首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sporotrichosis is a chronic infectious disease affecting both humans and animals. For many years, this subcutaneous mycosis had been attributed to a single etiological agent; however, it is now known that this taxon consists of a complex of at least four pathogenic species, including Sporothrix schenckii and Sporothrix brasiliensis. Gp70 was previously shown to be an important antigen and adhesin expressed on the fungal cell surface and may have a key role in immunomodulation and host response. The aim of this work was to study the virulence, morphometry, cell surface topology and gp70 expression of clinical isolates of S. brasiliensis compared with two reference strains of S. schenckii. Several clinical isolates related to severe human cases or associated with the Brazilian zoonotic outbreak of sporotrichosis were genotyped and clustered as S. brasiliensis. Interestingly, in a murine subcutaneous model of sporotrichosis, these isolates showed a higher virulence profile compared with S. schenckii. A single S. brasiliensis isolate from an HIV-positive patient not only showed lower virulence but also presented differences in cell morphometry, cell wall topography and abundant gp70 expression compared with the virulent isolates. In contrast, the highly virulent S. brasiliensis isolates showed reduced levels of cell wall gp70. These observations were confirmed by the topographical location of the gp70 antigen using immunoelectromicroscopy in both species. In addition, the gp70 molecule was sequenced and identified using mass spectrometry, and the sequenced peptides were aligned into predicted proteins using Blastp with the S. schenckii and S. brasiliensis genomes.  相似文献   

2.
Most known virulence determinants of Pseudomonas aeruginosa are remarkably conserved in this bacterium's core genome, yet individual strains differ significantly in virulence. One explanation for this discrepancy is that pathogenicity islands, regions of DNA found in some strains but not in others, contribute to the overall virulence of P. aeruginosa. Here we employed a strategy in which the virulence of a panel of P. aeruginosa isolates was tested in mouse and plant models of disease, and a highly virulent isolate, PSE9, was chosen for comparison by subtractive hybridization to a less virulent strain, PAO1. The resulting subtractive hybridization sequences were used as tags to identify genomic islands found in PSE9 but absent in PAO1. One 99-kb island, designated P. aeruginosa genomic island 5 (PAGI-5), was a hybrid of the known P. aeruginosa island PAPI-1 and novel sequences. Whereas the PAPI-1-like sequences were found in most tested isolates, the novel sequences were found only in the most virulent isolates. Deletional analysis confirmed that some of these novel sequences contributed to the highly virulent phenotype of PSE9. These results indicate that targeting highly virulent strains of P. aeruginosa may be a useful strategy for identifying pathogenicity islands and novel virulence determinants.  相似文献   

3.
Respiratory infections with Burkholderia cepacia complex (Bcc) bacteria in cystic fibrosis (CF) are associated with a worse prognosis and increased risk of death. In this work, we assessed the virulence potential of three B. cenocepacia clonal isolates obtained from a CF patient between the onset of infection (isolate IST439) and before death with cepacia syndrome 3.5 years later (isolate IST4113 followed by IST4134), based on their ability to invade epithelial cells and compromise epithelial monolayer integrity. The two clonal isolates retrieved during late-stage disease were significantly more virulent than IST439. Proteomic profiling by 2-D DIGE of the last isolate recovered before the patient’s death, IST4134, and clonal isolate IST439, was performed and compared with a prior analysis of IST4113 vs. IST439. The cytoplasmic and membrane-associated enriched fractions were examined and 52 proteins were found to be similarly altered in the two last isolates compared with IST439. These proteins are involved in metabolic functions, nucleotide synthesis, translation and protein folding, cell envelope biogenesis and iron homeostasis. Results are suggestive of the important role played by metabolic reprogramming in the virulence potential and persistence of B. cenocepacia, in particular regarding bacterial adaptation to microaerophilic conditions. Also, the content of the virulence determinant AidA was higher in the last 2 isolates. Significant levels of siderophores were found to be secreted by the three clonal isolates in an iron-depleted environment, but the two late isolates were more tolerant to low iron concentrations than IST439, consistent with the relative abundance of proteins involved in iron uptake.  相似文献   

4.
Black spot disease caused by Diplocarpon rosae is one of the most widespread diseases of roses that are very difficult to control due to the generative reproduction and complex genetic constitution of roses and up to now the control of black spot still requires intensive use of systemic fungicides. Here we report for the first time evidence of differentially virulent field isolates of D. rosae. Using a combination of fungal structures, disease symptoms and host cells protein expression pattern analysis we here provide direct biochemical evidence that tropical field isolates of D. rosae are more virulent and caused disease symptoms earlier than their temperate counterparts. The tropical fungal field isolates strongly induced an excessive accumulation of ROS and repressed activity of pathogenesis-related proteins such as peroxidases, chitinase and phenylalanine ammonia lyase compared to their temperate counterparts. These findings bring insights into a hidden pathogenic characteristic of tropical D. rosae field isolates compared to their temperate counterparts and open a novel dimension of parameters to be considered when controlling black spot disease of roses by fungicides in tropical versus temperate regions. Interestingly, we found that treatment of rose leaves with ROS (H2O2) prior to fungal inoculation promoted plant defense response regardless of the isolate virulence based on protein expression pattern analysis, suggesting that ROS (H2O2) can be efficiently incorporated into black spot disease management.  相似文献   

5.
Burkholderia pseudomallei is a soil-dwelling bacterium endemic to Southeast Asia and northern Australia that causes the disease, melioidosis. Although the global genomic diversity of clinical B. pseudomallei isolates has been investigated, there is limited understanding of its genomic diversity across small geographic scales, especially in soil. In this study, we obtained 288 B. pseudomallei isolates from a single soil sample (~100g; intensive site 2, INT2) collected at a depth of 30cm from a site in Ubon Ratchathani Province, Thailand. We sequenced the genomes of 169 of these isolates that represent 7 distinct sequence types (STs), including a new ST (ST1820), based on multi-locus sequence typing (MLST) analysis. A core genome SNP phylogeny demonstrated that all identified STs share a recent common ancestor that diverged an estimated 796–1260 years ago. A pan-genomics analysis demonstrated recombination between clades and intra-MLST phylogenetic and gene differences. To identify potential differential virulence between STs, groups of BALB/c mice (5 mice/isolate) were challenged via subcutaneous injection (500 CFUs) with 30 INT2 isolates representing 5 different STs; over the 21-day experiment, eight isolates killed all mice, 2 isolates killed an intermediate number of mice (1–2), and 20 isolates killed no mice. Although the virulence results were largely stratified by ST, one virulent isolate and six attenuated isolates were from the same ST (ST1005), suggesting that variably conserved genomic regions may contribute to virulence. Genomes from the animal-challenged isolates were subjected to a bacterial genome-wide association study to identify genomic regions associated with differential virulence. One associated region is a unique variant of Hcp1, a component of the type VI secretion system, which may result in attenuation. The results of this study have implications for comprehensive sampling strategies, environmental exposure risk assessment, and understanding recombination and differential virulence in B. pseudomallei.  相似文献   

6.
Bacterial blight caused by Xanthomonas campestris pv. punicae (Xcp) has emerged as a potential threat in pomegranate (Punica granatum) cultivation in India. Here, we report the genomic fingerprints and their correlation with virulence pattern of Xcp isolates from Maharashtra and Delhi. The genomic fingerprints of Xcp isolates were generated using enterobacterial repetitive intergenic consensus (ERIC) sequence-based primers, and virulence level was based on their reaction upon infiltration to susceptible pomegranate cultivar. Maharashtra isolate PGM1 showed only 50% similarity with Delhi isolate PGD8 forming a distinct genotype, whereas the Delhi isolates PGD5 and PGD6 form a cluster with Maharashtra isolates PGM2 and PGM4. The isolates PGM2, PGM4, PGD5, and PGD6 showing mean disease score of 7.47 were marked as group A or highly virulent. The moderately virulent or group B isolates PGM3 and PGD7 produced mean disease score of 4.19, whereas less virulent or group C isolates PGD8 and PGM1 gave mean disease intensity of 1.91. A correlation between genotypic groups based on ERIC fingerprints and pathogenicity of the isolates was established. The highly virulent isolates PGM2, PGM4, PGD5, and PGD6 formed a single cluster. A unique 900 bp amplicon present in all highly virulent isolates has been identified that can be used as genetic marker to screen isolates for virulence. The less virulent isolates PGD8 and PGM1 formed single cluster at 50% similarity coefficient. This seems to be the first report to establish a correlation between ERIC-PCR fingerprints and their corresponding virulence pattern of the pomegranate bacterial blight pathogen.  相似文献   

7.
The virulence index of three Meloidogyne incognita field isolates to the resistance gene Rk in cowpea was 0%, 75%, and 120%, with the index measured as reproduction on resistant plants as a percentage of the reproduction on susceptible plants. Continuous culture of the 75% virulent isolate on susceptible tomato for more than 5 years (about 25 generations) resulted in virulence decline to about 4%. The rate of the decline in virulence was described by exponential decay, indicating the progressive loss of virulence on a susceptible host. The 120% virulent isolate declined to 90% virulence during five generations on susceptible cowpea. Following virulence decline, the two isolates were compared over 5 years in inoculated field microplots both separately and as a mixture on susceptible, gene Rk, and gene Rk2 cowpea plants. At infestation of the plots, the two isolates were 1.2% and 92.0% virulent, respectively, to gene Rk and 0.2% and 8.1% virulent, respectively, to gene Rk2. Virulence to gene Rk in the two isolates and in mixture increased under 5 years of continuous Rk cowpea plants to 129% to 172% and under Rk2 cowpea plants to 113% to 139 % by year 5. Virulence to gene Rk2 increased during continuous cropping with Rk cowpea plants to 42% to 47% and with Rk2 cowpea plants to 22% to 48% by year 5. Selection of Rk2-virulence was slower in the isolate with low itt-virulence. The virulence to both genes Rk and Rk2 in the mixed population was not different from that in the highly virulent isolate by year 5 of all cropping combinations. Selection of Rk2-virulence on plants with Rk, and vice versa, indicated at least partial overlap of gene specificity between Rk and Rk2 with respect to selection of nematode virulence. This observation should be considered when resistance is used in cowpea rotations.  相似文献   

8.
Isofemale lines (IFL) from single egg masses were studied for genetic variation in Meloidogyne incognita isolates avirulent and virulent to the resistance gene Rk in cowpea (Vigna unguiculata). In parental isolates cultured on susceptible and resistant cowpea, the virulent isolate contained 100% and the avirulent isolate 7% virulent lineages. Virulence was selected from the avirulent isolate within eight generations on resistant cowpea (lineage selection). In addition, virulence was selected from avirulent females (individual selection). Virulence differed (P ≤ 0.05) both within and between cohorts of IFL cultured for up to 27 generations on susceptible or resistant cowpea. Distinct virulence profiles were observed among IFL. Some remained avirulent on susceptible plants and became extinct on resistant plants; some remained virulent on resistant and susceptible plants; some changed from avirulent to virulent on resistant plants; and others changed from virulent to avirulent on susceptible plants. Also, some IFL increased in virulence on susceptible plants. Single descent lines from IFL showed similar patterns of virulence for up to six generations. These results revealed considerable genetic variation in virulence in a mitotic parthenogenetic nematode population. The frequencies of lineages with stable or changeable virulence and avirulence phenotypes determined the overall virulence potential of the population.  相似文献   

9.
Stenotrophomonas maltophilia is a Gram-negative pathogen with emerging nosocomial incidence. Little is known about its pathogenesis and the genomic diversity exhibited by clinical isolates complicates the study of pathogenicity and virulence factors. Here, we present a strategy to identify such factors in new clinical isolates of S. maltophilia, incorporating an adult-zebrafish model of S. maltophilia infection to evaluate relative virulence coupled to 2D difference gel electrophoresis to explore underlying differences in protein expression. In this study we report upon three recent clinical isolates and use the collection strain ATCC13637 as a reference. The adult-zebrafish model shows discrimination capacity, i.e. from very low to very high mortality rates, with clinical symptoms very similar to those observed in natural S. maltophilia infections in fish. Strain virulence correlates with resistance to human serum, in agreement with previous studies in mouse and rat and therefore supporting zebrafish as a replacement model. Despite its clinical origin, the collection strain ATCC13637 showed obvious signs of attenuation in zebrafish, with null mortality. Multilocus-sequence-typing analysis revealed that the most virulent strains, UV74 and M30, exhibit the strongest genetic similitude. Differential proteomic analysis led to the identification of 38 proteins with significantly different abundance in the three clinical strains relative to the reference strain. Orthologs of several of these proteins have been already reported to have a role in pathogenesis, virulence or resistance mechanisms thus supporting our strategy. Proof of concept is further provided by protein Ax21, whose abundance is shown here to be directly proportional to mortality in the zebrafish infection model. Indeed, recent studies have demonstrated that this protein is a quorum-sensing-related virulence factor.  相似文献   

10.
Genetic variation in fourteen isolates of Alternaria brassicae collected from different geographical regions of the world was determined by RAPD (random amplified polymorphic DNA) analysis. Twenty random primers were tried to amplify genomic DNA of A. brassicae. Based on the PCR (polymerase chain reaction) amplification of genomic DNA of A. brassicae with four oligonucleotide random primers, fingerprints were generated for each isolate and the amplifed products were compared. Using this technique, intra- and intercontinental genetic variation among isolates of A. brassicae could be distinguished.  相似文献   

11.
12.
Highly virulent Newcastle disease virus (NDV) isolates are List A pathogens for commercial poultry, and reports of their isolation among member nations must be made to the Office of International Epizootes (OIE). The virus is classified as a member of the order Mononegavirales in the family Paramyxoviridae of the subfamily Paramyxovirinae. Two interactive surface glycoproteins, the fusion (F) and hemagglutinin-neuraminidase (HN) proteins, play essential roles in NDV attachment and fusion of cells during infection. Antibodies to the F or HN proteins are capable of virus neutralization; however, no full-length sequences are available for these genes from recently obtained virulent isolates. Therefore, nucleotide and predicted amino acid sequences of the F and HN protein genes from 16 NDV isolates representing highly virulent viruses from worldwide sources were obtained for comparison to older virulent isolates and vaccine strains. The F protein amino acid sequence was relatively conserved among isolates maintaining potential glycosylation sites and C residues for disulfide bonds. A dibasic amino acid motif was present at the cleavage site among more virulent isolates, while the low virulence viruses did not have this sequence. However, a Eurasian collared dove virus had a K114Q substitution at the F cleavage site unique among NDV isolates. The HN protein among NDV isolates maintained predicted catalytic and active site residues necessary for neuraminidase activity and hemagglutination. Length of the HN for the Eurasian collared dove isolate and a previously reported heat resistant virulent isolate were longer relative to other more recent virulent isolates. Phylogenetically NDV isolates separated into four groups with more recent virulent isolates forming a diverse branch, while all the avian paramyxoviruses formed their own clade distinct from other members of the Paramyxoviridae.  相似文献   

13.
Thirty Alternaria brassicae (Berk.) Sacc. isolates from diverse geographical locations of India were studied for pathogenic variability on seed, cotyledon and true leaves of Brassica species. Seed germination was reduced maximum by isolate BAB‐39 in Brassica juncea cultivar Varuna (22.1%), Brassica rapa var. Toria cultivar PT‐303 (12%), Brassica carinata cultivar Kiran (12%), Brassica napus cultivar GSL‐1 (11%) and tolerant source of B. juncea genotype PHR‐2 (7%), although least by isolate BAB‐49. Maximum lesion size on leaf was recorded in B. juncea cultivar Rohini (11.2, 16.5 and 16.8 mm) with isolates BAB‐09 (Pantnagar), BAB‐19 (Bharatpur) and BAB‐39 (Kangra), respectively, and categorized as highly virulent, while minimum lesion size of 3.2, 3.7 and 3.8 mm was observed with isolates BAB‐47 (Tonk), BAB 49 (Jobner) and BAB 04 (Kamroop), respectively, considered the weak isolates. On B. alba, BAB‐09, BAB‐19 and BAB‐39 isolates caused maximum lesion size of 3.7, 3.8 and 3.9 mm, respectively, even though it showed maximum tolerance. In both seed and cotyledon inoculation method, the per cent Alternaria blight severity above 80% was observed with isolate of BAB‐39 (91.5%), BAB‐19 (89.0%), BAB‐09 (85.5%) and least in isolate BAB‐49 (34.0%). Brassica seed, cotyledon and leaf showed the similar positive response for categorizing A. brassicae isolates as virulent and avirulent. This information could be used to the development and assessment of resistant brassica germplasm, especially with A. brassicae populations exhibiting increased virulence.  相似文献   

14.
Current methods for take-all assessment in laboratory experiment were examined; it was shown that the extent of vascular discoloration may not reflect virulence of a fungal isolate or host resistance to the pathogen under some experimental conditions. A new assessment method for take-all is described, based on the ability of transport eosin past infection sites. It enables hosts or isolates to be compared by ET50 values, the times from inoculation when 50% of plants fail in eosin-uptake through the three oldest seminal roots. Use of this technique suggested that barley roots were less affected than were wheat roots by Gaeumannomyces graminis var. tritici. Further experimental results showed that an isolate of G. graminis that had lost part of its virulence in culture yielded some single-conidium progeny more virulent than itself. When single-condium isolates or a mycelial isolate and its single-conidium progeny were jointly inoculated on wheat, the amount of disease was less than that caused by the more virulent isolate alone.  相似文献   

15.
Pyrenophora teres f. teres (Ptt) causes net form net blotch disease of barley, partially by producing necrosis‐inducing proteins. The protein profiles of the culture filtrates of 28 virulent isolates were compared by a combination of 2DE and 1D‐PAGE with 105 spots and 51 bands chosen for analysis by liquid chromatography electrospray ionization tandem mass spectrometry. A total of 259 individual proteins were identified with 63 of these proteins being common to the selected virulent isolates. Ptt secretes a broad spectrum of proteins including cell wall degrading enzymes; virulence factors and effectors; proteins associated with fungal pathogenesis and development; and proteins related to oxidation–reduction processes. Potential virulence factors and effectors identified included proteins with glucosidase activity, ricin B and concanavalin A‐like lectins, glucanases, spherulin, cutinase, pectin lyase, leucine‐rich repeat protein, and ceratoplatanin. Small proteins with unknown function but cysteine‐rich, common to effectors, were also identified. Differences in the secretion profile of the Ptt isolates have also provided important insight into the different mechanisms contributing to virulence and the development of net form net blotch symptoms.  相似文献   

16.
Paracoccidioides is a thermodimorphic fungus that causes Paracoccidioidomycosis (PCM) – an endemic systemic mycosis in Latin America. The genus comprises several phylogenetic species which present some genetic and serological differences. The diversity presented among isolates of the same genus has been explored in several microorganisms. There have also been attempts to clarify differences that might be related to virulence existing in isolates that cause the same disease. In this work, we analyzed the secretome of two isolates in the Paracoccidioides genus, isolates Pb01 and PbEpm83, and performed infection assays in macrophages to evaluate the influence of the secretomes of those isolates upon an in vitro model of infection. The use of a label-free proteomics approach (LC-MSE) allowed us to identify 92 proteins that are secreted by those strains. Of those proteins, 35 were differentially secreted in Pb01, and 36 in PbEpm83. According to the functional annotation, most of the identified proteins are related to adhesion and virulence processes. These results provide evidence that different members of the Paracoccidioides complex can quantitatively secrete different proteins, which may influence the characteristics of virulence, as well as host-related processes.  相似文献   

17.
Tilletia indica is a smut fungus that incites Karnal bunt in wheat. It has been considered as quarantine pest in more than 70 countries. Despite its quarantine significance, there is meager knowledge regarding the molecular mechanisms of disease pathogenesis. Moreover, various disease management strategies have proven futile. Development of effective disease management strategy requires identification of pathogenicity / virulence factors. With this aim, the present study was conducted to compare the secretomes of T. indica isolates, that is, highly (TiK) and low (TiP) virulent isolates. About 120 and 95 protein spots were detected reproducibly in TiK and TiP secretome gel images. Nineteen protein spots, which were consistently observed as upregulated/differential in the secretome of TiK isolate, were selected for their identification by MALDI‐TOF/TOF. Identified proteins exhibited homology with fungal proteins playing important role in fungal adhesion, penetration, invasion, protection against host‐derived reactive oxygen species, production of virulence factors, cellular signaling, and degradation of host cell wall proteins and antifungal proteins. These results were complemented with T. indica genome sequence leading to identification of candidate pathogenicity / virulence factors homologs that were further subjected to sequence‐ and structure‐based functional annotation. Thus, present study reports the first comparative secretome analysis of T. indica for identification of pathogenicity / virulence factors. This would provide insights into pathogenic mechanisms of T. indica and aid in devising effective disease management strategies.  相似文献   

18.
Pathogenicity differences among laboratory isolates of the dominant clonal North American and European lineages of Toxoplasma gondii are largely controlled by polymorphisms and expression differences in rhoptry secretory proteins (ROPs). However, the extent to which such differences control virulence in natural isolates of T. gondii, including those from more diverse genetic backgrounds, is uncertain. We elucidated the evolutionary history and functional consequences of diversification in the serine/threonine kinase ROP18, a major virulence determinant in the mouse model. We characterized the extent of sequence polymorphism and the evolutionary forces acting on ROP18 and several antigen-encoding genes within a large collection of natural isolates, comparing them to housekeeping genes and introns. Surprisingly, despite substantial genetic diversity between lineages, we identified just three principal alleles of ROP18, which had very ancient ancestry compared to other sampled loci. Expression and allelic differences between these three alleles of ROP18 accounted for much of the variation in acute mouse virulence among natural isolates. While the avirulent type III allele was the most ancient, intermediate virulent (type II) and highly virulent (type I) lineages predominated and showed evidence of strong selective pressure. Out-group comparison indicated that historical loss of an upstream regulatory element increased ROP18 expression, exposing it to newfound diversifying selection, resulting in greatly enhanced virulence in the mouse model and expansion of new lineages. Population sweeps are evident in many genomes, yet their causes and evolutionary histories are rarely known. Our results establish that up-regulation of expression and selection at ROP18 in T. gondii has resulted in three distinct alleles with widely different levels of acute virulence in the mouse model. Preservation of all three alleles in the wild indicates they are likely adaptations for different niches. Our findings demonstrate that sweeping changes in population structure can result from alterations in a single gene.  相似文献   

19.
Two isolates of Cryptococcus neoformans were previously described as being highly divergent in their level of capsule synthesis in vivo and in their virulence for mice. The highly virulent isolate (NU-2) produced more capsule than a weakly virulent isolate (184A) in vitro under tissue culture conditions and in vivo. This investigation was done to determine if there were differences between the two isolates in other factors that might also contribute to virulence. Growth rate was not a factor as NU-2 grew more slowly than 184A. Based on PCR fingerprinting the two isolates were genetically different providing an opportunity to examine differences in multiple virulence traits. Quantitative analysis revealed that NU-2 expressed significantly more melanin and mannitol than did 184A. Although the isolates expressed the same capsular chemotype, NU-2 produced an additional structure reporter group (SRG)under tissue culture conditions that was not present when grown in glucose salts/urea/basal medium (GSU).Capsular polysaccharide SRGs of 184A were unaffected by shifting the growth conditions from GSU to tissue culture conditions. Our results suggest that pathogenesis of a C. neoformans strain is dictated by the quantitative expression of the strain's combined virulence traits. Regulators of the expression of these genes may be playing key roles in virulence.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

20.
Prevalence of tan spot of wheat caused by the fungus Pyrenophora tritici-repentis has become more prevalent in Oklahoma as no-till cultivation in wheat has increased. Hence, developing wheat varieties resistant to tan spot has been emphasized, and selecting pathogen isolates to screen for resistance to this disease is critical. Twelve isolates of P. tritici-repentis were used to inoculate 11 wheat cultivars in a greenhouse study in split-plot experiments. Virulence of isolates and cultivar resistance were measured in percent leaf area infection for all possible isolate x cultivar interactions. Isolates differed significantly (P < 0.01) in virulence on wheat cultivars, and cultivars differed significantly in disease reaction to isolates. Increased virulence of isolates detected increased variability in cultivar response (percent leaf area infection) (r = 0.56, P < 0.05) while increased susceptibility in cultivars detected increased variance in virulence of the isolates (r = 0.76, P < 0.01). A significant isolate × cultivar interaction indicated specificity between isolates and cultivars, however, cluster analysis indicated low to moderate physiological specialization. Similarity in wheat cultivars in response to pathogen isolates also was determined by cluster analysis. The use of diverse isolates of the fungus would facilitate evaluation of resistance in wheat cultivars to tan spot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号