首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Knowledge of genetic diversity (GD) and relationships among maize inbred lines is indispensable in a breeding program. Our objectives were to (1) investigate the level of genetic diversity among maize inbred lines and (2) assess their genetic structures by applying simple sequence repeat (SSR) markers. Fifty-six highland and mid-altitude maize inbred lines obtained from CIMMYT programs in Ethiopia and Zimbabwe were genotyped using 27 SSR loci. All of the genotypes studied could unequivocally be distinguished with the combination of the SSRs used. In total, 104 SSR alleles were identified, with a mean of 3.85 alleles per locus. The average polymorphism information content (PIC) was 0.58. GD expressed as Euclidean distance, varied from 0.28 to 0.73 with an average of 0.59. Cluster analysis using unweighted pair group method with arithmetic average (UPGMA) suggested five groups among the inbred lines. Most of the inbred lines adapted to the highlands and the mid-altitudes were positioned in different clusters with a few discrepancies. The pattern of groupings of the inbred lines was mostly consistent with available pedigree information. The variability detected using SSR markers could potentially contribute towards effective utilization of the inbred lines for the exploitation of heterosis and formation of genetically diverse source populations in Ethiopian maize improvement programs.  相似文献   

2.
SSR标记用于玉米自交系遗传变异与优势类群划分的研究   总被引:27,自引:0,他引:27  
刘杰  陈刚 《西北植物学报》2002,22(4):741-750
采用SSR和杂种优势聚类方法分析我国15个玉米骨干自交系的遗传变异,并初步进行了杂种优势类群划分,从62个SSR引物中筛选的40对有效引物对15个玉米自交系进行了分析,共检测到188个等位基因变异,每个SSR座位的等位基因数2-9个,平均为4.7个,SSR位点的多态信息含量PIC值平均为0.675,分布范围在0.360-0.851之间,根据SSR数据对供试材料进行遗传相似性分析,Nei氏相似性系数分布在0.574-0.777之间,10对多态性高的SSR引物可有效区分15个自交系,应用SSR聚类分析的结果与系谱关系相一致,与杂种优势类法相比较,SSR方法具有效率高,结果可靠,可标准化的特点,对SSR方法在玉米育种实践上的应用进行了初步探讨。  相似文献   

3.
Information regarding diversity and relationships among breeding material is necessary for hybrid maize (Zea mays L.) breeding. Simple-sequence repeat (SSR) analysis of the 60 loci distributed uniformly throughout the maize genome was carried out for 65 inbred lines adapted to cold regions of Japan in order to assess genetic diversity among the inbred lines and to assign them to heterotic groups. The mean value (0.69) of the polymorphic-index content (PIC) for the SSR loci provided sufficient discrimination-ability for the assessment of genetic diversity among the inbred lines. The correlation between the genetic-similarity (GS) estimates and the coancestry coefficient was significant (r = 0.70). The average-linkage (UPGMA) cluster analysis and principal-coordinate analysis (PCOA) for a matrix of the GS estimates showed that the Northern flint inbred lines bred in Japan were similar to a Canadian Northern flint inbred line CO12 and a European flint inbred line F283, and that dent inbred lines bred in Japan were similar to BSSS inbred lines such as B73. These associations correspond to the known pedigree records of these inbred lines. The results indicate that SSR analysis is effective for the assessment of genetic diversity among maize inbred lines and for the assignment of inbred lines to heterotic groups.  相似文献   

4.
A maize genetic linkage map was generated using SSR and SNP markers in a F7:8 recombinant inbred line (RIL) population derived from a cross of waxy corn (KW7) and dent corn (Mo17). A total of 465 markers, including 459 SSR and 6 SNP markers, were assigned to 10 linkage groups which spanned 2,656.5 cM with an average genetic distance between markers of 5.7 cM, and the number of loci per linkage group ranged from 39 to 55. The SSR (85.4%) and SNP (83.3%) markers showed Mendelian segregation ratios in the RIL population at a 5% significance threshold. In linkage analysis of six SNP loci associated with kernel starch synthesis genes (ae1, bt2, sh1, sh2, su1, and wx1), all six loci were successfully mapped and are closely linked with SSR markers in chromosomes 3 (sh2), 4 (su1 and bt2), 5 (ae1), and 9 (sh1 and wx1). The SSR markers linked with genes in starch synthesis may be utilized in marker assisted breeding programs. The resulting genetic map will be useful in dissection of quantitative traits and the identification of superior QTLs from the waxy hybrid corn. Additionally, these data support further genetic analysis and development of maize breeding programs.  相似文献   

5.
We examined the genetic diversity of 80 inbred waxy maize lines using 22 SSR molecular markers that could be used to achieve heterosis in waxy maize. Eighty inbred waxy maize lines with different phenotypes, 40 yellow, 25 white, 13 black, and two red lines were analyzed by SSR molecular marker fingerprint and cluster analysis. Using a standard genetic distance of 0.55, the 80 waxy maize inbred lines were clustered into nine groups. Among them, group II, group V, groups VII and VIII, and group IX were divided into three subgroups at a genetic distance of 0.46, into two subgroups at 0.49, into two subgroups at 0.46, and into four subgroups at 0.493, respectively. All but one of the yellow waxy maize inbred lines were clustered in groups VI, VII, VIII, and IX. Group IX (30 lines) contained 28 yellow lines; the other 11 yellow lines were distributed among groups VI, VII and VIII. Among the 25 white lines, 21 were clustered in groups III, V, VI and the third subgroup of group II. The black line N72 was in a group of its own. The black lines N75, N76 and N78 were distributed in groups VII, VIII and IX, respectively. The other nine black lines were clustered in group II. The red lines were distributed in the second subgroup of group II and there was no difference in genetic distance between them. In conclusion, there were considerable genetic differences among waxy maize inbred lines of different colors. The mean genetic distance of inbred lines of the same color was significantly less than that of lines of different colors. Therefore, we concluded that it was more accurate to determine the difference between the populations using the highly stable DNA genetic markers.  相似文献   

6.
Okra (Abelmoschus esculentus) is an important nutritious vegetable. Despite its high economic and industrial value, very little attention has been paid to assess genetic diversity of okra at molecular level. For effective conservation and proper deployment of germplasm, a study on diversity analysis of okra germplasm was conducted with DNA markers. Microsatellite/Simple sequence repeat (SSR) markers were utilized to evaluate the genetic diversity among 96 accessions of Abelmoschus, of which 92 accessions were of A. esculentus and one accession each of A. tuberculatus, A. moschatus, A. moschatus subspecies tuberosus and A. manihot. A set of 40 SSR primers were tested, of which 30 primers gave reproducible amplification which were used further for diversity analysis. With a mean of 7.1 bands per SSR, DNA amplification with 30 SSRs generated a total 213 bands, of which 60.66 % were recorded polymorphic. Polymorphic information content ranged between 0.11 and 0.80 with an average of 0.52, indicating that the majority of primers were informative. The Jaccard’s coefficient ranged from 0.107 to 0.969. The UPGMA analysis grouped Abelmoschus genotypes into three main clusters at a cut-off of 0.20. Results of present study revealed that sufficient variation exists among the studied accessions and GAO-5 which was found highly diverse can be exploited for okra improvement. The outcome of present research would assist to make use of Ablemoschus germplasm for okra breeding.  相似文献   

7.
Twenty-one maize (Zea mays L.) inbred lines were analysed using isozyme electrophoresis, restriction fragment length polymorphism (RFLP), and two-dimensional electrophoresis of denatured proteins (2-D PAGE). Our goal was (1) to assess the genetic variability among these lines which are potential progenitors for the development of forage maize hybrids in Europe, and (2) to compare the relationship pattern revealed by the polymorphism at marker loci with the one derived from the amount of protein variability assessed by computer-assisted analysis of the 2-D electrophoregrams. Fourteen markers were obtained from isozyme polymorphism, 84 from the restriction fragment length polymorphism, and 70 from protein shifts revealed by 2-D PAGE. The Rogers' distance computed on the set of molecular markers was the most efficient to describe the pedigree relationships between lines. Quantitative protein data gave a picture of relationships between lines clearly different from the monogenic markers. When unrelated pairs of lines were considered, the Rogers' distance was weakly correlated to distances based on quantitative variations in the amount of protein which may be consistent with their polygenic control and the occurrence of gene interactions.  相似文献   

8.
Hybrid development is basically dependent on the variability among available genetic resources. Polymorphism among the maize inbreds is essentially needed for maize hybridization. This study aimed at the assessment of diversity among 22 maize inbreds by 18 microsatellite markers. The study identified 187 alleles at 18 SSR loci. The amplified allele frequency per microsatellite locus was 10.4 and the highest allele per locus was 17 in SSR primer pair phi026. SSR primer set p-umc1292, phi074 and phi090 showed the lowest 6 alleles per genotype per locus. The locus phi026 showed the highest degree of gene diversity (0.92), and the locus p-umc1292 had the lowest of gene diversity (0.77) with a mean value of 0.862 among the microsatellites. At each site, the most prevalent allele varied between 0.14 (bnlg371) and 0.36. (p-umc1292). At any given locus, an average of 0.22 out of the 22 selected maize inbred lines had a common major allele. The average value of the polymorphic information content (PIC) was 0.85, within the range of 0.74 at the lowest to 0.92 at the highest. The higher PIC values of phi026 and nc013 established them to be the best markers for maize inbred lines. The UPGMA clustering generated seven distinct groups having 12.5% of similarity coefficient. The results revealed that inbred lines E10, E27, E19, E34, E35, E4, E43, E28, E11, E21, E17, E38, E25, E34, E14, E16, E39 and E3 were more diversified. These lines are promising to be used as parent materials for hybrid maize development in the future.  相似文献   

9.
Striga-resistant maize inbred lines are of interest to maize breeding programs in the savannas of Africa where the parasitic weed is endemic and causes severe yield losses in tropical maize. Assessment of the genetic diversity of such inbred lines is useful for their systematic and efficient use in a breeding program. Diversity analysis of 41 Striga-resistant maize inbred lines was conducted using amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers to examine the genetic relationships among these lines and to determine the level of genetic diversity that exists within and between their source populations. The two marker systems generated 262 and 101 polymorphic fragments, respectively. Genetic similarity (GS) values among all possible pairs of inbred lines varied from 0.45 to 0.95, with a mean of 0.61±0.002 for AFLPs, and from 0.21 to 0.92, with a mean of 0.48±0.003, for SSRs. The inbred lines from each source population exhibited a broad range of GS values with the two types of markers. Both AFLPs and SSRs revealed similar levels of within population genetic variation for all source populations. Cluster and principal component analysis of GS estimates with the two markers revealed clear differentiation of the Striga-resistant inbred lines into groups according to their source populations. There was clear separation between early- and late-maturing Striga-resistant inbred lines. Considering the paucity of germplasm with good levels of resistance to Striga in maize, the broad genetic diversity detected within and among source populations demonstrates the genetic potential that exists to improve maize for resistance to Striga.  相似文献   

10.
There is an important role of understanding the genetic diversity among and within inbred lines at the molecular level for maize improvement in different breeding programs. The present study was devoted to estimate the level of genetic diversity among the inbred lines of maize using the simple sequence repeat analysis (SSR). The application of six different SSR markers successfully provided the information on similarity or diversity as well as the heterozygosity of the allelic loci for all the eight inbred line of maize.  相似文献   

11.
Genetic diversity of 50 Tunisian almond (Prunus dulcis Mill.) genotypes and their relationships to European and American cultivars were studied. In total 82 genotypes were analyzed using ten genomic SSRs. A total of 159 alleles were scored and their sizes ranged from 116 to 227 bp. The number of alleles per locus varied from 12 to 23 with an average of 15.9 alleles per locus. Mean expected and observed heterozygosities were 0.86 and 0.68, respectively. The total value for the probability of identity was 4 × 10(-13) . All SSRs were polymorphic and they were able all together to distinguish unambiguously the 82 genotypes. The Dice similarity coefficient was calculated for all pair wise and was used to construct an UPGMA dendrogram. The results demonstrated that the genetic diversity within local almond cultivars was important, with clear geographic divergence between the northern and the southern Tunisian cultivars. The usefulness of SSR markers for almond fingerprinting, detection of synonyms and homonyms and evaluation of the genetic diversity in the Tunisian almond germplasm was also discussed. The results confirm the potential value of genetic diversity preservation for future breeding programs.  相似文献   

12.
Microsatellites or simple sequence repeats (SSRs) were used for the estimation of genetic diversity among a group of 40 sunflower lines developed at the research area of Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad. Total numbers of alleles amplified by 22 polymorphic primers were 135 with an average of 6.13 alleles per locus, suggesting that SSR is a powerful technique for assessment of genetic diversity at molecular level. The expected heterozygosity (PIC) ranged from 0.17 to 0.89. The highest PIC value was observed at the locus C1779. The genetic distances ranged from 9% to 37%. The highest genetic distance was observed between the lines L50 and V3. Genetic distances were low showing lesser amount of genetic diversity among the sunflower lines.  相似文献   

13.
A study was conducted to determine the genetic diversity of 39 determinate and indeterminate tomato inbred lines collected from China, Japan, S. Korea, and USA. Using 35 SSR polymorphic markers, a total of 150 alleles were found with moderate levels of diversity, and a high number of unique alleles existing in these tomato lines. The mean number of alleles per locus was 4.3 and the average polymorphism information content (PIC) was 0.31. Unweighted Pair Group Method with Arithmetic Mean (UPGMA) clustering at genetic similarity value of 0.85 grouped the inbred lines into four groups, where one USA cultivar formed a separate and more distant cluster. The most similar inbred lines are from USA, both with determinate type, whereas the most different lines are from USA (Us-16) and Japan (Ja-2) with determinate and indeterminate growth habit, respectively. Clustering was consistent with the known information regarding geographical location and growth habit. The genetic distance information reported in this study might be used by breeders when planning future crosses among these inbred lines.  相似文献   

14.
沙田柚系列遗传关系的RAPD标记研究   总被引:9,自引:0,他引:9  
采用 RAPD标记技术分析了沙田柚系列 1 2个样品的遗传关系。利用经筛选具多态性的 1 4个 1 0碱基随机引物对 1 2个样品进行 DNA随机扩增 ,获得清晰可重复的位点 99个 ,其中多态性位点 5 8个 ,占 5 8.89% ;在部分样品中检出了特异性 RAPD标记 1 9个 ,占 1 9.1 9% ;通过样品间遗传相似性系数比较与 UPGMA聚类分析 ,并根据历史事实可知 ,广西沙田柚、梅州金柚为沙田柚的无性繁殖系 ,软枝系沙田柚、沙田柚早熟单株为沙田柚的芽变后代 ,梅花早柚、菊花心沙田柚、冬瓜圈沙田柚、段氏柚、垫江沙田柚、古老钱沙田柚为沙田柚的实生变异品系。  相似文献   

15.
A total of 29 simple sequence repeat (SSR) markers were used to analyze the genetic diversity of 150 accessions of cultivated rice (Oryza sativa L.) from Korea, China, and Japan. A total of 375 alleles were detected with an average of 12.9 per locus. The averaged values of gene diversity and polymorphism information content (PIC) for each SSR locus were 0.7001 and 0.6683, respectively. Alleles per locus in Korean rice were 8.8, whereas 8.1 and 7.2 alleles per locus were found in Chinese and Japanese rice, respectively. The mean gene diversity in Korean, Chinese, and Japanese rice was 0.6058, 0.6457, and 0.5174, respectively, whereas the mean PIC values for each SSR locus were 0.5759, 0.6138, and 0.4881, respectively. The genetic diversity of the Korean and Chinese cultivars was higher than that of the Japanese cultivars, and the genetic diversity ofjaponica was higher than that ofindica. The model-based structure analysis revealed the presence of three subpopulations, which was basically consistent with clustering based on genetic distance. An AMOVA analysis showed that the between-population component of genetic variance was less than 22% in contrast to 78% for the within-population component. The overallFST value was 0.2180, indicating a moderate differentiation among groups. The results could be used for designing effective breeding programs aimed at broadening the genetic bases of commercially grown varieties.  相似文献   

16.
The AFLP technique was used to assess the genetic diversity and sectional relationships in 39 accessions representing the four main sections of the genus Musa. Eight AFLP + 3 primer pairs produced 260 polymorphic bands that were used in cluster and PCO analysis. A wide range of variability was observed among the species within the sections of the genus Musa. AFLP data was useful in separating the different sections of the genus as well as differentiating the different genomic groups of section Eumusa. Section Rhodochlamys (x = 11) appeared as a distinct entity and clustered closely with the Musa acuminata Colla complex of section Eumusa that has the same basic chromosome number. This relationship is congruent with previous studies. However, unlike previous proposals that questioned the identity of Rhodochlamys as a separate taxonomic unit, PCO analysis of the AFLP data showed that it is a distinct entity. Musa laterita Cheesman (Rhodochlamys) and Musa schizocarpa Simmonds clustered with the M. acuminata complex suggesting that they may be sources of useful genes for the improvement of the cultivated bananas. Callimusa formed a distinct unit and was closer to Australimusa than to the other sections. Although both sections share the same basic chromosome number of x = 10 these sections are genetically distinct  相似文献   

17.
Barley is a major cereal grown widely and used in several food products, beverage production and animal fodder. Genetic diversity is a key component in breeding programs. We have analyzed the genetic diversity of barley accessions using microsatellite markers. The accessions were composed of wild and domesticated barley representing genotypes from six countries and three breeding programs in Brazil. A total of 280 alleles were detected, 36 unique to Brazilian barley. The marker Bmag120 showed the greatest polymorphism information content (PIC), with the highest mean value found on chromosome three, and the lowest on chromosomes four and six. The wild accessions presented the highest diversity followed by the foreign genotypes. Genetic analysis was performed using Principal Coordinates Analysis, UPGMA clustering, and Bayesian clustering analysis implemented in Structure. All results obtained by the different methods were similar. Loss of genetic diversity has occurred in Brazilian genotypes. The number of alleles detected in genotypes released in 1980s was higher, whereas most of the cultivars released thereafter showed lower PIC and clustered in separate subgroups from the older cultivars. The use of a more diverse panel of genotypes should be considered in order to exploit novel alleles in Brazilian barley breeding programs.  相似文献   

18.
We assessed the molecular genetic diversity and population structure of Amaranthus species accessions using 11 simple sequence repeat markers. A total of 122 alleles were detected, and the number of alleles per marker (NA) ranged from 6 to 21 with an average of 11.1 alleles. The frequency of major alleles per locus ranged from 0.148 to 0.695, with an average value of 0.496 per marker. The overall polymorphic information content values were 0.436–0.898, with an average value of 0.657. The observed heterozygosity (HO) and expected heterozygosity (HE) ranged from 0.056 to 0.876 and from 0.480 to 0.907, with average values of 0.287 and 0.698, respectively. The average HO (0.240) was lower than the HE and gene flow (Nm), and showed substantial genetic variability among all populations of amaranth accessions. The sample groupings did not strictly follow the geographic affiliations of the accessions. A similar pattern was obtained using model-based structure analysis without grouping by species type. Knowledge of the genetic diversity and population structure of amaranth can be used to select representative genotypes and manage Amaranthus germplasm breeding programs.  相似文献   

19.
Identification of the diverse sources of resistance is an important issue among the breeders for developing pest and disease free hybrids, to reduce the inoculum load, to prolong the life of inbred lines/hybrids and to reduce the cost of cultivation. Molecular diversity analysis was carried out among 23 maize inbred lines with respect to post flowering stalk rot and pink borer. Forty six SSR markers were employed among eight post flowering stalk rot (PFSR) and seven pink borer resistant lines along with eight other inbred lines to identify diverse resistant sources for developing resistant heterotic combinations to above pests and diseases. Number of alleles per SSR marker ranged from 2 to 9 averaging 4.11. The polymorphism information content (PIC) ranged from 0.272 to 0.839 with an average of 0.568. Discrimination rate (DR) of the markers ranged from 0.095 to 0.861 with a mean of 0.618. Number of alleles was highly correlated with PIC and DR. The pair-wise genetic dissimilarity values ranged from 0.05 to 0.84 with an overall mean of 0.64. Un-weighted neighbour joining clustering put 23 genotypes in two main clusters, which were further subdivided into 5 and 6 sub-clusters, respectively. We obtained 56 rare and 26 unique alleles in specific inbred lines, which can be used for identification of these lines. The present study has revealed considerable diversity among inbred lines differing for resistance against PFSR and pink borer; and provided ample scope for selection of parents for utilization in heterosis breeding  相似文献   

20.
Diversity among tropical maize inbred lines that compose breeding programs, is not well known. The lack of this information has made the arrangement of heterotic groups to be used for breeding purposes difficult. Methods of molecular analysis have been used as efficient alternatives for evaluating genetic diversity, aiming at heterotic group arrangement and acquisition of new hybrids. In this study, AFLP (amplified fragment length polymorphism) was used to investigate the genetic relationships among 96 tropical maize inbred lines from two different origins. The polymorphism level among the genotypes and the possibility of their allocation in heterotic groups were evaluated. Besides, correlations among genetic diversity and flowering time were analyzed. Nine primer combinations were used to obtain AFLP markers, producing 638 bands, 569 of which were polymorphic. Genetic similarities (GS), determined by Jaccard's similarity coefficient, varied from 0.345 to 0.891, with an average of 0.543. The dendrogram based on the GS and on the UPGMA cluster method did not separate the inbred lines in well-defined groups. Aiming at separating the lines into more accurate groups, Tocher's optimization procedure was carried out, 17 groups being identified. Association between flowering time and germplasm pools was detected. AFLP showed itself to be a robust assay, revealing a great power of detection of genetic variability in the tropical germplasm, and also demonstrated to be very useful for guiding breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号