首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comparative map of American wildrice ( Zizania palustris var. interior L.) was used to identify loci controlling seed shattering, plant height, maturity, tiller number, plant habit, panicle length seed length, and color traits. Two to six significant quantitative-trait-loci (QTLs, P < 0.05) were detected for each trait evaluated, representing the first trait-mapping in wildrice. The chosen population was designed to emphasize the mapping of loci controlling the shattering trait, which is the most important trait in the management of this newly domesticated species. Three loci were detected that controlled the discretely categorized variation between shattering and non-shattering plants. Seed-shattering loci were detected and validated among the F(2) and F(3) generations. A multiple regression model with these three loci described 49.6% of the additive genetic variation. A genetic model with the same three loci including dominance and locus interactions predicted the shattering versus non-shattering phenotype at a success rate of 87%. The comparative map was based on mapped RFLP markers used in white rice ( Oryza sativa L.) and other grass species. Anchor loci provided a reference point for the identification of potential orthologous genes on the basis of white rice mutant loci and consensus grass species QTLs. Candidate orthologous loci were identified among all traits evaluated. The study underscores the benefits of extending trait analysis through comparative mapping, as well as challenges of QTL analysis in a newly domesticated species.  相似文献   

2.
水稻落粒性是与其生产密切相关的重要性状之一。以7个染色体片段置换系为材料, 采用重叠群代换作图法对控制落粒性的2个主效QTL进行定位。结果表明, 104个SSR标记在亲本间具有多态性, 多态率为68.0%; 4个置换系的落粒性与亲本日本晴的落粒性相似, 表现难落粒。3个置换系与亲本93-11的落粒性相似, 表现易落粒; 7个染色体片段置换系在第1和第6染色体上检出7个置换片段, 其长度分别为23.6、16.5、 6.6、 9.9、 10.4、 20.2和7.1 cM; qSH-1-1被定位在第1染色体RM472-RM1387之间, 遗传距离约为6.6 cM。qSH-6-1为新发现的落粒性主效QTL, 被定位在第6染色体RM6782-RM3430之间,遗传距离约为4.2 cM。利用染色体片段置换系能准确地定位水稻落粒性QTL, qSH-1-1与qSH-6-1的鉴定和初步定位为其进一步的精细定位、图位克隆及分子标记辅助选择奠定了基础。  相似文献   

3.
利用染色体片段置换系定位水稻落粒性主效QTL   总被引:9,自引:3,他引:6  
水稻落粒性是与其生产密切相关的重要性状之一。以7个染色体片段置换系为材料,采用重叠群代换作图法对控制落粒性的2个主效QTL进行定位。结果表明,104个SSR标记在亲本间具有多态性,多态率为68.0%;4个置换系的落粒性与亲本日本晴的落粒性相似,表现难落粒。3个置换系与亲本93-11的落粒性相似,表现易落粒;7个染色体片段置换系在第1和第6染色体上检出7个置换片段,其长度分别为23.6、16.5、6.6、9.9、10.4、20.2和7.1 cM;qSH-1-1被定位在第1染色体RM472-RM1387之间,遗传距离约为6.6 cM。qSH-6-1为新发现的落粒性主效QTL,被定位在第6染色体RM6782-RM3430之间,遗传距离约为4.2 cM。利用染色体片段置换系能准确地定位水稻落粒性QTL,qSH-1-1与qSH-6-1的鉴定和初步定位为其进一步的精细定位、图位克隆及分子标记辅助选择奠定了基础。  相似文献   

4.
It is known that the common cultivated rice (Oryza sativa) was domesticated from Asian wild rice, O. rufipogon. Among the morphological differences between them, loss of seed shattering is one of the striking characters specific for the cultivated forms. In order to understand the genetic control on shattering habit, QTL analysis was carried out using BC(2)F(1) backcross population between O. sativa cv. Nipponbare (a recurrent parent) and O. rufipogon acc. W630 (a donor parent). As a result, two strong QTLs were detected on chromosomes 1 and 4, and they were found to be identical to the two major seed-shattering loci, qSH1 and sh4, respectively. The allelic interaction at these loci was further examined using two sets of backcross populations having reciprocal genetic backgrounds, cultivated and wild. In the genetic background of cultivated rice, the wild qSH1 allele has stronger effect on seed shattering than that of sh4. In addition, the wild alleles at both qSH1 and sh4 loci showed semi-dominant effects. On the other hand, in the genetic background of wild rice, non-shattering effects of Nipponbare alleles at both loci were examined to inspect rice domestication from a viewpoint of seed shattering. It was serendipitous that the backcross plants individually having Nipponbare homozygous alleles at either shattering locus (qSH1 or sh4) shed all the seeds. This fact strongly indicates that the non-shattering behavior was not obtained by a single mutation in the genetic background of wild rice. Probably, some other minor genes are still associated with the formation or activation of abscission layer, which enhance the seed shattering.  相似文献   

5.
Quantitative trait loci (QTLs) controlling yield and yield components were identified by using a doubled haploid (DH) population of 120 lines from a sub-specific cross between ‘Samgang’ (Indica) and ‘Nagdong’ (Japonica). Main effects, epistatic effects, their environment interactions of QTLs were analyzed via mixed linear model approach across different environments. A total of 17 putative QTLs were identified on 8 chromosomes and five QTLs were detected over two years. 7 QTLs of main effects and 23 epistatic interactions were observed for five traits. Epistatic interactions played an important role in controlling the expression of yield related traits. The epistatic effects explained higher percentages of phenotype variation for panicles per plant, seed set percentage and yield. Significant QTL×environment (QE) interactions effects were identified for all traits, including 5 main effect QTLs. However, the present study failed to identify the significant interactions between epistatic loci containing main effect QTLs and the environment. The information provided in the present study could be used in the marker-assisted selection to enhance selection efficiency and to improve yield in rice.  相似文献   

6.
Genomic regions affecting seed shattering and seed dormancy in rice   总被引:43,自引:0,他引:43  
Non-shattering of the seeds and reduced seed dormancy were selected consciously and unconsciously during the domestication of rice, as in other cereals. Both traits are quantitative and their genetic bases are not fully elucidated, though several genes with relatively large effects have been identified. In the present study, we attempted to detect genomic regions associated with shattering and dormancy using 125 recombinant inbred lines obtained from a cross between cultivated and wild rice strains. A total of 147 markers were mapped on 12 rice chromosomes, and QTL analysis was performed by simple interval mapping and composite interval mapping. For seed shattering, two methods revealed the same four QTLs. On the other hand, for seed dormancy a number of QTLs were estimated by the two methods. Based on the results obtained with the intact and de-hulled seeds, QTLs affecting hull-imposed dormancy and kernel dormancy, respectively, were estimated. Some QTLs detected by simple interval mapping were not significant by composite interval mapping, which reduces the effects of residual variation due to the genetic background. Several chromosomal regions where shattering QTLs and dormancy QTLs are linked with each other were found. This redundancy of QTL associations was explained by ”multifactorial linkages” followed by natural selection favoring these two co-adapted traits. Received: 23 November 1998 / Accepted: 27 August 1999  相似文献   

7.
Ji HS  Chu SH  Jiang W  Cho YI  Hahn JH  Eun MY  McCouch SR  Koh HJ 《Genetics》2006,173(2):995-1005
Easy shattering reduces yield due to grain loss during harvest in cereals. Shattering is also a hindrance in breeding programs that use wild accessions because the shattering habit is often linked to desirable traits. We characterized a shattering mutant line of rice, Hsh, which was derived from a nonshattering japonica variety, Hwacheong, by N-methyl-N-nitrosourea (MNU) treatment. The breaking tensile strength (BTS) of the grain pedicel was measured using a digital force gauge to evaluate the degree of shattering of rice varieties at 5, 10, 15, 20, 25, 30, 35, and 40 days after heading (DAH). The BTS of Hwacheong did not decrease with increasing DAH, maintaining a level of 180-240 gf, while that of Hsh decreased greatly during 10-20 DAH and finally stabilized at 50 gf. Optical microscopy revealed that Hsh had a well-developed abscission layer similar to the wild rice Oryza nivara (accession IRGC105706), while Hwacheong did not produce an abscission layer, indicating that the shattering of Hsh was caused by differentiation of the abscission layer. On the basis of the BTS value and morphology of the abscission layer of F(1) plants and segregation data in F(2) populations, it was concluded that the easy shattering of Hsh was controlled by the single recessive gene sh-h. The gene sh-h was determined to be located on rice chromosome 7 by bulked segregant analysis. Using 14 SSR markers on rice chromosome 7, the gene sh-h was mapped between the flanking markers RM8262 and RM7161 at distances of 1.6 and 2.0 cM, respectively. An SSR marker Rc17 cosegregated with the gene sh-h. The locus sh-h for shattering was tightly linked to the Rc locus conferring red pericarp, as well as a QTL qSD(s)-7-1 for seed dormancy, implying that this region might represent a domestication block in the evolutionary pathway of rice.  相似文献   

8.
Rice lipid content as one of important ingredients of functional food and industrial products has become an entirely new target in the rice breeding programs worldwide. A genetic linkage map spanning 12 rice chromosomes with an average interval of 10.51 cM between markers was created using 172 DNA markers, which intended to elucidate genetic basis of lipid content in brown rice by QTL detection. Eight QTLs related to lipid content with LOD from 2.52 to 7.86 were mapped on chromosome1, 2, 3, 5, 6, 7 and 9 using a doubled haploid (DH) population from a cross of ‘Samgang/Nagdong’ with field experiments for five years. Two QTLs of qLC5.1 and qLC6.1 in the intervals 5014-5024 and 6011-RM19696 were repeatedly detected over four years at average LOD scores of 4.85 and 4.21, respectively. Five of eight QTLs tend to increase the lipid content from ‘Samgang’ alleles. Epistatic and environmental effects played important roles and explained 42.20% of phenotype variations. Three QTLs of qLC6.1, qLC7.1 and qLC9.1 collectively explained much than 27% of phenotype variations and increased 0.25% of lipid content and, showed much than 85% of selection efficiency for the lines with high lipid contents in the F7 population from a cross of ‘Samgang/Nagdong’. Thus it provides the sufficient possibility to realize QTLs pyramiding and to promote process of rice breeding.  相似文献   

9.
陈志德  王州飞  贺建波  仲维功  王军  杨杰  张红生 《遗传》2009,31(11):1135-1140
镉(Cd2+)是一种分布较广泛、毒性较强的一种重金属, 文章利用韭菜青×IR26杂交衍生的一个重组自交系群体(Recombinant inbred lines, RIL)及构建的SSR分子遗传图谱, 对控制糙米中Cd2+含量的QTL进行分析, 为选育籽粒中Cd2+低吸收或低积累的水稻品种提供参考。结果表明, 在Cd2+胁迫(5 mg/kg)处理条件下, 共检测到2个与糙米Cd2+含量有关的QTLs, 分别位于水稻第11染色体上的标记RM6288-RM6544和RM167-RM5704之间, 其中qCCBR-11a对表型贡献率为11.17%, 加性效应0.089; qCCBR-11b对表型变异贡献率为7.66%, 加性效应0.075。相关分析显示, 糙米Cd2+含量与株高、每穗总粒数、每穗实粒数、结实率和千粒重等产量性状的相关性均不显著, 糙米中Cd2+含量是一个相对独立、由基因控制的遗传性状。  相似文献   

10.
亚洲栽培稻主要驯化性状研究进展   总被引:1,自引:0,他引:1  
区树俊  汪鸿儒  储成才 《遗传》2012,34(11):1379-1389
水稻是研究谷类作物驯化的良好材料, 其中种子落粒性消失、休眠性减弱和株型上的变化是水稻驯化过程中的3个关键事件, 造就了高产、发芽整齐及可密植的现代水稻。落粒性丧失一直被认为是野生稻驯化形态学上的最直接证据, 而控制落粒的主要基因Sh4和qSH1分别暗示不同的水稻驯化历史。种子休眠性的减弱适应了现代农业生产上同步发芽的需求, Sdr4、qSD7-1和qSD12基因是目前已知的调控种子休眠性的3个关键位点。野生稻匍匐生长等特点与其长期所在的易变生境有关, 而栽培稻的直立生长形态则适应了农业上密植生产的需要, 受PROG1等基因控制。野生稻的异交特性促进了驯化基因在群体间传播, 而自花授粉则使驯化基因得以稳定遗传, 从而加快人工选择的累积。目前的水稻驯化研究侧重于单基因或一些中性标记, 而对控制驯化性状的网络化通路的进化研究却相对缺乏。随着功能基因组研究的深入, 驯化性状的分子机理将会被全面揭示, 而基于此的网络化通路研究必将更加真实地反应水稻驯化过程。文章综述了水稻关键驯化性状分子机理的研究进展, 为驯化基因网络的研究提供参考, 也为水稻分子设计改良提供新的思路。  相似文献   

11.
Chromosome segment substitution lines (CSSLs) are powerful tools for detecting and precisely mapping quantitative trait loci (QTLs) and evaluating gene action as a single factor. In this study, 103 CSSLs were produced using two sequenced rice cultivars: 93-11, an elite restorer indica cultivar as recipient, and Nipponbare, a japonica cultivar, as donor. Each CSSL carried a single chromosome substituted segment. The total length of the substituted segments in the CSSLs was 2,590.6 cM, which was 1.7 times of the rice genome. To evaluate the potential application of these CSSLs for QTL detection, phenotypic variations of seed shattering, grain length and grain width in 10 CSSLs were observed. Two QTLs for seed shattering and three for grain length and grain width were identified and mapped on rice chromosomes. The results demonstrate that CSSLs are excellent genetic materials for dissecting complex traits into a set of monogenic loci. These CSSLs are of great potential value for QTL mapping and plant marker-assisted breeding (MAB).  相似文献   

12.
A new cold tolerant germplasm resource named glutinous rice 89-1 (Gr89-1, Oryza sativa L.) can overwinter using axillary buds, with these buds being ratooned the following year. The overwintering seedling rate (OSR) is an important factor for evaluating cold tolerance. Many quantitative trait loci (QTLs) controlling cold tolerance at different growth stages in rice have been identified, with some of these QTLs being successfully cloned. However, no QTLs conferring to the OSR trait have been located in the perennial O. sativa L. To identify QTLs associated with OSR and to evaluate cold tolerance. 286 F12 recombinant inbred lines (RILs) derived from a cross between the cold tolerant variety Gr89-1 and cold sensitive variety Shuhui527 (SH527) were used. A total of 198 polymorphic simple sequence repeat (SSR) markers that were distributed uniformly on 12 chromosomes were used to construct the linkage map. The gene ontology (GO) annotation of the major QTL was performed through the rice genome annotation project system. Three main-effect QTLs (qOSR2, qOSR3, and qOSR8) were detected and mapped on chromosomes 2, 3, and 8, respectively. These QTLs were located in the interval of RM14208 (35,160,202 base pairs (bp))–RM208 (35,520,147 bp), RM218 (8,375,236 bp)–RM232 (9,755,778 bp), and RM5891 (24,626,930 bp)–RM23608 (25,355,519 bp), and explained 19.6%, 9.3%, and 11.8% of the phenotypic variations, respectively. The qOSR2 QTL displayed the largest effect, with a logarithm of odds score (LOD) of 5.5. A total of 47 candidate genes on the qOSR2 locus were associated with 219 GO terms. Among these candidate genes, 11 were related to cell membrane, 7 were associated with cold stress, and 3 were involved in response to stress and biotic stimulus. OsPIP1;3 was the only one candidate gene related to stress, biotic stimulus, cold stress, and encoding a cell membrane protein. After QTL mapping, a total of three main-effect QTLs—qOSR2, qOSR3, and qOSR8—were detected on chromosomes 2, 3, and 8, respectively. Among these, qOSR2 explained the highest phenotypic variance. All the QTLs elite traits come from the cold resistance parent Gr89-1. OsPIP1;3 might be a candidate gene of qOSR2.  相似文献   

13.
When a phenotype of interest is associated with an external/internal covariate, covariate inclusion in quantitative trait loci (QTL) analyses can diminish residual variation and subsequently enhance the ability of QTL detection. In the in vitro synthesis of 2-acetyl-1-pyrroline (2AP), the main fragrance compound in rice, the thermal processing during the Maillard-type reaction between proline and carbohydrate reduction produces a roasted, popcorn-like aroma. Hence, for the first time, we included the proline amino acid, an important precursor of 2AP, as a covariate in our QTL mapping analyses to precisely explore the genetic factors affecting natural variation for rice scent. Consequently, two QTLs were traced on chromosomes 4 and 8. They explained from 20% to 49% of the total aroma phenotypic variance. Additionally, by saturating the interval harboring the major QTL using gene-based primers, a putative allele of fgr (major genetic determinant of fragrance) was mapped in the QTL on the 8th chromosome in the interval RM223-SCU015RM (1.63 cM). These loci supported previous studies of different accessions. Such QTLs can be widely used by breeders in crop improvement programs and for further fine mapping. Moreover, no previous studies and findings were found on simultaneous assessment of the relationship among 2AP, proline and fragrance QTLs. Therefore, our findings can help further our understanding of the metabolomic and genetic basis of 2AP biosynthesis in aromatic rice.  相似文献   

14.
Quantitative trait loci (QTLs) controlling seed longevity in rice were identified using 98 backcross inbred lines (BILs) derived from a cross between a japonica variety Nipponbare and an indica variety Kasalath. Seeds of each BIL were kept for 12 months at 30 degrees C in dry conditions to promote loss of viability. To measure seed longevity, we performed an additional aging-processing treatment for 2 months at 30 degrees C maintaining seeds at 15% moisture content. We measured the germination percent of these treated seeds at 25 degrees C for 7 days as the degree of seed longevity. The germination of BILs ranged from 0 to 100% with continuous variation. Three putative QTLs for seed longevity, qLG-2, qLG-4 and qLG-9, were detected on chromosome 2, 4 and 9, respectively. Kasalath alleles increased the seed longevity at these QTLs. The QTL with the largest effect, qLG-9, explained 59.5% of total phenotypic variation in BILs. The other two QTLs, qLG-2 and qLG-4, explained 13.4 and 11.6% of the total phenotypic variation, respectively. We also verified the effect of the Kasalath allele of qLG-9 using chromosome segment substitution lines. Furthermore, QTLs for seed dormancy were identified on chromosomes 1, 3, 5, 7 and 11. Based on the comparison of the chromosomal location of QTLs for seed longevity and seed dormancy, these traits seem to be controlled by different genetic factors.  相似文献   

15.
The predominant view regarding Asian rice domestication is that the initial origin of nonshattering involved a single gene of large effect, specifically, the sh4 locus via the evolutionary replacement of a dominant allele for shattering with a recessive allele for reduced shattering. Data have accumulated to challenge this hypothesis. Specifically, a few studies have reported occasional seed‐shattering plants from populations of the wild progenitor of cultivated rice (Oryza rufipogon complex) being homozygous for the putative “nonshattering” sh4 alleles. We tested the sh4 hypothesis for the domestication of cultivated rice by obtaining genotypes and phenotypes for a diverse set of samples of wild, weedy, and cultivated rice accessions. The cultivars were fixed for the putative “nonshattering” allele and nonshattering phenotype, but wild rice accessions are highly polymorphic for the putative “nonshattering” allele (frequency ~26%) with shattering phenotype. All weedy rice accessions are the “nonshattering” genotype at the sh4 locus but with shattering phenotype. These data challenge the widely accepted hypothesis that a single nucleotide mutation (“G”/“T”) of the sh4 locus is the major driving force for rice domestication. Instead, we hypothesize that unidentified shattering loci are responsible for the initial domestication of cultivated rice through reduced seed shattering.  相似文献   

16.
The appearance and cooking quality of rice determine its acceptability and price to a large extent. Quantitative trait loci (QTLs) for 12 grain quality traits were mapped in 2 mapping populations derived from Oryza sativa cv Swarna × O. nivara. The BC(2)F(2) population of the cross Swarna × O. nivara IRGC81848 (population 1) was evaluated during 2005 and that from Swarna × O. nivara IRGC81832 (population 2) was evaluated during 2006. Linkage maps were constructed using 100 simple sequence repeat (SSR) markers in population 1 and 75 SSR markers in population 2. In all, 21 QTLs were identified in population 1 (43% from O. nivara) and 37 in population 2 (38% QTLs from O. nivara). The location of O. nivara-derived QTLs mp1.2 for milling percent, kw6.1 for kernel width, and klac12.1 for kernel length after cooking coincided in the 2 populations and appear to be useful for Marker Assisted Selection (MAS). Four QTLs for milling percent, 1 QTL each for amylose content, water uptake, elongation ratio, 2 QTLs for kernel width, and 3 QTLs for gel consistency, each explained more than 20% phenotypic variance. Three QTL clusters for grain quality traits were close to the genes/QTLs for shattering and seed dormancy. QTLs for 4 quality traits were associated with 5 of the 7 major yield QTLs reported in the same 2 mapping populations. Useful introgression lines have been developed for several agronomic traits. It emerges that 40% O. nivara alleles were trait enhancing in both populations, and QTLs for grain quality overlapped with yield meta-QTLs and QTLs for dormancy and seed shattering.  相似文献   

17.
18.
Salinity is the main abiotic stress that limits rice (Oryza sativa L.) production worldwide. An association mapping project was designed to validate quantitative trait loci (QTLs) in rice associated with Na+, K+ and Ca++ accumulation traits identified in our previous study of linkage mapping. Twenty four varieties/lines of rice were phenotyped for biochemical and yield traits. Among these varieties/lines, two mapping parents, Pokkali and IR-36, of our previous linkage mapping study were also included. For marker-trait assessments, both general linear model (GLM) and mixed linear model (MLM) analyses were performed. Thirteen significant marker-trait associations at P ≤ 0.001 were identified. Associated markers for these marker-trait associations were RM503, RM225, RM152, and RM254 located on chromosomes 3, 6, 8, and 11, respectively. Previously identified QTLs in linkage mapping study for Na+ uptake, Ca++ uptake, total cations uptake, Ca++ uptake ratio, K+ uptake ratio, and Na+/K+ uptake were validated in this study. Heritability values for these traits ranged from 1.00e-05 to 1. Linked markers for these validated QTLs were RM140, RM243, RM203, RM480, RM137, and RM254 located on chromosomes 1, 1, 3, 5, 8, and 11, respectively. These markers will be a valuable resource for marker-assisted breeding (MAB) approach to develop elite salt tolerant rice cultivars. This study demonstrates the potential of association mapping approach to validate previously identified QTLs.  相似文献   

19.
水稻骨干恢复系是指在杂交稻育种中广泛应用的一类恢复系。探明骨干恢复系的遗传基础,发掘其重要农艺性状基因/QTL,对分子标记辅助选择水稻恢复系育种具有重要应用价值。本研究以生产上广泛应用的三系骨干恢复系成恢727和两系骨干恢复系9311为亲本,培育了具有250个系的重组自交系群体。分别在2015年三亚和2016年合肥两个环境下进行了9个重要农艺性状表型和SSR分子标记基因型鉴定,用SAS9.2分析表型数据,用QTL Ici Mapping v4.1进行QTL定位分析。在三亚和合肥两个环境下共检测到39个QTL,三亚检测到16个,分布于第1、2、4、7、8、10、11和12染色体上;合肥检测24个,分布于第1、2、3、7、8、9、10和12染色体上。其中qPH1-1在三亚和合肥两个环境下都能检测到,加性效应分别为-1.75和-2.46。在检测到的39个QTL中,有24个QTL的增效等位基因来自恢复系成恢727,15个QTL的增效等位基因来自9311。共计有26个QTL曾被前人定位,13个属于尚未见文献报道的新QTL。另外,在RM279~RM521、RM336~RM3534、RM25~RM547、RM553~RM160、RM222~RM271区段内检测到5个多效性QTL位点。其中RM25~RM547位点与已经克隆的基因Ghd8位置相近。RM553~RM160位点是一个新的多效性位点,分别控制每穗实粒数、单株产量和结实率,而且效应和表型变异贡献率都较大。其余3个位点在前人的研究中分别有所报道,但其多效性则是在本研究中首次发现。在本研究新发掘到的QTL中,控制穗数的QTL qPN12-1,控制穗长的QTL qPL1-2和qPL10-1,控制总粒数的QTL qSNP2-1和qSNP10-1,控制结实率的QTL qSF3-1,控制千粒重QTL qTGW7-1和控制产量的QTL qGY1-1效应均比较大,解释的表型遗传变异比例也较高。本研究的结果将会为相关性状QTL的精细定位、克隆和育种应用奠定基础。  相似文献   

20.
姚晓云  王嘉宇 《植物学报》2016,51(6):757-763
以沈农265和丽江新团黑谷杂交衍生的重组自交系群体(RILs)为实验材料,对12个粳稻(Oryza sativa subsp.japonica)蒸煮食味品质相关性状进行QTL分析。共检测到29个蒸煮食味品质相关的QTLs,分布于除第8染色体外的11条染色体上,LOD值介于2.50–16.47之间,加性效应值为–132.69–471.85,单个QTL贡献率为10.36%–73.24%。在第6染色体RM508–RM253区域检测到1个蒸煮营养食味品质多效性QTL簇,其中q AC6表型贡献率最大,解释73.24%的表型变异;在第10染色体PM166–RM258区域检测到2个与蒸煮食味品质相关的QTLs,分别是控制口感的q CTS10和综合评分的q CCS10。此外,检测到15个与RVA特征谱相关的QTLs,在第6染色体RM253–RM402区域检测到3个与RVA谱特征值相关的QTLs,表型贡献率均大于12%。这些定位结果将为粳稻蒸煮食味相关品质的分子遗传机理研究奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号