首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
To study the possible involvement of DNA cruciforms in the initiation of DNA replication, we used two monoclonal antibodies, 2D3 and 4B4, with anti-cruciform DNA specificity. Synchronized CV-1 cells were released into S phase for hourly intervals up to 6 h and permeabilized in the presence of monoclonal antibodies, under conditions that allow limited DNA replication. Exposure of the permeabilized cells to 2D3 or 4B4 resulted in a 2- to 6-fold enhancement of incorporation of labeled precursor nucleotide over the 6 h period. Approximately 50% of the enhanced synthesis was sensitive to aphidicolin, and the enhancing effect of 2D3 was abolished by absorption with immunobead anti-mouse immunoglobulin. Dot-blot hybridization analyses of DNA isolated from anti-cruciform antibody treatment groups showed a similar 2- to 11-fold increase in the relative copy number of low copy probes. In contrast, exposure of the permeabilized cells to a monoclonal antibody directed against Z-DNA and B-DNA had no significant effect on DNA synthesis. The results suggest that cruciforms are present in replicating DNA and that they are recognized and stabilized by the monoclonal antibodies.  相似文献   

2.
Monoclonal antibodies to cruciform DNA structures   总被引:4,自引:0,他引:4  
Two monoclonal antibodies, 2D3 and 4B4, have been raised against a cruciform structure in a heteroduplex DNA molecule. Antibody binding to DNA fragments was determined by a radioimmunoassay in which DNA--antibody complexes were separated from unbound DNA by acrylamide gel electrophoresis. These antibodies seem to recognize conformational determinants specific to cruciform structures. 2D3 and 4B4 antibodies do not bind to linear double-stranded homoduplex DNA fragments, linear single-stranded DNA or single-stranded simian virus 40 DNA containing a stem--loop structure, but do bind to the original cruciform and to a different cruciform with one shortened arm. 2D3 also bound to a T-shaped double-stranded DNA molecule, while 4B4 binding to this structure was weak. The monoclonal antibodies 2D3 and 4B4 were found to be immunoglobulin G1 and immunoglobulin M, respectively.  相似文献   

3.
DNA modified by trans diaminedichlorplatinum-II (transDDP) has been suggested as an effective probe for non-isotopic hybridization and high-specific anti-DNA-transDDP antibodies with horse radish peroxidase or alkaline phosphotase conjugated antibodies to rabbit Ig and protein A-peroxidase - for hybrids visualization. This method allows to detect 2 pg/mm DNA.  相似文献   

4.
Proliferating cell nuclear antigen (PCNA) plays an essential role in DNA replication, repair, and cell cycle control. PCNA is a homotrimeric ring that, when encircling DNA, is not easily extractable. Consequently, the dynamics of protein-protein interactions established by PCNA at DNA replication sites is not well understood. We have used DNase I to release DNA-bound PCNA together with replication proteins including the p125-catalytic subunit of DNA polymerase delta (p125-pol delta), DNA ligase I, cyclin A, and cyclin-dependent kinase 2 (CDK2). Interaction with these proteins was investigated by immunoprecipitation with antibodies binding near the interdomain connector loop or to the C-terminal domain of PCNA, respectively, or with antibodies to p125-pol delta or DNA ligase I. PCNA interaction with p125-pol delta or DNA ligase I was detected only by the latter antibodies, and found to be mutually exclusive. In contrast, antibodies to PCNA co-immunoprecipitated only CDK2. A GST-p21(waf1/cip1) C-terminal peptide displaced p125-pol delta and DNA ligase I, but not CDK2, from PCNA. These results suggest that PCNA trimers bound to DNA during the S phase are organized as distinct pools able to bind selectively different partners. Among them, p125-pol delta and DNA ligase I interact with PCNA in a mutually exclusive manner.  相似文献   

5.
The treatment of denatured T4 phage DNA with antiserum for the DNA of this phage, containing antibodies against glucosylated 5-hydroxymethylcytosine, decreases the ability of DNA for renaturation. The greatest inhibiting activity is possessed by antiserum for T4 phage DNA irradiated with UV light, which contains antibodies not only against glucosylated 5-hydroxymethylcytosine, but also against the usual nitrogen bases. Antiserum against E. coli DNA, containing antibodies to the usual nitrogen bases, in equal dilutions with the antisera indicated above, shows less inhibitory activity on the renaturation of T4 phage DNA.  相似文献   

6.
A panel of murine hybridoma cell lines which produce antibodies against polypeptides present in human placental DNA polymerase delta preparations was developed. Eight of these antibodies were characterized by virtue of their ability to inhibit DNA polymerase delta activity and immunoblot the 170-kDa catalytic polypeptide. Six of these eight antibodies inhibit DNA polymerase delta but not DNA polymerase alpha, showing that the two proteins are distinct. However, the other two monoclonal antibodies inhibited both DNA polymerase delta and alpha activities, providing the first evidence that these two proteins have a structural relationship. In addition to antibodies against the catalytic polypeptide we also identified 11 antibodies which recognize 120-, 100-, 88-, 75-, 62-, 36-, and 22-kDa polypeptides in DNA polymerase delta preparations, suggesting that these proteins might be part of a replication complex. The antibody to the 36-kDa polypeptide was shown to be directed against proliferating cell nuclear antigen/cyclin. These antibodies should prove useful for studies aimed at distinguishing between DNA polymerases alpha and delta and for the investigation of the functional roles of DNA polymerase delta polypeptides.  相似文献   

7.
A new gene (POLL), has been identified encoding the novel DNA polymerase lambda and mapped to mouse chromosome 19 and at human chromosome 10. DNA polymerase lambda contains all the critical residues involved in DNA binding, nucleotide binding, nucleotide selection, and catalysis of DNA polymerization and has been assigned to family X based on sequence homology with polymerase beta, lambda, mu, and terminal deoxynucleotidyltransferase. Here we describe a purification of DNA polymerase lambda from calf thymus that preferentially can replicate damaged DNA. By testing polymerase activity on non-damaged and damaged DNA, DNA polymerase lambda was purified trough five chromatographic steps to near homogeneity and identified as a 67-kDa polypeptide that cross-reacted with monoclonal antibodies against DNA polymerase beta and polyclonal antibodies against DNA polymerase lambda. DNA polymerase lambda had no detectable nuclease activities and, in contrast to DNA polymerase beta, was aphidicolin-sensitive. DNA polymerase lambda was a 6-fold more accurate enzyme in an M13mp2 forward mutation assay and 5-fold more accurate in an M13mp2T90 reversion system than human recombinant DNA polymerase beta. The biochemical properties of the calf thymus DNA polymerase lambda, described here for the first time, are discussed in relationship to the proposed role for this DNA polymerase in vivo.  相似文献   

8.
Free DNA and various types of antibodies to DNA were determined in the blood serum and plasma of minks which contracted Aleutian disease (AD) spontaneously and of minks experimentally infected with this disease. Healthy minks and other animals served as controls. It was found that a higher incidence of antibodies to DNA of the 2nd and 3rd types in high titres (1: 80-1: 2560) was characteristic of the experimental group of animals. Besides, a free polymeric DNA was more frequently revealed in the experimental group of animals.  相似文献   

9.
DNA polymerases delta and alpha were purified from CV-1 cells, and their sensitivities to the inhibitors aphidicolin, (p-n-butylphenyl)deoxyguanosine triphosphate (BuPdGTP), and monoclonal antibodies directed against DNA polymerase alpha were determined. The effects of these inhibitors on DNA replication in permeabilized CV-1 cells were studied to investigate the potential roles of polymerases delta and alpha in DNA replication. Aphidicolin was shown to be a more potent inhibitor of DNA replication than of DNA polymerase alpha or delta activity. Inhibition of DNA replication by various concentrations of BuPdGTP was intermediate between inhibition of purified polymerase alpha or delta activity. Concentrations of BuPdGTP which totally abolished DNA polymerase alpha activity were much less effective in reducing DNA replication, as well as the activity of DNA polymerase delta. Monoclonal antibodies which specifically inhibited polymerase alpha activity reduced, but did not abolish, DNA replication in permeable cells. BuPdGTP, as well as anti-polymerase alpha antibodies, inhibited DNA replication in a nonlinear manner as a function of time. Depending upon the initial or final rates of inhibition of replication by BuPdGTP and anti-alpha antibodies, as little as 50%, or as much as 80%, of the replication activity can be attributed to polymerase alpha. The remaining replication activity (20-50%) is tentatively attributed to polymerase delta, because it was aphidicolin sensitive and resistant to both anti-polymerase alpha antibodies and low concentrations of BuPdGTP. A concentration of BuPdGTP which abolished polymerase alpha activity reduced, but did not abolish, both the synthesis and maturation of nascent DNA fragments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
We have developed a novel method for high resolution mapping of specific DNA sequences after in situ hybridization. DNA probes, labeled with biotin-nucleotides in conventional nick-translation reactions, are hybridized to cytological preparations and detected with affinity- purified rabbit antibiotin antibodies followed by antibodies to rabbit IgG that are conjugated to fluorescent or enzymatic reagents. Using peroxidase labeled anti-rabbit IgG, we are able to detect and localize specific sequences at both the light and electron microscopic levels. Initial studies were done with repeated DNA sequences previously mapped by light microscope autoradiography to assess the fidelity and resolution of this method. An analysis using biotin-labeled mouse satellite DNA is presented here.  相似文献   

11.
Antibodies to DNA   总被引:18,自引:0,他引:18  
Antibodies that recognize specific conformational variations of DNA structure provide sensitive reagents for testing the extent to which such conformational heterogeneity occurs in nature. A most dramatic recent example has been the development and application of antibodies to left-handed Z-DNA. They provided the first identification of Z-DNA in fixed nuclei and chromosomes, and of DNA sequences that form Z-DNA under the influence of supercoiling. Antibodies have also been induced by chemically modified DNA and by synthetic polydeoxyribonucleotides that differ from the average B-DNA structure. These antibodies recognize only the features that differ from native DNA. In most experiments, native DNA itself is not immunogenic. Antibodies that do react with native DNA occur in sera of patients with autoimmune disease, but even monoclonal anti-DNA autoantibodies usually react with other polynucleotides as well. Anti-DNA antibodies, especially those of monoclonal origin, provide a model for the study of protein-nucleic acid recognition.  相似文献   

12.
DNA gyrase is an essential type II topoisomerase found in bacteria. We have previously characterized DNA gyrase from Mycobacterium tuberculosis and Mycobacterium smegmatis. In this study, several monoclonal antibodies were generated against the gyrase A subunit (GyrA) of M. smegmatis. Three, MsGyrA:C3, MsGyrA:H11 and MsGyrA:E9, were further analyzed for their interaction with the enzyme. The monoclonal antibodies showed high degree of cross-reactivity with both fast-growing and slow-growing mycobacteria. In contrast, none recognized Escherichia coli GyrA. All the three monoclonal antibodies were of IgG1 isotype falling into two distinct types with respect to epitope recognition and interaction with the enzyme. MsGyrA:C3 and MsGyrA:H11 IgG, and their respective Fab fragments, inhibited the DNA supercoiling activity catalyzed by mycobacterial DNA gyrase. The epitope for the neutralizing monoclonal antibodies appeared to involve the region towards the N-terminus (residues 351-415) of the enzyme in a conformation-dependent manner. These monoclonal antibodies would serve as valuable tools for structure-function analysis and immunocytological studies of mycobacterial DNA gyrase. In addition, they would be useful for designing peptide inhibitors against DNA gyrase.  相似文献   

13.
In the present study, the effect of singlet oxygen (1O2) (generated by ultraviolet (UV) irradiation of methylene blue) on plasmid DNA has been analyzed by UV spectroscopy, fluorescence spectroscopy, and S1 nuclease digestibility. Both native and 1O2-modified plasmid DNA were treated with a number of restriction enzymes to map out the sites damaged by 1O2. It was also observed that, on exposure to 1O2, native plasmid DNA that is non-immunogenic acquired the ability to elicit an immune response in experimental animals. However, the induced antibodies exhibited appreciable cross reactivity with various polynucleotides and nucleic acids. The data indicate that the antibodies, though cross-reactive, preferentially bind 1O2-modified epitopes on plasmid DNA. Gel retardation assay further substantiated the enhanced recognition of 1O2-modified plasmid DNA over the native form. The antibodies developed were then subjected to competition ELISA with sera from various diseases such as systemic lupus erythematosus, rheumatoid arthritis, and cancer. These results suggest that upon exposure of DNA to 1O2, neo-epitopes are generated, which may be one of the factors for the induction of circulating autoantibodies in the three diseases.  相似文献   

14.
Romito M  Viljoen GJ  Du Plessis DH 《BioTechniques》2001,31(3):670, 672, 674-670, 672, 675
Immunization with naked DNA was used to elicit chicken egg yolk antibodies (IgY). Layer hens were inoculated with plasmid DNA encoding the enhanced green fluorescent protein, the fusion protein of Newcastle disease virus, and VP2 of African horse sickness virus. IgY was extracted from egg yolks by polyethylene glycol precipitation. Specific antibodies were present in the yolks of eggs from hens immunized with each of the three different plasmids. This approach to raising polyclonal antibodies obviates the need to produce and purify large quantities of proteins for immunization and can potentially yield large amounts of diagnostically or therapeutically useful reagents.  相似文献   

15.
Cao Q  Xu W  Wen Z  Xu L  Li K  Chu Y  Xiong S 《DNA and cell biology》2008,27(2):91-100
Serological presence of anti-double-stranded DNA (anti-dsDNA) antibodies is a common phenomenon in cancer patients. Some patients with relatively high levels of anti-dsDNA antibodies may have a better prognosis, indicating the potential antitumor roles of anti-dsDNA antibodies. To delineate the role and mechanisms of anti-dsDNA antibodies in delaying tumor development, here we prepared a panel of anti-dsDNA monoclonal antibodies (mAbs) and assessed their antitumor effects both in vitro and in vivo. After immunization of BALB/c mice with DNA from SP2/0 tumor cells, 12 anti-dsDNA mAbs were obtained. Among these mAbs, mAb 2G8 exhibited the strongest cytotoxicity to Wehi164 cells in vitro and significantly inhibited the growth of tumor in vivo. This mAb 2G8-mediated antitumor effect was mainly exerted by triggering apoptosis, as evidenced by Annexin V staining and DNA fragmentation. Further, the expression of antiapoptotic genes Bcl-2 and Bcl-xL was downregulated while that of pro-apoptotic gene Bax was upregulated, suggesting the involvement of mitochondrial apoptotic pathway. Taken together, dsDNA-specific mAb 2G8 revealed promising tumor-suppressive activity by inducing apoptosis, which provides a possible new strategy for the development of tumor intervening methods.  相似文献   

16.
Antibodies against human c-myc protein have been reported to inhibit DNA polymerase activity and endogenous DNA synthesis in isolated nuclei, suggesting a role for c-myc in DNA replication. Using the same antibody preparations, we observed equivalent inhibition of simian virus 40 DNA replication and DNA polymerase alpha and delta activities in vitro, as well as inhibition of DNA synthesis in isolated nuclei. However, the c-myc antibodies could be completely separated from the DNA synthesis inhibition activity. c-myc antibodies prepared in other laboratories also did not interfere with initiation of simian virus 40 DNA replication, DNA synthesis at replication forks, or DNA polymerase alpha or delta activity. Therefore, the previously reported inhibition of DNA synthesis by some antibody preparations resulted from the presence of an unidentified inhibitor of DNA polymerases alpha and delta and not from the action of c-myc antibodies.  相似文献   

17.
The speed of development, versatility and efficacy of mRNA-based vaccines have been amply demonstrated in the case of SARS-CoV-2. DNA vaccines represent an important alternative since they induce both humoral and cellular immune responses in animal models and in human trials. We tested the immunogenicity and protective efficacy of DNA-based vaccine regimens expressing different prefusion-stabilized Wuhan-Hu-1 SARS-CoV-2 Spike antigens upon intramuscular injection followed by electroporation in rhesus macaques. Different Spike DNA vaccine regimens induced antibodies that potently neutralized SARS-CoV-2 in vitro and elicited robust T cell responses. The antibodies recognized and potently neutralized a panel of different Spike variants including Alpha, Delta, Epsilon, Eta and A.23.1, but to a lesser extent Beta and Gamma. The DNA-only vaccine regimens were compared to a regimen that included co-immunization of Spike DNA and protein in the same anatomical site, the latter of which showed significant higher antibody responses. All vaccine regimens led to control of SARS-CoV-2 intranasal/intratracheal challenge and absence of virus dissemination to the lower respiratory tract. Vaccine-induced binding and neutralizing antibody titers and antibody-dependent cellular phagocytosis inversely correlated with transient virus levels in the nasal mucosa. Importantly, the Spike DNA+Protein co-immunization regimen induced the highest binding and neutralizing antibodies and showed the strongest control against SARS-CoV-2 challenge in rhesus macaques.  相似文献   

18.
An electrochemical method for the simultaneous detection of two different tumor markers, carcinoembryonic antigen (CEA) and α-fetoprotein (AFP), in one-pot, using CdS/DNA and PbS/DNA nanochains as labels was developed. Herein, magnetic beads (MBs) as bimolecule immobilizing carriers, were used for co-immobilization of primary anti-CEA and anti-AFP antibodies. The distinguishable signal labels were synthesized by in situ growth of CdS and PbS nanoparticles on DNA chains, respectively, which were further employed to label the corresponding secondary antibodies. A sandwich-type immunoassay format was formed by the biorecognition of the antigens and corresponding antibodies. The assay was based on the peak currents of Cd(2+) and Pb(2+) dissolved from CdS and PbS nanoparticles by HNO(3) using square wave stripping voltammetry. Experimental results show that the multiplexed electrochemical immunoassay has enabled the simultaneous monitoring of CEA and AFP in a single run with wide working ranges of 0.1-100ngmL(-1) for CEA and 0.5-200ngmL(-1) for AFP. The detection limits reach to 3.3pgmL(-1) for CEA and 7.8pgmL(-1) for AFP.  相似文献   

19.
20.
Immunological detection of lesions in DNA   总被引:1,自引:0,他引:1  
M Leng 《Biochimie》1985,67(3-4):309-315
The purpose of this paper is to show that the antibodies to nucleic acids, to nucleosides or to DNA damaged by a physical or a chemical agent, are useful tools in the study of DNA damage and repair. The results obtained with antibodies to nucleosides, antibodies to nucleosides and DNA modified by chemical carcinogens emphasize the potential of immunological methods in three main areas, a) the sensitive detection and quantitation of adducts; b) the visualization of adducts in tissues, individual cells, and along the DNA double helix; c) the study of conformational changes of DNA induced by adducts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号