首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Introduction

Atoms theory and symmetry theory dominated physics. Symmetry propagation and interactions verify the Curie principle. But its violation by symmetry breaking is spontaneous.Fragility is creative. An information breaks a generalized symmetry. Results on symmetry breakings are not valid for fuzzy symmetries. The breaking of a fuzzy symmetry leads only to a pour symmetry (Fig.1). Homogeneity breaking, and atom of time are not usual concepts. We examine in this work symmetry breakings which generate the living time.

Relativistic Time-Space Breaking

  1. Medium and environment of living define ordinary referential of space and referential of time. Astronomical phenomena following classical mechanics and microphysical phenomena following quantum mechanics can be written with the same t coordinate.
  2. Relativity corrections. Schrödinger's Quantum mechanics (Eq.0) approximately governs molecular systems (Relativity corrections can be expressed as physical effects in the above defined referential).
  3. Time reversal symmetry. The well-known Wigner's transformation determines the microscopic reversibility.
  4. The three essential particle-vacancy equilibria. This transformation is verified by all particle-vacancy reciprocity. Vacancy moves like particle but with negative moment and positive kinetic energies. Only three biochemical equilibria admit this time reversal symmetry, namely: oxydo-reduction, acido-basicity, fluidity-viscosity. In these case, reacting electron, solvated proton, water molecule are respectively antagonist of the corresponding vacancy.
  5. Fuzzy character of time reversal symmetry. Dirac's equation does not admit this symmetry which only appears at the “non relativistic” limit of quantum phenomena. Hence particle-vacancy reciprocity is fuzzy according to the experimental evidence. (Laforgue et al., 1988).

Oriented Time

  1. From the universal reversible time, an additional breaking generates the oriented time, both in the astronomical and in the living matter.
  2. Irreversibility for the environment. We refer to Prigogine and Stengers (1988).
  3. Irreversibility for the living matter. We refer to Lochak (1986). Because equation (0), above discussed, is “microreversible” the second breaking could come from an additional term vanishing in the stationary states but increasing with time in evolutionary processes.
  4. Negative times. Taking into account the fuzzy character of the time reversed symmetry, the third breaking cannot suppress completely the occurrence of negative times. Reversed time is controlled by direct time. Except in the three above reported cases, time reversal symmetry is not verified by the medium. Free motion of the particle following eg.(0) or of the vacancy following time reversal reciprocal equation takes place only during short jumps from an interaction site to an other. Fig. 2 schematizes the law of motion of the electric charge corresponding to the transport by proton or by proton vacancy in an unitary field (fluctuations are neglected). The reserved jumps are estimated in the range of 10?12s. It is not excluded that such a jump can control a direct phenomenon.
  5. The living time. Biological phenomenon appears as an oriented set of events. Nevertheless latency or exaltation phases could be perceived. This modulation could be described by positive and negative times additional to the basic time. (Negative can be interpreted as above)

Living produces Time

  1. That were not understandable, if time was only a frame, in which change occurs. Taking chance as frame and time as effect, we regard biological activity as integrating reversible and irreversible time. Living synchronizes internal and external time by its own effort as it results (Lestienne, 1990) from Chronobiology.
  2. Time modulation. Let us consider the dy1...dyi...dyp changes in the variables of the systems, dy={dyi} has produced dt. We proof (eq.(1) to (4)) that time is modulated by a φ(y) speed coefficient depending on the medium. tmodulated=tφ (y) ?1
  3. The production of reversible time (e.g.acido-basicity) determines time modulation. As above reported it remains some reversibility effects (jumps of negative time) which modulate time. E.G., if an important amount of reagent is necessary to modify an acid-base equilibrium, φ(y) is small.
  4. Time modulation and activation-repression reciprocity. As well-known, long tmodulated means repression, short tmodulated means exaltation. Extrema of ? are symmetrical because particle and vacancy are reciprocal. Nevertheless reciprocity is not perfect. E.g., on fig. 3, the wet receptor determines the cell increasing, the dry receptor the cell senescence of a certain alga (Lück, 1962).
  5. Irreversible time production. Medium accepts entropy. Hence it acts in the second breaking of time. Living extracts the free energy from the medium, like a dissipative structure. That insures an operative point far from the thermodynamical equilibrium.

Consumption of Time

  1. The three followings correspond to the more trivial time consumption.
  2. Rhythmical time. Free energy flux is favourable to the arising of order in space or time. This later gives a structure to the living time.
  3. Mutual dependence of reversible time and rhythms. Time irreversible structure can be controlled by the above considered particle-vacancy equilibrium. Consequently the living time (modulated and structured) is a chemical time connected to molecular properties and to statistical thermodynamics. Practically, the connection between chronobiology and chemistry is important. The use of drugs could be interpreted as a response to an aggression against biorhythms.
  4. Lifetime. The dead-birth rythm can be broken in two ways: evolution or indefinite life. This later is non exceptional for the living matter, e.g. in the vegetals where it is connected with the chlorophyllic assimilation; the time reversal significance of which is evident.
  5. The plan of the alchemist. Indefinitely life has fascinated individuals. Do the human species becomes better adapted by a longer life?

Conclusions

  1. Atoms of time could exist.
  2. Biological time is defined by the breaking of five generalized symmetries, namely: Minkovski's space symmetry, reversibility, homogeneity, rhythmicity, generations reproduction.
  3. Environment and medium determine non relativistic, oriented, structured time.
  4. At the microphysical scale, a fuzzy time reversal symmetry takes place, the breaking of which is not complete. Reversible time and dominating irreversible time are integrated in living phenomena.
  5. Three fundamental particle-vacancy reciprocities admit a part of reversibity. Irreversibility governs the all others phenomena.
  6. Time is produced chemically.
  7. A new perspective is the connection between chemical equilibria and rhythms including the time of the life.
  相似文献   

2.
  1. Polyhedral particles were isolated from cells of Nitrobacter winogradskyi and of Nitrobacter strains K1, K4 and α1. Their physical and biological properties are characterized.
  2. The investigated strains contain polyhedral particles, 1000–1200 Å in size. With increasing age of the culture more particles are found in cells of Nitrobacter. Simultaneously the number of colony producing nitritoxidants decreases.
  3. In strain α1 the loss of the capability to form colonies is connected with partial lysis of the cell and release of particles.
  4. A homogeneous fraction of particles was obtained by zone density gradient centrifugation in Tris-Mg-SH-buffer.
  5. The polyhedral particles have a sedimentation coefficient of s w,20 0 =825S and a CsCl-buoyant density of ?25 g/cm3.
  6. Based on the determined properties the particles are classified as phage-like Nitrobacter particles Nb1.
  相似文献   

3.

Introduction

Atoms theory and symmetry theory dominated physics. Symmetry propagation and interactions verify the Curie principle. But its violation by symmetry breaking is spontaneous.Fragility is creative. An information breaks a generalized symmetry. Results on symmetry breakings are not valid for fuzzy symmetries. The breaking of a fuzzy symmetry leads only to a pour symmetry (Fig.1). Homogeneity breaking, and atom of time are not usual concepts. We examine in this work symmetry breakings which generate the living time.

Relativistic Time-Space Breaking

  1. Medium and environment of living define ordinary referential of space and referential of time. Astronomical phenomena following classical mechanics and microphysical phenomena following quantum mechanics can be written with the same t coordinate.
  2. Relativity corrections. Schrödinger's Quantum mechanics (Eq.0) approximately governs molecular systems (Relativity corrections can be expressed as physical effects in the above defined referential).
  3. Time reversal symmetry. The well-known Wigner's transformation determines the microscopic reversibility.
  4. The three essential particle-vacancy equilibria. This transformation is verified by all particle-vacancy reciprocity. Vacancy moves like particle but with negative moment and positive kinetic energies. Only three biochemical equilibria admit this time reversal symmetry, namely: oxydo-reduction, acido-basicity, fluidity-viscosity. In these case, reacting electron, solvated proton, water molecule are respectively antagonist of the corresponding vacancy.
  5. Fuzzy character of time reversal symmetry. Dirac's equation does not admit this symmetry which only appears at the “non relativistic” limit of quantum phenomena. Hence particle-vacancy reciprocity is fuzzy according to the experimental evidence. (Laforgue et al., 1988).

Oriented Time

  1. From the universal reversible time, an additional breaking generates the oriented time, both in the astronomical and in the living matter.
  2. Irreversibility for the environment. We refer to Prigogine and Stengers (1988).
  3. Irreversibility for the living matter. We refer to Lochak (1986). Because equation (0), above discussed, is “microreversible” the second breaking could come from an additional term vanishing in the stationary states but increasing with time in evolutionary processes.
  4. Negative times. Taking into account the fuzzy character of the time reversal symmetry, the third breaking cannot suppress completely the occurrence of negative times. Reversed time is controlled by direct time. Except in the three above reported cases, time reversal symmetry is not verified by the medium. Free motion of the particle following eg.(0) or of the vacancy following time reversal reciprocal equation takes place only during short jumps from an interaction site to an other. Fig. 2 schematizes the law of motion of the electric charge corresponding to the transport by proton or by proton vacancy in an unitary field (fluctuations are neglected). The reserved jumps are estimated in the range of 10?12s. It is not excluded that such a jump can control a direct phenomenon.
  5. The living time. Biological phenomenon appears as an oriented set of events. Nevertheless latency or exaltation phases could be perceived. This modulation could be described by positive and negative times additional to the basic time. (Negative can be interpreted as above.)

Living produces Time

  1. That were not understandable, if time was only a frame, in which change occurs. Taking change as frame and time as effect, we regard biological activity as integrating reversible and irreversible time. Living synchronizes internal and external time by its own effort as it results (Lestienne, 1990) from Chronobiology.
  2. Time modulation. Let us consider the dy1...dyi...dyp changes in the variables of the system, dy={dyi} has produced dt. We proof (eq.(1) to (4)) that time is modulated by a Φ(y) speed coefficient depending on the medium. tmodulated=tΦ-1 (y)
  3. The production of reversible time (e.g.acido-basicity) determines time modulation. As above reported it remains some reversibility effects (jumps of negative time) which modulate time. E.g., if an important amount of reagent is necessary to modify an acid-base equilibrium, Φ(y) is small.
  4. Time modulation and activation-repression reciprocity. As well-known, long tmodulated means repression, short tmodulated means exaltation. Extrema of ? are symmetrical because particle and vacancy are reciprocal. Nevertheless reciprocity is not perfect. E.g., on fig. 3, the wet receptor determines the cell increasing, the dry receptor the cell senescence of a certain alga (Lück, 1962).
  5. Irreversible time production. Medium accepts entropy. Hence it acts in the second breaking of time. Living extracts the free energy from the medium, like a dissipative structure. That insures an operative point far from the thermodynamical equilibrium.

Consumption of Time

  1. The three followings correspond to the more trivial time consumption.
  2. Rhythmical time. Free energy flux is favourable to the arising of order in space or time. This later gives a structure to the living time.
  3. Mutual dependence of reversible time and rhythms. Time irreversible structure can be controlled by the above considered particle-vacancy equilibrium. Consequently the living time (modulated and structured) is a chemical time connected to molecular properties and to statistical thermodynamics. Practically, the connection between chronobiology and chemistry is important. The use of drugs could be interpreted as a response to an aggression against biorhythms.
  4. Lifetime. The dead-birth rhythm can be broken in two ways: evolution or indefinite life. This later is non exceptional for the living matter, e.g. in the vegetals where it is connected with the chlorophyllic assimilation; the time reversal significance of which is evident.
  5. The plan of the alchemist. Indefinitely life has fascinated individuals. Do the human species becomes better adapted by a longer life?

Conclusions

  1. Atoms of time could exist.
  2. Biological time is defined by the breaking of five generalized symmetries, namely: Minkovski's space symmetry, reversibility, homogeneity, rhythmicity, generations reproduction.
  3. Environment and medium determine non relativistic, oriented, structured time.
  4. At the microphysical scale, a fuzzy time reversal symmetry takes place, the breaking of which is not complete. Reversible time and dominating irreversible time are integrated in living phenomena.
  5. Three fundamental particle-vacancy reciprocities admit a part of reversibility. Irreversibility governs the all others phenomena.
  6. Time is produced chemically.
  7. A new perspective is the connection between chemical equilibria and rhythms including the time of the life.
  相似文献   

4.
This paper addresses the problem of analyzing biological pattern recognition systems. As no complete analysis is possible due to limited observability, the theoretical part of the paper examines some principles of construction for recognition systems. The relations between measurable and characteristic variables of these systems are described. The results of the study are:
  1. Human recognition systems can always be described by a model consisting of an analyzer (F A) and a linear classifier.
  2. The linearity of the classifier places no limits on the universal validity of the model. The principle of organization of such a system may be put into effect in many different ways.
  3. The analyzer function F A determines the transformation of external patterns into their internal representations. For the experiments described in this paper, F A can be approximated by a filtering operation and a transformation of features (contour line filter).
  4. Narrow band filtering (comb filter) in the space frequency domain is inadequate for pattern recognition because noise of different bandwidths and mean frequencies affects sinusoidal gratings differently. This excludes the use of a Fourier analyzer.
  5. The relations between the measurable variables, which are the probabilities of detection (P D curves), and the characteristic variables of the recognition system are established analytically.
  6. The probability of detection not only depends on signal energy but also on signal structure. This would not be the case in a simple matched filter system.
  7. The differing probabilities of error in multiple detection experiments show that the interference is pattern specific and the bandwidth (steepness of the P D curves) is different for the different sets of patterns.
  8. The distance between the reference vectors in feature space can be determined from the internal representation of the patterns defined by the model. Through multiple detection experiments it is possible to determine not only the relative distances between the patterns but also their absolute position in feature space.
  相似文献   

5.
  1. The main pathway of the anaerobic metabolism of l-malate in Saccharomyces bailii is catalyzed by a l-malic enzyme.
  2. The enzyme was purified more than 300-fold. During the purification procedure fumarase and pyruvate decarboxylase were removed completely, and malate dehydrogenase and oxalacetate decarboxylase were removed to a very large extent.
  3. Manganese ions are not required for the reaction of malic enzyme of Saccharomyces bailii, but the activity of the enzyme is increased by manganese.
  4. The reaction of l-malic enzyme proceeds with the coenzymes NAD and (to a lesser extent) NADP.
  5. The K m-values of the malic enzyme of Saccharomyces bailii were 10 mM for l-malate and 0.1 mM for NAD.
  6. A model based on the activity and substrate affinity of malic enzyme, the intracellular concentration of malate and phosphate, and its action on fumarase, is proposed to explain the complete anaerobic degradation of malate in Saccharomyces bailii as compared with the partial decomposition of malate in Saccharomyces cerevisiae.
  相似文献   

6.
S. Meguro  A. Miyawaki 《Plant Ecology》1994,112(2):101-111
The mechanical properties of broad-leaf tree species in a maritime-wind exposed habitat in central Japan were examined. The broad-leaf trees studied were Celtis sinensis var. japonica, Ilex integra, Eurya japonica, Pittosporum tobira, Euonymus japonicus and Cinnamomum japonicum. The results obtained can be summarized briefly as follows:
  1. At places with weaker wind, the number of species increased and the height of the canopy increased.
  2. The fracture strength σm showed no dependence on tree part or branch thickness, but was constant.
  3. The order of strength was Celtis sinensis var. japonica > Ilex integra > Eurya japonica > Pittosporum tobira > Euonymus japonicus > Cinnamomum japonicum, and these six species could best adapt to the wind pressure in the study area.
  4. Within species, fracture strength varied directly with wind strength.
  5. The strain εm decreased as the trunk became thicker.
  6. Within species, strain energy Um varied directly with wind strength.
  相似文献   

7.
  1. Phage-like particles Nb1 isolated from cells of Nitrobacter agilis were characterized after freeze etching and after treatment by fixation agents.
  2. Ethanol-acetic acid fixed particles can be digested by the proteolytic enzyme papain.
  3. Ethanol-acetic acid fixed particles show a loss in mass and volume after treatment with DNase. Under the same conditions RNase has no influence.
  4. The chemical composition of the phage-like particle Nb1 is discussed.
  相似文献   

8.
  1. Growth of the floating aquatic weed, Salvinia, in sterile culture was exponential for at least 2 weeks under standardized conditions.
  2. Increase in light intensity or in CO2 resulted in increases in growth rate, but did not extend the exponential period of growth.
  3. This aquatic plant, like many others, discriminates against calcium relative to strontium.
  4. In culture Salvinia exhibited luxury consumption of N and P.
  5. Because of high C/N ratios, Salvinia may not be a favorable source of animal food, but might be useful in nutrient removal schemes.
  6. In sterile culture, S. molesta produced fewer leaves than S. minima, but maintained a significant increase in leaf area and dry weight. This may be correlated with the ability of the first species to rapidly spread over tropical waterways.
  相似文献   

9.
  1. Passive flexion and extension of the femur-tibia-joint causes forces which are directed against the passive movements. Quantitative measurements of these forces are in accordance with the results obtained from step stimuli in open-loop-experiments (1965, 1972). Repetition of the experiments at the same joint often leads to different results: the animal is apparently able to change the amplification of the system.
  2. If one brings the joint in a new position by hand, the tibia returns to its starting-point only very slowly. (Flexibilitas cerea). As a quantitative measure for Flexibilitas cerea the time interval is taken, during which a formerly fully extended joint returns to the 90°-position after a 30 sec flexion to 50° (t 90) · t 90 is not correllated with a quantitative measure of Thanatosis. Therefore it is not allowed to combine Thanatosis and Flexibilitas cerea to Katalepsis. — Legs whose receptor tendons were cut, show no Flexibilitas cerea. The behaviour of Flexibilitas cerea is explained by the attributes of the control system.
  3. The reaction on very slow constant flexion and extension speeds (2,4°/sec – 0,3°/min) are described. Intact legs show a larger hysteresis at all speeds than legs with cut receptor tendons: it seems the control system reacts at those slow speeds. It responds only to the dynamic part of the movements, however not to the static one.
  相似文献   

10.
An African electric fish, Gymnarchus, and a South American electric fish, Eigenmannia, are believed to have evolved their electrosensory systems independently. Both fishes, nevertheless, gradually shift the frequency of electric organ discharge away when they encounter a neighbor of a similar discharge frequency. Computational algorithms employed by Gymnarchus for this jamming avoidance response have been identified in this study for comparison with those of extensively studied Eigenmannia.
  1. Gymnarchus determines whether it should raise or lower its discharge frequency based solely upon the signal mixture of its own reafferent and the exafferent signal from a neighbor, and does not internally refer to the pacemaker command signal which drives its own discharge.
  2. The signal mixture is analyzed in terms of the time courses of amplitude modulation and phase modulation at each area of the body surface.
  3. Phase of the signal mixture at each area is compared with that of another area for the detection of phase modulation.
  4. Unambiguous information necessary for the jamming avoidance response is extracted by integrating information from all body areas each of which yields ambiguous information.
  5. These computational features are identical to those of Eigenmannia, suggesting that the neural circuit for jamming avoidance responses may have evolved from preexisting mechanisms for electrolocation in both fishes.
  相似文献   

11.
An earlier proposed mechanical model of the de-efferented muscle spindle endings has been developed further in order to study whether the functional effects of activating the static fusimotor fibres may be accounted for by relatively simple mechanical events in the intrafusal muscle fibres. Particular attention has been paid to important controversial problems related to the processes involved in the fusimotor activation of the mammalian muscle spindles. In order to develop an adequate model, preliminary simulation studies of the functional effects of various reasonable modifications of the original “de-efferented” model were first carried out by means of a convenient direct electronic analogue of the mechanical system. The following results apparently reflect pertinent details about the peripheral receptor mechanisms associated with the activation of the static fusimotor fibres:
  1. The γ s-activation is most adequately accounted for by mechanical events occurring in the nuclear chain fibres.
  2. Any uniform chain fibre contraction fails to account for the effects of the γ s-activation.
  3. The simulation of a local chain fibre contraction could apparently account for all significant effects of the γ s-activation.
  4. A reasonable increase of the position sensitivity and the vibration sensitivity of both the primary and the secondary endings could be accounted for by increasing the stiffness of about 1/4–1/2 of the length of the simulated nuclear chain fibre by a factor of about 2–10.
  5. The powerful modulation of the background discharge of the receptor endings that is associated with the γ s-activation could be accounted for by an independent contraction force related to the intensity of the static fusimotor activity.
  6. The model predicts a decrease of the rate sensitivity of the primary endings (group Ia) and a slight increase of the (moderate) rate sensitivity of the secondary endings.
  7. By an adequate selection of the parameters, the simulated γ s-activation showed a negligible influence on the absolute level of the dynamic phase of the ramp response of the simulated primary endings, in spite of a considerable increase of the steady state (background) discharge before and after the termination of a simulated stretch.
  相似文献   

12.
EPR spectroscopy is a powerful tool to identify at a molecular level, the different steps of catalyst preparation, and of catalytic reactions:
  1. Deposition of paramagnetic transition metal ions onto a support is monitored, and the coordination sphere of the metallic center is characterized by EPR.
  2. The catalyst is also characterized after activation (thermal oxidation or reduction):
  • - the distribution among the different sites in zeolites can be determined;
  • - the dispersion of the active phase may be appreciated;
  • - the unsaturation degree of the active site may be evaluated using probe molecules such as water or13C enriched carbon monoxide.
    1. The catalytic mechanisms can be investigated by studying the elementary steps of the catalytic reaction, as illustrated for methanol oxidation over Mo/SiO2 catalysts whose EPR results have extended the reaction mechanism proposed on the basis of kinetic data. In addition, reaction intermediates may be isolated inquasi-in situ conditions as in the case of olefin oligomerization catalyzed by Ni/SiO2 systems.
      相似文献   

    13.
    1. Aster tripolium is a very variable species of which a number of types have been described both on a morphological and ecological level.
    2. In permanent plots along the height gradient in the salt marsh it appeared that differences in the A. tripolium subpopulations occur.
    3. In the lowest zone of the marsh, dominated by Spartina anglica (Spartinion), the mean life expectancy of individual adult plants is relatively high but it is relatively low for seedlings.
    4. In the higher zones of the marsh the mean life expectancy is relatively lower, but for the seedlings it is higher (Puccinellion maritimae).
    5. In the Spartina-zone individual A. tripolium plants have about twice the number of shoots as the plants from the other zones.
    6. The plants from the Spartina zone produce per individual more generative shoots (absolute) but these have less capitula than elsewhere in the marsh. The number of ripe seeds per head is almost constant everywhere in the marsh.
      相似文献   

    14.
    1. The amino acid sensitivity and specificity of the facial taste system of the marine catfish, Arius felis, is characterized electrophysiologically.
    2. The facial taste system of Arius felis responded to all 28 amino acids tested, but was highly sensitive to only a few. In general, acidic amino acids and neutral amino acids with short side chains were more effective than imino, basic and neutral amino acids with long side chains.
    3. A reciprocal cross-adaptation protocol used to characterize the receptor sites identified at least some relatively independent receptor sites for L-arginine, L-histidine, L-proline, L-alanine, glycine, D-alanine and L-glutamate.
    4. Of the 7 amino acids that were indicated to have relatively independent receptor sites, the median electrophysiological threshold for L-alanine, the most stimulatory, and L-proline, the least stimulatory compounds, were 10 nM and 10,000 nM, respectively. The integrated facial taste response did not saturate at test amino acid concentrations up to 10 mM.
    5. The generalized depression in responsiveness to test stimuli observed during amino acid adaptation is proposed to be a result of the co-distribution of sensitivity at the level of single taste cells rather than high cross-reactivity of the respective amino acid receptor sites for the test stimuli.
      相似文献   

    15.
    We analyzed the response of the vibration sensitive lyriform organ on the metatarsus of female spiders (Cupiennius salei) to dummies of male courtship vibrations. One of the two representative slits studied is sharply tuned to 500 Hz. Only the other slit is sensitive enough at lower frequencies to represent the parameters contained in the behaviourally effective dummies:
    1. Amplitude. The physiological threshold is similar to the behavioural threshold. The stimulus acceleration amplitudes leading to a good synchronization between response and temporal stimulus pattern coincide with those effectively eliciting a behavioural response. The most frequent spike intervals remain nearly constant in this range. At acceleration amplitudes above the natural range, syllable and pause durations are misrepresented by the receptor response.
    2. Frequency. Varying the carrier frequency between 35–500 Hz changes the most frequent spike intervals. Interval histograms resulting from behaviourally effective stimuli (50–200 Hz), however, are similr for carrier frequencies differing by a factor of 2.
    3. Temporal pattern. Response duration reflects the temporal parameters of the stimulus. The most frequent spike interval only changes with temporal stimulus characteristics far off the natural range. The number of spikes during a syllable decreases in ongoing stimulus series. The quality of copying the temporal stimulus pattern remains unchanged, however.
      相似文献   

    16.
    The present study was undertaken in order to investigate the effects of sodium selenite on:
    1. The growth of rat pituitary GH4C1 cells;
    2. The nuclear T3 receptor gene expression;
    3. The cytoplasmic protein phosphorylation; and
    4. The prolactin secretion in rat pituitary GH4C1 cell line.
    Sodium selenite (up to 2.5 μM) has no inhibitory effect on GH4C1 cell proliferation as well as the prolactin secretion. On the other hand, 0.5 μM sodium selenite significantly decreases the rate of mRNA synthesis and/or degradation of both, the α1 form of the T3 receptor (TRα1) and the α2 isoform of the T3 receptor. At 1 μM of sodium selenine, significant changes in the electrophoretic profile of low molecular mass cytoplasmic proteins were found, moreover, sodium selenite (1 μM) also considerably affects phosphorylation of a higher molecular mass proteins. The results based on the in vitro experiments suggest that sodium selenite may affect specific processes at the pretranslational level as well as it may also take part in processes of posttranslational modification of protein(s), the cell vitality and the cell growth remaining unchanged.  相似文献   

    17.
    A simple model of brightness encoding in the retina is proposed that explains:
    1. the differential phase shift needed to minimize brightness flicker in a homogeneous red-green counterphase flickering field.
    2. the modulation transfer function at low temporal frequencies for flickering lights of one dominant wavelength against the background of light with another dominant wavelength.
    3. the occurrence of the Hering, the Purkinje and the Hess afterimages.
    4. the ability of monochromatic light to provoke the Purkinje afterimage (Bidwell's ghost).
    It is shown that these effects can be treated as pure brightness effects; or that the signal processing of the opponent system is irrelevant to the results. A physiological substrate for the model is tentatively indicated. Some suggestions are made concerning possible experimental checks of the model.  相似文献   

    18.
    • 1.Instead of just times to cool (tcool) and heat (theat), intermittent incubation cycles contain a period (tequil) when eggs are kept at relatively high equilibrium temperatures after heating.
    • 2.Relative allocations favoring parental self-maintenance [when (tcool+theat)>tequil] versus embryo development [when (tcool+theat)<tequil] were measured for house wrens (Troglodytes aedon), tree swallows (Tachycineta bicolor) and black-capped chickadees (Poecile atricapillus).
    • 3.Wrens showed over-all significant relative allocation to parental self-maintenance, while chickadees and swallows balanced both functions.
    • 4.House wrens gradually shifted allocation toward increased average egg temperature as incubation progressed, calling into question how temperature influences development rate.
      相似文献   

    19.
    1. Culture filtrates of heterotrophic bacteria were tested for their stimulatory effect on nitrification of three strains of Nitrobacter.
    2. Yeast extract-peptone solution, in which Pseudomonas fluorescens had grown, after removal of the cells was added to autotrophically growing cultures of Nitrobacter agilis; it caused a stimulated nitrite oxidation and growth of Nitrobacter agilis.
    3. The degree of stimulation depended on: a) the proportion of the culture filtrate to the autotrophic medium; b) the composition of the complex medium in which Pseudomonas fluorescens had been grown; c) the time the heterotrophic bacterium had been grown in the complex medium.
    4. The stimulatory effect was highest with Nitrobacter agilis, less with Nitrobacter winogradskyi and negligible with Nitrobacter K 4.
    5. It was possible to adapt nitrifying cells of Nitrobacter agilis to higher concentrations of yeast extract and peptone. After the nitrite had been completely oxidized the cell-N still increased up to 30% before growth stopped.
      相似文献   

    20.
    1. The present paper deals with the chemolithotrophic growth of a Gram-positive hydrogen bacterium strain 11/x which shows the characteristic features of some coryneform bacteria.
    2. Like other hydrogen bacteria, the strain 11/x is a facultative chemolithotroph and grows on many organic substrates faster than in a mineral medium under an atmosphere of knallgas+CO2. Fully induced, autotrophically grown cells, subcultured mixotrophically on fructose show additive growth.
    3. Cell-free extracts of autotrophically grown cells are able to reduce methylene blue, dichlorophenolindophenol, phenazine methosulphate, menadione, and FMN with hydrogen. Conditions for direct NAD(P) reduction could not be found.
    4. Hydrogenase is formed under autotrophic as well as mixotrophic conditions. In the latter case the rate of hydrogenase formation is diminished depending on the organic substrate. Heterotrophically grown cells do not have any detectable hydrogenase activity. For the induction of hydrogenase in those cells a nitrogen source is a prerequisite.
    5. The formation of ribulose-1,5-diphosphate carboxylase and phosphoribulokinase seems to be regulated in a way similar to that of hydrogenase: the enzymes could only be detected in autotrophically and mixotrophically grown cells but not in those grown heterotrophically.
      相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号