinant chloroplastic Cu,Zn-SOD from Lycopersicon esculentum, expressed as a functional tetramer in Escherichia coli and (14)N- or fully (15)N-labeled, demonstrated that the infrared changes were dominated by reorganizations of peptide bonds and histidine copper ligands. Two main infrared modes of histidine side chain, markers of metal coordination, were identified by using Cu- and Zn-methylimidazole models: the nu(C(4)C(5))at 1605-1594 cm(-1) or approximately 1586 cm(-1) for Ntau or Npi coordination, and the nu(C(5)Ntau) at approximately 1113-1088 cm(-1). These modes, also identified in Cu,Zn-SOD by using (15)N labeling, showed that the electronic properties of the histidine Ntau ligands of copper are mostly affected upon copper reduction. A striking conclusion of this work is that peptide groups from loops and beta-sheet largely participate in charge redistribution upon copper reduction, and in contrast, electronic properties of polar and charged amino acids of the superoxide access channel remain unaffected. This is notably shown for the strictly conserved Arg-143 by site-directed mutagenesis on chloroplastic Cu,Zn-SOD. Charge compensation by the peptide backbone and preserved electronic properties of the superoxide access channel and docking site upon copper reduction may be the determinant factors for the high reaction kinetics of superoxide with both reduced and oxidized Cu,Zn-SOD.  相似文献   

11.
The incorporation of copper ions into the cytosolic superoxide dismutase (SOD1) is accomplished in vivo by the action of the copper metallochaperone CCS (copper chaperone for SOD1). Mammalian CCS is comprised of three distinct protein domains, with a central region exhibiting remarkable homology (approximately 50% identity) to SOD1 itself. Conserved in CCS are all the SOD1 zinc binding ligands and three of four histidine copper binding ligands. In CCS the fourth histidine is replaced by an aspartate (Asp(200)). Despite this conservation of sequence between SOD1 and CCS, CCS exhibited no detectable SOD activity. Surprisingly, however, a single D200H mutation, targeting the fourth potential copper ligand in CCS, granted significant superoxide scavenging activity to this metallochaperone that was readily detected with CCS expressed in yeast. This mutation did not inhibit the metallochaperone capacity of CCS, and in fact, D200H CCS appears to represent a bifunctional SOD that can self-activate itself with copper. The aspartate at CCS position 200 is well conserved among mammalian CCS molecules, and we propose that this residue has evolved to preclude deleterious reactions involving copper bound to CCS.  相似文献   

12.
BACKGROUND: Using specific antibodies against bovine Cu/Zn-superoxide dismutase (EC 1.15.1.1, SOD1) we demonstrated that anti-SOD antibodies (IgG1) are able to promote the intracellular translocation of the antioxidant enzyme. The transduction signalling mediated by IgG1 immune complexes are known to promote a concomitant production of superoxide and nitric oxide leading to the production of peroxynitrites and cell death by apoptosis. The Fc-mediated intracellular delivery of SOD1 thus limited the endogenous production of superoxide. It was thus of interest to confirm that in the absence of superoxide anion, the production of nitric oxide protected cells against apoptosis. Study in greater detail clearly stated that under superoxide anion-free conditions, nitric oxide promoted the cell antioxidant armature and thus protected cells against redox-induced apoptosis. MATERIALS AND METHODS: The murine macrophage cell-lines J774 A1 were preactivated or not with interferon-gamma and were then stimulated by IgG1 immune complexes (IC), free SOD1 or SOD1 IC and superoxide anion, nitric oxide, peroxynitrite, and tumor necrosis factor-alpha (TNF-alpha) production was evaluated. The redox consequences of these activation processes were also evaluated on mitochondrial respiration and apoptosis as well as on the controlled expression of the cellular antioxidant armature. RESULTS: We demonstrated that SOD1 IC induced a Fcgamma receptor (FcgammaR)-dependent intracellular delivery of the antioxidant enzyme in IFN-gamma activated murine macrophages (the J774 AI cell line). The concomitant stimulation of the FcyR and the translocation of the SOD1 in the cytoplasm of IFN-gamma-activated macrophages not only reduced the production of superoxide anion but also induced the expression of the inducible form of nitric oxide synthase (iNOS) and the related NO production. This inducing effect in the absence of superoxide anion production reduced mitochondrial damages and cell death by apoptosis and promoted the intracellular antioxidant armature. CONCLUSIONS: To define the pharmacologic mechanism of action of bovine SOD1, we attempted to identify the second messengers that are induced by SOD1 IC. In this work, we propose that Fc-mediated intracellular delivery of the SOD1 that reduced the production of superoxide anion and of peroxynitrite, promoted a NO-induced protective effect in inducing the antioxidant armature of the cells. Taken together, these data suggested that specific immune responses against antigenic SOD1 could promote the pharmacological properties of the antioxidant enzyme likely via a NO-dependent mechanism.  相似文献   

13.
Mutations in the Cu,Zn-superoxide dismutase (SOD1) gene cause approximately 20% of familial cases of amyotrophic lateral sclerosis (fALS). Accumulating evidence indicates that a gain of toxic function of mutant SOD1 proteins is the cause of the disease. It has also been shown that the ubiquitin-proteasome pathway plays a role in the clearance and toxicity of mutant SOD1. In this study, we investigated the degradation pathways of wild-type and mutant SOD1 in neuronal and nonneuronal cells. We provide here the first evidence that wild-type and mutant SOD1 are degraded by macroautophagy as well as by the proteasome. Based on experiments with inhibitors of these degradation pathways, the contribution of macroautophagy to mutant SOD1 clearance is comparable with that of the proteasome pathway. Using assays that measure cell viability and cell death, we observed that under conditions where expression of mutant SOD1 alone does not induce toxicity, macroautophagy inhibition induced mutant SOD1-mediated cell death, indicating that macroautophagy reduces the toxicity of mutant SOD1 proteins. We therefore propose that both macroautophagy and the proteasome are important for the reduction of mutant SOD1-mediated neurotoxicity in fALS. Inhibition of macroautophagy also increased SOD1 levels in detergent-soluble and -insoluble fractions, suggesting that both detergent-soluble and -insoluble SOD1 are degraded by macroautophagy. These findings may provide further insights into the mechanisms of pathogenesis of fALS.  相似文献   

14.
Allen S  Badarau A  Dennison C 《Biochemistry》2012,51(7):1439-1448
The delivery of copper by the human metallochaperone CCS is a key step in the activation of Cu,Zn-superoxide dismutase (SOD1). CCS is a three-domain protein with Cu(I)-binding CXXC and CXC motifs in domains 1 and 3, respectively. A detailed analysis of the binding of copper to CCS, including variants in which the Cys residues from domains 1 and 3 have been mutated to Ser, and also using separate domain 1 and 3 constructs, demonstrates that CCS is able to bind 1 equiv of Cu(I) in both of these domains. The Cu(I) affinity of domain 1 is approximately 5 × 10(17) M(-1) at pH 7.5, while that of domain 3 is at least 1 order of magnitude weaker. The CXXC site will therefore be preferentially loaded with Cu(I), suggesting that domain 1 plays a role in the acquisition of the metal. The delivery of copper to the target occurs via domain 3 whose structural flexibility and ability to be transiently metalated during copper delivery appear to be more important than the Cu(I) affinity of its CXC motif. The Cu(I) affinity of domain 1 of CCS is comparable to that of HAH1, another cytosolic copper metallochaperone. CCS and HAH1 readily exchange Cu(I), providing a mechanism whereby cross-talk can occur between copper trafficking pathways.  相似文献   

15.
Kim YM  Lim JM  Kim BC  Han S 《Molecules and cells》2006,21(1):161-165
Dichlorodihydrofluorescein (DCFH(2)) is a widely used probe for intracellular H(2)O(2). However, H(2)O(2) can oxidize DCFH(2) only in the presence of a catalyst, whose identity in cells has not been clearly defined. We compared the peroxidase activity of Cu,Zn-superoxide dismutase (CuZnSOD), cytochrome c, horseradish peroxidase (HRP), Cu(2+), and Fe(3+) under various condi-tions to identify an intracellular catalyst. Enormous increase by bicarbonate in the rate of DCFH(2) oxidation distinguished CuZnSOD from cytochrome c and HRP. Cyanide inhibited the reaction catalyzed by CuZnSOD but accelerated that by Cu(2+) and Fe(3+). Oxidation of DCFH(2) by H(2)O(2) in the presence of a cell lys-ate was also enhanced by bicarbonate and inhibited by cyanide. Confocal microscopy of H(2)O(2)-treated cells showed enhanced DCF fluorescence in the presence of bicarbonate and attenuated fluorescence for the cells pre-incubated with KCN. Moreover, DCF fluorescence was intensified in CuZnSOD-transfected HaCaT and RAW 264.7 cells. We propose that CuZnSOD is a potential intracellular catalyst for the H(2)O(2)-dependent oxidation of DCFH(2).  相似文献   

16.
Copper chaperones are copper-binding proteins that directly insert copper into specific targets, preventing the accumulation of free copper ions that can be toxic to the cell. Despite considerable advances in the understanding of copper transfer from copper chaperones to their target, to date, there is no information regarding how the activity of these proteins is regulated in higher eukaryotes. The insertion of copper into the antioxidant enzyme Cu,Zn superoxide dismutase (SOD1) depends on the copper chaperone for SOD1 (CCS). We have recently reported that CCS protein is increased in tissues of rats fed copper-deficient diets suggesting that copper may regulate CCS expression. Here we show that whereas copper deficiency increased CCS protein in rats, mRNA level was unaffected. Rodent and human cell lines cultured in the presence of the specific copper chelator 2,3,2-tetraamine displayed a dose-dependent increase in CCS protein that could be reversed with the addition of copper but not iron or zinc to the cells. Switching cells from copper-deficient to copper-rich medium promoted the rapid degradation of CCS, which could be blocked by the proteosome inhibitors MG132 and lactacystin but not a cysteine protease inhibitor or inhibitors of the lysosomal degradation pathway. In addition, CCS degradation was slower in copper-deficient cells than in cells cultured in copper-rich medium. Together, these data show that copper regulates CCS expression by modulating its degradation by the 26 S proteosome and suggest a novel role for CCS in prioritizing the utilization of copper when it is scarce.  相似文献   

17.
Ye M  English AM 《Biochemistry》2006,45(42):12723-12732
In addition to its superoxide dismutase (SOD) activity, Cu,Zn-superoxide dismutase (CuZnSOD) catalyzes the reductive decomposition of S-nitroso-L-glutathione (GSNO) in the presence of thiols such as L-glutathione (GSH). The GSNO-reductase activity but not the superoxide dismutase (SOD) activity of CuZnSOD is inhibited by the commonly used polyaminocarboxylate metal ion chelators, EDTA and DTPA. The basis for this selective inhibition is systematically investigated here. Incubation with EDTA or DTPA caused a time-dependent decrease in the 680 nm d-d absorption of Cu(II)ZnSOD but no loss in SOD activity or in the level of metal loading of the enzyme as determined by ICP-MS. The chelators also protected the SOD activity against inhibition by the arginine-specific reagent, phenylglyoxal. Measurements of both the time course of SNO absorption decay at 333 nm and oxymyoglobin scavenging of the NO that is released confirmed that the chelators inhibit CuZnSOD catalysis of GSNO reductive decomposition by GSH. The decreased GSNO-reductase activity is correlated with decreased rates of Cu(II)ZnSOD reduction by GSH in the presence of the chelators as monitored spectrophotometrically at 680 nm. The aggregate data suggest binding of the chelators to CuZnSOD, which was detected by isothermal titration calorimetry (ITC). Dissociation constants of 0.08 +/- 0.02 and 8.3 +/- 0.2 microM were calculated from the ITC thermograms for the binding of a single EDTA and DTPA, respectively, to the CuZnSOD homodimer. No association was detected under the same conditions with the metal-free enzyme (EESOD). Thus, EDTA and DTPA must bind to the solvent-exposed active-site copper of one subunit without removing the metal. This induces a conformational change at the second active site that inhibits the GSNO-reductase but not the SOD activity of the enzyme.  相似文献   

18.
The absence of the antioxidant enzyme Cu,Zn-superoxide dismutase (SOD1) is shown here to cause vacuolar fragmentation in Saccharomyces cerevisiae. Wild-type yeast have 1-3 large vacuoles whereas the sod1Delta yeast have as many as 50 smaller vacuoles. Evidence that this fragmentation is oxygen-mediated includes the findings that aerobically (but not anaerobically) grown sod1Delta yeast exhibit aberrant vacuoles and genetic suppressors of other oxygen-dependent sod1 null phenotypes rescue the vacuole defect. Surprisingly, iron also is implicated in the fragmentation process as iron addition exacerbates the sod1Delta vacuole defect while iron starvation ameliorates it. Because the vacuole is reported to be a site of iron storage and iron reacts avidly with reactive oxygen species to generate toxic side products, we propose that vacuole damage in sod1Delta cells arises from an elevation of iron-mediated oxidation within the vacuole or from elevated pools of "free" iron that may bind nonproductively to vacuolar ligands. Furthermore, additional pleiotropic phenotypes of sod1Delta cells (including increased sensitivity to pH, nutrient deprivation, and metals) may be secondary to vacuolar compromise. Our findings support the hypothesis that oxidative stress alters cellular iron homeostasis which in turn increases oxidative damage. Thus, our findings may have medical relevance as both oxidative stress and alterations in iron homeostasis have been implicated in diverse human disease processes. Our findings suggest that strategies to decrease intracellular iron may significantly reduce oxidatively induced cellular damage.  相似文献   

19.
BACKGROUND: Recent studies have identified the human copper chaperone CCS as the presumed factor responsible for copper incorporation into superoxide dismutase (SOD). A lack of knowledge of the chaperone's three-dimensional structure has prevented understanding of how the copper might be transferred. RESULTS: The three-dimensional structure of CCS was homology modelled using the periplasmic protein from the bacterial mercury-detoxification system and the structure of one subunit of the human SOD dimeric enzyme as templates. On the basis of the three-dimensional model, a mechanism for the transfer of copper from CCS to SOD is proposed that accounts for electrostatic acceptor recognition, copper storage and copper-transfer properties. CONCLUSIONS: The proposed model identifies a path for copper transfer based on the presence of different metal sites characterized by sulphur ligands. Such a model permits the development of strategies able to interfere with copper incorporation in SOD, providing a possible way to prevent or arrest degeneration in the fatal motor neuron disorder amyotrophic lateral sclerosis.  相似文献   

20.
Copper binding and X-ray aborption spectroscopy studies are reported on untagged human CCS (hCCS; CCS = copper chaperone for superoxide dismutase) isolated using an intein self-cleaving vector and on single and double Cys to Ala mutants of the hCCS MTCQSC and CSC motifs of domains 1 (D1) and 3 (D3), respectively. The results on the wild-type protein confirmed earlier findings on the CCS-MBP (maltose binding protein) constructs, namely, that Cu(I) coordinates to the CXC motif, forming a cluster at the interface of two D3 polypeptides. In contrast to the single Cys to Ser mutations of the CCS-MBP protein (Stasser, J. P., Eisses, J. F., Barry, A. N., Kaplan, J. H., and Blackburn, N. J. (2005) Biochemistry 44, 3143-3152), single Cys to Ala mutations in D3 were sufficient to eliminate cluster formation and significantly reduce CCS activity. Analysis of the intensity of the Cu-Cu cluster interaction in C244A, C246A, and C244/246A variants suggested that the nuclearity of the cluster was greater than 2 and was most consistent with a Cu4S6 adamantane-type species. The relationship among cluster formation, oligomerization, and metal loading was evaluated. The results support a model in which Cu(I) binding converts the apo dimer with a D2-D2 interface to a new dimer connected by cluster formation at two D3 CSC motifs. The predominance of dimer over tetramer in the cluster-containing species strongly suggests that the D2 dimer interface remains open and available for sequestering an SOD1 monomer. This work implicates the copper cluster in the reactive form and adds detail to the cluster nuclearity and how copper loading affects the oligomerization states and reactivity of CCS for its partner SOD1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号