首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
菠菜叶中存在两种谷氨酰胺合成酶同工酶   总被引:3,自引:0,他引:3  
运用非变性聚丙稀酰胺凝胶电泳结合活性染色的方法,在菠菜(Spinacia oleracea L.)生长发育过程中,观察到叶片中至少存在2种谷氨酰胺合成酶(GS),其中一种GS的活性随发育进程而逐渐升高,而另一种GS的活性逐渐降低。在不同来源的成熟的菠菜叶片中同样观察到2种GS的存在。  相似文献   

3.
Changes in the levels of cytosolic glutamine synthetase (GS1) and chloroplastic glutamine synthetase (GS2) polypeptides and of corresponding mRNAs were determined in leaves of hydroponically grown rice (Oryza sativa) plants during natural senescence. The plants were grown in the greenhouse for 105 days at which time the thirteenth leaf was fully expanded. This was counted as zero time for senescence of the twelfth leaf. The twelfth leaf blade on the main stem was analyzed over a time period of −7 days (98 days after germination) to +42 days (147 days after germination). Total GS activity declined to less than a quarter of its initial level during the senescence for 35 days and this decline was mainly caused by a decrease in the amount of GS2 polypeptide. Immunoblotting analyses showed that contents of other chloroplastic enzymes, such as ribulose-1,5-bisphosphate carboxylase/oxygenase and Fd-glutamate synthase, declined in parallel with GS2. In contrast, the GS1 polypeptide remained constant throughout the senescence period. Translatable mRNA for GS1 increased about fourfold during the senescence for 35 days. During senescence, there was a marked decrease in content of glutamate (to about one-sixth of the zero time value); glutamate is the major form of free amino acid in rice leaves. Glutamine, the major transported amino acid, increased about threefold compared to the early phase of the harvest in the senescing rice leaf blades. These observations suggest that GS1 in senescing leaf blades is responsible for the synthesis of glutamine, which is then transferred to the growing tissues in rice plants.  相似文献   

4.
By polyacrylamide gel electrophoresis, DEAE Sephacel, and hydroxyapatite chromatography, one form of glutamine synthetase has been identified in spinach (Spinacia oleracea L. cv. Monstrueux de Viroflay) leaves. It is localized only inside the chloroplast. The enzyme was purified to homogeneity and specific antibodies against the protein were raised by immunization of rabbits. The intracellular localization of glutamine synthetase in spinach leaves was studied by indirect immunofluorescence microscopy on thin-sectioned spinach leaves. It has been demonstrated that the enzyme is specifically associated with the chloroplasts of parenchymatous cells.  相似文献   

5.
Glutamine synthetase was localized in leaves and cotyledons of young tomato (Lycopersicon esculentum Mill.) plants using immunogold techniques coupled to transmission electron microscopy. The enzyme occurs only in chloroplasts and is most probably a stroma constituent.  相似文献   

6.
The isotopic fractionation of nitrogen in the reaction in vitroof glutamine synthetase isolated from spinach (Spinacia oleraceaL.) leaves was calculated from the changes in natural 15N abundance(  相似文献   

7.
The activities of nitrate reductase and glutamine synthetase in leaves of greenhouse grown rose plants (Rosa hybrida cvs. Ilseta and Mercedes) grafted on various rootstocks were compared with those in leaves of non-grafted, own-root plants of these cultivars. The results obtained showed that the enzymatic activities as well as nitrate content in the leaves were altered by the grafting and by type of the rootstock used. These rootstock-imposed alterations differed between the two cultivars used in the study. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
A method is described for the purification of glutamine synthetase (GS; EC. 6.3.1.2) from the leaves and roots of Pinus banksiana Lamb., a conifer which utilizes ammonium as its primary nitrogen source. The enzyme was purified to apparent homogeneity by a procedure involving salt fractionation as well as ion-exchange, size exclusion, and affinity chromatography. Since the final preparation produced two bands on SDS polyacryamide gels but only one band on a nondenaturating gel, it is concluded that the two subunits (44 and 40 kilodaltons, respectively) are part of a single enzymatic protein which shows GS activity. The pH optimum for leaf GS ranged between 6.2 and 6.5, one pH unit lower than the values reported for higher plants which utilize primarily nitrate nitrogen. Magnesium requirements for GS in P. banksiana were different for leaves and roots, showing Vmax/2 values of 2.5 and 8 millimolar, respectively at 5 millimolar ATP. Furthermore, Km values for ammonium were higher for the enzyme in leaves (33.1 micromolar) than in roots (19.2 micromolar). Km values for ATP and for glutamate, on the other hand, were similar for the two tissues. A polyclonal antibody was produced against the purified leaf GS. Western blots of leaf homogenates produced two bands, the lighter one being more abundant. The same pattern was found when immunodetection was performed using an anti GS IgG produced against purified GS from Phaseolus nodules thus indicating common antigenic determinants. At least 30% of total GS was recovered in a plastid-fraction of dark-grown calli produced from the basal part of P. banksiana hypocotyls.  相似文献   

9.
In the brain, glutamine synthetase (GS), which is located predominantly in astrocytes, is largely responsible for the removal of both blood-derived and metabolically generated ammonia. Thus, studies with [13N]ammonia have shown that about 25?% of blood-derived ammonia is removed in a single pass through the rat brain and that this ammonia is incorporated primarily into glutamine (amide) in astrocytes. Major pathways for cerebral ammonia generation include the glutaminase reaction and the glutamate dehydrogenase (GDH) reaction. The equilibrium position of the GDH-catalyzed reaction in vitro favors reductive amination of α-ketoglutarate at pH 7.4. Nevertheless, only a small amount of label derived from [13N]ammonia in rat brain is incorporated into glutamate and the α-amine of glutamine in vivo. Most likely the cerebral GDH reaction is drawn normally in the direction of glutamate oxidation (ammonia production) by rapid removal of ammonia as glutamine. Linkage of glutamate/α-ketoglutarate-utilizing aminotransferases with the GDH reaction channels excess amino acid nitrogen toward ammonia for glutamine synthesis. At high ammonia levels and/or when GS is inhibited the GDH reaction coupled with glutamate/α-ketoglutarate-linked aminotransferases may, however, promote the flow of ammonia nitrogen toward synthesis of amino acids. Preliminary evidence suggests an important role for the purine nucleotide cycle (PNC) as an additional source of ammonia in neurons (Net reaction: l-Aspartate?+?GTP?+?H2O?→?Fumarate?+?GDP?+?Pi?+?NH3) and in the beat cycle of ependyma cilia. The link of the PNC to aminotransferases and GDH/GS and its role in cerebral nitrogen metabolism under both normal and pathological (e.g. hyperammonemic encephalopathy) conditions should be a productive area for future research.  相似文献   

10.
A method is described to achieve density labeling of proteins in unicellular algae by using 13CO2. This is a satisfactory procedure especially for work on nitrogen metabolism. The increase in activity of glutamine synthetase (EC 6.3.1.2.) and glutamate synthase (EC 1.4.7.1.) in Chlorella sorokiniana mediated by a dark/light shift and by nitrogen starvation were investigated. Using the method of density labeling and isopycnic centrifugation, we demonstrated that the increase in enzyme activity after a dark/light shift is based on activation rather than de novo synthesis. The increase in enzyme activity after transfer to nitrogen-deficient medium is based both on activation and de novo synthesis.  相似文献   

11.
光对水稻非光合组织谷氨酰胺合成酶同工酶表达的影响   总被引:1,自引:0,他引:1  
以前的研究表明,高等植物叶绿体谷氨酰胺合成酶(GS2)受光调节,但叶片胞液GS(GS1)和非光合作用组织中的GS很少受光的影响,在本报道中,笔者运用GS活性染色和Western blotting研究了光对非光合作用组织水稻根GS同工酶表达的影响,在阳光的直接照射下以及在室内不同光照强度下,可以很清楚地观察到GSra和GS rb的活性带及其蛋白质带,但是,当用尼龙网档住阳光的直接照射下,GSrb的活性带和蛋白质带消失,当阳光被尼龙网遮挡住后,其光强度仍然比室内光照强度大得多,表明光照强度不是影响GSrb表达的主要因素,当分析生长在暗处以及生长在光/暗转换下的水稻幼苗根GS同工酶变化时,仍然可以观察到GSrb的在,在所有实验条件下,GSra都未发生明显变化,这些结果提示,光对GSrb表达的影响可能是由某些光谱相互作用所产生的未知因素造成的。  相似文献   

12.
Spinach leaf (Spinacia oleracea L.) discs infiltrated with [15N]glycine were incubated at 25°C in the light and in darkness for 0, 30, 60 and 90 minutes. The kinetics of 15N-incorporation into glutamine, glutamate, asparagine, aspartate, and serine from [15N]glycine was determined. At the beginning of the experiment, just after infiltration (0 min incubation) serine, and the amido-N of glutamine and asparagine were the only compounds significantly labeled in both light- and dark-treated leaf discs. Incorporation of 15N-label into the other amino acids was observed at longer incubation time. The per cent 15N-enrichment in all amino acids was found to increase with incubation. However, serine and the amido-N of glutamine remained the most highly labeled products in all treatments. The above pattern of 15N-labeling suggests that glutamine synthetase was involved in the initial refixation of 15NH3 derived from [15N]glycine oxidation in spinach leaf discs.

The 15N-enrichment of the amino-N of glutamine was found to increase rapidly from 0 to 19% during incubation in the light. There was a comparatively smaller increase (4-9%) in the 15N-label of the amino-N of glutamine in tissue incubated in darkness. Furthermore the total flux of 15N-label into each of the amino acids examined was found to be greater in tissue incubated in the light than those in the dark. The above evidence indicates the involvement of the glutamine synthetase/glutamate synthase pathway in the recycling of photorespiratory NH3 during glycine oxidation in spinach leaves.

  相似文献   

13.
Abstract: Regulation of the biosynthesis of glutamine synthetase was studied in neuroblastoma cells (Neuro-2A) by use of a recently developed, sensitive radioisotopic assay. The removal of glutamine from the culture medium of these cells for 24 h resulted in a 10-fold increase in glutamine synthetase specific activity (15-fold after 2 weeks) compared with the basal level found in cells grown in the presence of 2 m M glutamine. Following the growth of these cells for 2 weeks in the presence of various concentrations of glutamine, a negative linear correlation was observed between the specific activity of glutamine synthetase (from 1.7 to 0.14 unit/mg) and the concentration of glutamine in the growth medium (from 0.5 to 2 m M ). Cycloheximide or actinomycin D blocked the increase in glutamine synthetase activity observed in the absence of glutamine. These results suggest that the removal of glutamine led to the induction of glutamine synthetase by stimulating new enzyme synthesis. The enzyme was not degraded, but only diluted, by growth upon readdition of glutamine to the medium. The influence of glutamine depletion is also reported for C-6 glioma cells and glial cells in primary cultures.  相似文献   

14.
Glutamine synthetase (GS, E.C. 6.3.1.2) is a ubiquitous and highly compartmentalized enzyme that is critically involved in several metabolic pathways in the brain, including the glutamine-glutamate-GABA cycle and detoxification of ammonia. GS is normally localized to the cytoplasm of most astrocytes, with elevated concentrations of the enzyme being present in perivascular endfeet and in processes close to excitatory synapses. Interestingly, an increasing number of studies have indicated that the expression, distribution, or activity of brain GS is altered in several brain disorders, including Alzheimer’s disease, schizophrenia, depression, suicidality, and mesial temporal lobe epilepsy (MTLE). Although the metabolic and functional sequelae of brain GS perturbations are not fully understood, it is likely that a deficiency in brain GS will have a significant biological impact due to the critical metabolic role of the enzyme. Furthermore, it is possible that restoration of GS in astrocytes lacking the enzyme could constitute a novel and highly specific therapy for these disorders. The goals of this review are to summarize key features of mammalian GS under normal conditions, and discuss the consequences of GS deficiency in brain disorders, specifically MTLE.  相似文献   

15.
Summary Polymorphism in twelve genes coding for eight enzymes in pearl millet (Pennisetum glaucum (L.) R. Br.): alcohol dehydrogenases (ADH), catalases (CAT), -esterases (EST), glutamate oxaloacetate transaminases (GOT), malate dehydrogenases (MDH), 6-Phosphogluconate dehydrogenases (PGD), phosphoglucoisomerases (PGI) and phosphoglucomutases (PGM), was observed by electrophoresis on 74 cultivated samples and 8 wild samples from West Africa. Six genes: Est A, Adh A, Pgm A, Cat A, Pgi A, Pgd A contain 95% of the total variation. Principal component analyses and discriminant analyses of the 82 samples described by 46 allelic frequencies showed an almost complete separation into 3 groups: wilds, early maturing cultivars and late maturing cultivars. The early group has the highest enzyme diversity, with cultivated millets from Niger showing the most diversity. The high diversity of the early group and its extensive divergence from West-African wild millets suggest, firstly, the existence, elsewhere in Africa of other enzymatically different sources of wild millet, and secondly, the occurrence, prehistorically, of several different domestications. The late group of cultivars has the lowest variability and a relatively low coefficient of differentiation. This relatively homogeneous enzyme structure does not seem to be associated to ecology. A hypothesis is advanced suggesting that West African late-cultivars were derived from a common cultivated early complex. This complex must have been distributed across the Sudanian zone and must have been later sumitted to modifications by limited gene flow with local early maturing cultivars.  相似文献   

16.
Two glutamine synthetase (GS) polypeptides (44 and 39 kD) were immunodetected on western blots of leaf extracts from tobacco (Nicotiana tabacum L.), a plant that has been reported to contain only chloroplast GS in the leaves. By immunocytochemical methods, we confirmed the localization of GS in the cytosol of cells in the vascular tissue and in the chloroplasts of mesophyll cells.  相似文献   

17.
谷氨酰胺合成酶产生菌的固定化在酶法合成谷氨酰胺中的应用具有重要意义。实验首先从味精废水中筛选出谷氨酰胺合成酶高产菌株LNU018,然后分别用海藻酸钠、聚乙烯醇(PVA)为载体对谷氨酰胺合成酶高产菌棒杆菌进行固定化。探讨了固定化条件对固定化小球结构、机械强度、弹性、稳定性和培养后菌体的谷氨酰胺合成酶的活性情况的影响,分析确定最佳的固定化条件。研究结果表明,5%的海藻酸钠、11%的聚乙烯醇形成的固定化菌球大小合适,有弹性,但5%的海藻酸钠能更好的保持酶活性,比11%聚乙烯醇高16%,其为最佳的固定化条件。  相似文献   

18.
Summary The survey of enzyme polymorphism in West African pearl millet cultivars reported by Tostain et al. 1987 has been extended to include populations from other regions of Africa and from India. The eight enzyme systems studied included: alcohol dehydrogenase, -esterase, catalase, phosphoglucoisomerase, phosphoglucomutase, 6-phosphogluconate dehydrogenase, glutamate oxaloacetate transaminase, and malate dehydrogenase. One-hundred-ninety-nine populations of millet were analyzed, including 74 populations studied earlier. No new enzyme diversity was observed. Intrapopulation diversity ranged from 70%–90% of the total diversity, depending on their regions of origin. Four principal groups were distinguished in the following decreasing order of diversity: early-maturing cultivars from West and East Africa, late — maturing cultivars from West and East Africa, cultivars from India, and cultivars from southern Africa. The early-maturing cultivars were distributed between two principal focal points from East Africa in the East to Mali in the West. In the center were found millets from Niger which were most diverse. Indian and southern African cultivars were distinct, with the former appearing relatively similar to those of Niger, and the latter somewhat similar to late-maturing cultivars from West Africa, a diverse group that included late-maturing cultivars from East Africa. Based on the results obtained, an evolutionary hypothesis proposed here includes: multiple domestications in the Sahel, creation of early-maturing cultivars and their migration eastwards to India plus a southwards migration to Sudanian zone, and creation of late-maturing cultivars and their migration simultaneously westwards, eastwards, and southwards to southern Africa.  相似文献   

19.
20.
Tissue-Specific Distribution of Glutamine Synthetase in Potato Tubers   总被引:4,自引:0,他引:4  
Cytosolic isoforms of the enzyme glutamine synthetase (GS) locatedin the phloem have been implicated in the mobilization of nitrogenfor intracellular transport in higher plants. The potato tuberrepresents an important reservoir of nitrogen and an approachwas made to the characterization of GS in this organ, particularlyat the stages of sprouting and of new tuber formation. By immunoblottingafter SDS-PAGE, and by immunological tissue printing, it waspossible to conclude that a cytosolic GS is present in tubersand sprouts, and that it is mainly expressed in the internalphloem, in a very precise tissue-specific pattern of distribution.These data provide additional clues to the interpretation ofthe functional role of GS in the mobilization of nitrogen andits utilization in growing parts of the plant. The importanceof morphological data and localization studies in complementingmolecular and biochemical work is emphasized. The proposed functionalimportance of the internal phloem inSolanum tuberosum organsis also reinforced. Solanum tuberosum L. cv. Desirée; potato; tubers; plant glutamine synthetase; tissue-specific distribution; phloem; nitrogen mobilization; in situlocalization; tissue printing  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号