首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
利用光谱探针技术研究酸性品红(fuchsine ac id,FA)与牛血清白蛋白(bovine serum album in,BSA)的变色反应机理,考察了不同实验条件对FA-BSA复合物吸收光谱的影响。实验结果表明,FA与BSA分子相互作用产生变色反应的机理主要是由FA与BSA间的疏水相互作用引起,而静电作用则是形成FA-BSA桃红色复合物的必要条件。  相似文献   

2.
应用荧光光谱研究了羧甲基化壳聚糖季铵盐(CMCQA)与牛血清白蛋白(BSA)的相互作用.研究表明:CMCQA对BSA内源性荧光猝灭机制属于CMCQA和BSA形成复合物所引起的静态猝灭.在室温下,二者的结合常数为2.45×104 L/mol,结合位点数为1.04.二者主要靠静电引力相互作用.  相似文献   

3.
采用紫外和荧光光谱研究了水溶性壳聚糖(CS)与牛血清白蛋白(BSA)之间的相互作用。结果表明:随CS浓度的增加,BSA的紫外吸收光谱表现出明显的增色效应和较小的紫移;CS可以猝灭BSA的内源荧光,其猝灭机理是CS与BSA形成复合物的静态猝灭。并且测定了在不同温度下,该反应的结合常数KA分别为6.92×106(298 K),5.01×106(308 K),3.31×106(318 K),CS与BSA以摩尔比1∶1结合。同时采用同步荧光光谱法探讨了CS对BSA构象的影响。  相似文献   

4.
为研究单硝酸异山梨酯(IM)与牛血清白蛋白(BSA)之间的相互作用,用紫外-可见光谱法和荧光光谱法在优化的实验条件下进行研究。结果表明:IM与BSA形成基态复合物从而猝灭BSA的内源性荧光,猝灭机理为静态猝灭。通过计算得出IM与BSA的结合常数Kb及结合为点数n。根据热力学参数确定了IM和BSA之间的作用力类型主要为静电引力。生成自由能变驻G为负值,表明IM与BSA的作用过程是一个自发过程。同步荧光光谱表明IM对BSA构象产生很微弱的影响,使BSA腔内疏水环境的极性减弱。同步荧光光谱显示两者的结合位点更接近于酪氨酸,两者的结合部位主要位于亚螺旋域ⅢA中。Hill系数nH1,表明IM有正协同作用。为后续硝酸脂类药物的研发和进一步探讨IM在生物体内与蛋白质的作用机制和生物学效应提供了理论依据。  相似文献   

5.
胶毒素与BSA的相互作用   总被引:3,自引:0,他引:3  
应用荧光、圆二色和紫外—可见吸收等波谱法研究胶毒素与牛血清白蛋白(BSA)的相互作用。荧光光谱实验结果表明胶毒素主要靠疏水作用与BSA结合, 而对其内源荧光产生猝灭作用,其淬灭方式为静态猝灭, 胶毒素与BSA的结合常数为7.2×103 L/mol。圆二色光谱检测发现, 随着胶毒素浓度的增加, BSA的a-螺旋数量也增加, 当胶毒素浓度为BSA浓度的100倍时, BSA的a-螺旋增加40.1%, 表明胶毒素与BSA的结合改变了BSA的空间构象。  相似文献   

6.
富含鸟嘌呤的DNA序列在金属离子(通常是钠、钾离子)存在的条件下,可以形成稳定的G-四链体(G-quadruplex)。该G 四链体能够结合hemin(氯高铁血红素)形成具有过氧化物酶的活性的G四链体-hemin复合物DNAzyme。将这一原理联合滚环扩增技术可以对核酸进行可视化的检测。本研究旨在探索G-四链体-hemin复合物中,G-四链体结构以及两个G-四链体之间的链接长度与DNAzyme过氧化物酶活性之间的关系。实验分别选取了平行、反平行和混合结构的G-四链体,通过热差异光谱、紫外光谱、圆二色光谱对结构进行分析,不断加长链接序列并测定3种结构形成的DNAzyme活性,发现正平行结构的G-四链体具有更高的DNAzyme活性和更明显的可视化效果。综上所述,平行G-四链体结构可以用来满足裸眼可视化检测的需求,为无需复杂仪器的核酸检测奠定了方法基础。  相似文献   

7.
研究一种酪氨酸激酶抑制剂(tyrosine kinase inhibitor, TKI)伊马替尼(imatinib, IMA)与人血清清蛋白(HSA)及牛血清清蛋白(BSA)的相互作用,比较分析HSA和BSA与IMA相互作用机制的差异. 模拟生理条件下,计算机模拟技术结合荧光光谱和紫外光谱法,研究IMA与蛋白质的作用机制. 分子模建IMA与血清清蛋白的结合模型,表明伊马替尼与蛋白质的相互作用力为疏水作用力,兼有氢键作用. 光谱结果表明,IMA与HSA和BSA的相互作用表现为静态结合过程,结合强度较强,IMA与HSA和BSA分子的结合距离r值较小,说明发生了能量转移现象. IMA对HSA和BSA的结构域微区构象产生影响,使结合位域的疏水性发生改变. 荧光相图技术解析出IMA与HSA和BSA反应构象型态的变迁为“二态”模型. HSA与IMA相互作用的热力学参数表明,IMA与HSA之间是以疏水作用为主的分子间作用,而IMA与BSA之间的作用力为氢键和范德华力,兼有少量的疏水作用力. 光谱实验与计算机模拟结果基本一致,可为研究IMA与HSA和BSA相互作用本质提供一定参考.  相似文献   

8.
目的:以牛血清白蛋白(BSA)作为模型药物,制备壳聚糖/有机累托石复合物微球,建立一种安全有效的药物控释传递系统。方法:壳聚糖(CS)/有机累托石(OREC)和海藻酸钠,按照不同的混合比例交联,在Ca2+水溶液中包裹BSA而形成壳核结构的微球。采用傅立叶红外光谱(FTIR)、动态光散射(DLS)、原子力显微镜(AFM)、X-衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)观察研究微球的形态、CS和OREC的插层结构、BSA的包封率和控释效果。结果:口光学显微镜和扫描电镜观察显示,形成了壳核结构的微球。傅里叶变换光谱和X-射线能量分散显示,OREC存在于微球中。小角X-射线衍射证实,CS链成功的插入OREC插层中。BSA的包封率和控释检测结果显示,与纯的CS/ALG形成的微球相比较,CO复合物所形成的微球药物释放率明显提高。结论:OREC-HTCC纳米粒子是良好的蛋白药物载体,具有包封率高、缓释效果好等优点,为CS-OREC作为潜在的药物给药系统的进一步应用提供科学依据。  相似文献   

9.
(二)生物化学部分一、蛋白质含量测定蛋白质含量测定有许多方法,考马斯亮蓝(G-250)比色测定是最灵敏的方法之一。考马斯亮蓝可与蛋白质通过氢键结合生成复合物,结合符合比尔定律。结合前颜料为红色,结合后为蓝色,最大光吸收由465nm转变成595nm。通过测定595nm处最大光吸收的增加,可知结合蛋白质的量。蛋白质和染料结合是一个快速的过程,两分钟内即可完成,并可稳定1小时,测定范围在10—100μg/ml蛋白质之间为线性范围,去污剂有颜色干扰,可影响比色结果。本实验是利用考马斯亮蓝与不同量蛋白质的标准曲线来目测未知蛋白质溶液的蛋白质含量,并…  相似文献   

10.
在模拟生理条件下应用荧光光谱学方法分别研究了淫羊藿苷和淫羊藿次苷Ⅰ与牛血清白蛋白(BSA)间的结合作用. 根据荧光强度数据,计算出了结合常数KA,结合位点数n和热力学参数(△G, △H 和△S). 实验结果表明,淫羊藿苷和淫羊藿次苷Ⅰ都能显著猝灭BSA的内源荧光,猝灭机制均为形成基态复合物的单一静态猝灭过程. 不同温度下(17 ℃, 27 ℃, 37 ℃)得到的KA和n值,表明淫羊藿次苷Ⅰ与BSA的结合强于淫羊藿苷. 从得到的热力学参数判断,淫羊藿苷与BSA间的主要作用力是氢键作用和范德华力,而疏水作用和静电引力在淫羊藿次苷Ⅰ与BSA形成复合物过程中起主导作用.而且同步荧光光谱显示,淫羊藿苷和淫羊藿次苷Ⅰ与BSA的结合导致BSA构象发生了变化.  相似文献   

11.
The interaction between 8-azaguanine (8-Azan) and bovine serum albumin (BSA) in Tris-HCl buffer solutions at pH 7.4 was investigated by means of fluorescence and ultraviolet-visible (UV-Vis) spectroscopy. At 298 K and 310 K, at a wavelength of excitation (λ ex) of 282 nm, the fluorescence intensity decreased significantly with increasing concentrations of 8-Azan. Fluorescence static quenching was observed for BSA, which was attributed to the formation of a complex between 8-Azan and BSA during the binding reaction. This was illuminated further by the UV-Vis absorption spectra and the decomposition of the fluorescence spectra. The thermodynamic parameters ∆G, ∆H, ∆S were calculated. The results showed that the forces acting between 8-Azan and BSA were typical hydrophobic forces, and that the interaction process was spontaneous. The interaction distance r between 8-Azan and BSA, evaluated according to fluorescence resonance energy transfer theory, suggested that there is a high possibility of energy transfer from BSA to 8-Azan. Theoretical investigations based on homology modeling and molecular docking suggested that binding between 8-Azan and BSA is dominated by hydrophilic forces and hydrogen bonding. The theoretical investigations provided a good structural basis to explain the phenomenon of fluorescence quenching between 8-Azan and BSA.  相似文献   

12.
The interaction between pyridoxine hydrochloride (VB6) and bovine serum albumin (BSA) were studied by spectroscopic methods including fluorescence spectroscopy and UV-visible absorption spectra. The quenching mechanism of fluorescence of BSA by VB6 was discussed. The number of binding sites n and observed binding constant K(b) was measured by fluorescence quenching method. The thermodynamic parameters DeltaH(theta), DeltaG(theta), DeltaS(theta) at different temperatures were calculated and the results indicate the binding reaction is mainly entropy-driven and hydrophobic interaction played major role in the reaction. The distance r between donor (BSA) and acceptor (VB6) was obtained according to FOrster theory of non-radiation energy transfer. Synchronous fluorescence and three-dimensional fluorescence spectra were used to investigate the structural change of BSA molecules with addition of VB6, the result indicates that the secondary structure of BSA molecules is changed in the presence of VB6.  相似文献   

13.
Oleanane‐type triterpenoids serve as an important group of plant secondary metabolites with a variety of biological activities and the C‐3 position substitution pattern is a significant structural feature for their biological activities. Three selected oleanane‐type triterpenoids (glycyrrhizin, glycyrrhetinic acid, and carbenoxolone) bearing different substituents (glucuronic acid dimer, hydroxyl, and succinyl groups) at the C‐3 position were studied for their affinities to bind bovine serum albumin (BSA) by steady‐state fluorescence, synchronous, three‐dimensional fluorescence and ultraviolet–visible (UV–vis) absorption spectra. The binding mechanism of the triterpenoids to BSA is due to the formation of the triterpenoids–BSA complex and the binding affinity is strongest for carbenoxolone and ranked in the order carbenoxolone > glycyrrhetinic acid > glycyrrhizin. The thermodynamic parameters calculated at different temperatures showed that triterpenoids binding to BSA primarily depended on hydrophobic interaction and hydrogen bonding. The distance between the bound triterpenoid and BSA was determined on the basis of the Förster's energy transfer theory. Displacement experiments using phenylbutazone and ibuprofen showed the binding site of triterpenoids on BSA at subdomain IIA (Sudlow's site I). The effect of triterpenoids on BSA conformation was analyzed by UV–vis absorption, and synchronous and three‐dimensional fluorescence spectra. These results revealed that the C‐3 position substitution pattern significantly affects the structure–affinity relationships of oleanane‐type triterpenoid binding to BSA and further affects the bioavailability of triterpenoids in the blood circulatory system. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
The mechanism of interaction between bovine serum albumin (BSA) and 2-naphthylamine (2-NA) in aqueous solution was investigated by fluorescence spectroscopy, circular dichroism (CD) spectra, and UV-vis spectroscopy. It was proved from fluorescence spectra that the fluorescence quenching of BSA by 2-NA was a result of the formation of complex between 2-NA and BSA, and the binding constants (K(a) ) as well as the numbers of binding sites for 2-NA in BSA were determined according to the modified Stern-Volmer equation. The results of synchronous fluorescence and CD spectra demonstrated 2-NA could decrease the amount of α-helix of BSA, leading to the loosening of protein skeleton. UV-vis spectroscopy and resonance light scattering spectra (RLS) results also suggested the conformation of BSA were changed and the BSA aggregation occured, which could induce toxic effects on the organism.  相似文献   

15.
The interaction between ribavirin (RIB) with bovine serum albumin (BSA) has been investigated by fluorescence quenching technique in combination with UV–vis absorption and circular dichroism (CD) spectroscopies under the simulative physiological conditions. The quenching of BSA fluorescence by RIB was found to be a result of the formation of RIB–BSA complex. The binding constants and the number of binding sites were calculated at three different temperatures. The values of thermodynamic parameters ?H, ?S, ?G at different temperatures indicate that hydrophobic and hydrogen bonds played important roles for RIB–BSA association. The binding distance r was obtained according to the theory of FÖrster’s non–radiation energy transfer. The displacement experiments was performed for identifying the location of the binding site of RIB on BSA. The effects of common ions on the binding constant of RIB and BSA were also examined. Finally, the conformational changes of BSA in the presence of RIB were also analyzed by CD spectra and Synchronous fluorescence spectra.  相似文献   

16.
The interaction between jatrorrhizine (JAT) and bovine serum albumin (BSA) has been studied. The studies were carried out in a buffer medium at pH 7.4 using fluorescence spectroscopy, UV–vis spectroscopy, and molecular modeling methods. The results of fluorescence quenching and UV–vis absorption spectra experiments indicated the formation of the complex of BSA–JAT. Binding parameters were determined using the Stern–Volmer equation and Scatchard equation. The results of thermodynamic parameters ΔG, ΔH and ΔS at different temperatures indicate that the electrostatic interactions and hydrogen bonds play a major role for JAT–BSA association. Site marker competitive displacement experiments and molecular modeling calculation demonstrating that JAT is mainly located within the hydrophobic pocket of the subdomain IIIA of BSA. Furthermore, The distance between donor (BSA) and acceptor (JAT) was estimated according to fluorescence resonance energy transfer.  相似文献   

17.
A morin–zinc(II) complex (MZ) was synthesized and its interaction with bovine serum albumin (BSA) were studied by molecular spectroscopy including fluorescence emission spectra, UV-visible spectra, circular dichroism (CD) spectra, three-dimensional fluorescence spectra, and synchronous fluorescence spectra. The interaction mechanism of BSA and MZ was discussed by fluorescence quenching method and Förster non-radiation energy transfer theory. The thermodynamic parameters ΔH θ, ΔG θ, ΔS θ at different temperatures were calculated and the results indicate the interaction is an exothermic as well as entropy-driven process. Hydrogen bond forces played the most important role in the reaction. The fluorescence probe experiment showed that the binding site of MZ is in subdomain IIA of BSA and the distance between BSA and MZ is 3.17 nm at normal body temperature. The conformation changes of BSA in presence of MZ were investigated by CD spectra and three-dimensional fluorescence spectra.  相似文献   

18.
The features of brucine (BC) binding to two blood proteins, bovine hemoglobin (BHb), and bovine serum albumin (BSA), were investigated via fluorescence, circular dichroism and UV/Vis absorption spectroscopy. The results revealed that BC caused the fluorescence quenching of blood proteins by the formation of BC–protein complex. The corresponding thermodynamic parameters were measured at different temperatures. The process of binding BC molecule on protein was a spontaneous molecular interaction procedure in which entropy increased and Gibbs free energy decreased. Hydrophobic and electrostatic interactions play a major role in stabilizing the complex. The molecular docking has been employed to explore the binding site of the BC in BHb and BSA on the Autodock 4.2. The distances r between BC and protein were calculated to be 4.93 and 5.08 nm for BHb, and BSA, respectively. The effect of BC on the conformation of blood proteins was analyzed using CD, synchronous fluorescence and three-dimensional fluorescence spectra.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号