首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of applied ethylene on the growth of coleoptilesand mesocotyls of etiolated monocot seedlings (oat and maize)have been compared with those on the epicotyl of a dicot seedling(the etiolated pea). Significant inhibition of elongation by ethylene (10 µll–1for 24 h) was found in intact seedlings of all three species,but lateral expansion growth was observed only in the pea internodeand oat mesocotyl tissue. The sensitivity of the growth of seedlingparts to ethylene is in the decreasing order pea internode,oat coleoptile and oat mesocotyl, with maize exhibiting theleast growth response. Although excised segments of mesocotyland coleoptile or pea internode all exhibit enhanced elongationgrowth in IAA solutions (10–6–2 ? 10–5 moll–1), no consistent effects were found in ethylene. Ethyleneproduction in segments was significantly enhanced by applicationof auxin (IAA, 10–5 mol l–6 or less) in all tissuesexcept those of the eat mesocotyl. Segments of maize show a slow rate of metabolism of applied[2-14C]IAA (30 per cent converted to other metabolites within9 h) and a high capacity for polar auxin transport. Ethylene(10 µl l–1 for 24 h) has little effect on eitherof these processes. The oat has a smaller capacity for polartransport than maize and the rate ef metabolism of auxin isas fast as in the pea (90 per cent metabolized in 6 h). Althoughethylene pretreatment does not change the rate of auxin metabolismin oat, there is a marked reduction in auxin transport. It is proposed that the insensitivity of maize seedlings toethylene is related to the supply and persistence of auxin whichcould protect the seedling against the effects of applied orendogenously produced ethylene. Although the mesocotyl of oatis sensitive to applied ethylene it may be in part protectedagainst ethylene in vivo by the absence of an auxin-enhancedethylene production system. The results are discussed in relationto a model for the auxin and ethylene control of cell growthin the pea.  相似文献   

2.
Inorganic phosphate regulated ethylene production in shake culturesof Penicillium digitatum. Decreasing the phosphate level ofthe medium from 100 to 0.01 mM markedly increased, about 100-fold,the rate of ethylene production, in 96 hr, which was confinedentirely to the fungal mycelium. Exogenous addition of between0.01 to 100 mM phosphate, to high ethylene producing, low-phosphatecultures strongly inhibited their ethylene production and increasedthe ATP content of the mycelium. Phosphate also inhibited ethyleneproduction in apple slices. Addition of calcium ions to theincubation medium stimulated the production of ethylene in appleslices, subhook epicotyl segments of pea and shake culturesof P. digitatum. We suggest that this stimulatory effect wascaused by the reduction of inhibitory levels of phosphate, whichcomplexed with calcium. Thus, phosphate in conjunction withcalcium may play an important role in regulating ethylene productionnot only in P. digitatum but also in higher plants. 1 On leave from the Agricultural Research Organization, TheVolcani Center, Israel. 2 On leave from the M.S. University of Baroda, India. (Received September 7, 1977; )  相似文献   

3.
Isopropyl-N-(3-chlorophenyl) carbamate (CIPC) stimulates ethyleneproduction in hypocotyl sections of etiolated mungbean seedlings.The amount of ethylene produced is dependent on the concentrationsof CIPC applied. However, CIPC markedly inhibits IAA-inducedethylene production at relatively low concentration. It is possiblethat both CIPC and IAA are competing for the same cellular siteto induce ethylene production. However, the effectiveness ofCIPC in inducing ethylene production is much less compared toIAA treatment. The inhibition of ethylene production inducedby IAA at high concentration of CIPC may be solely due to thecomplete occupancy of the cellular site by CIPC and the effectof IAA is, therefore, eliminated. 1 Present address: Mann Laboratory, University of California,Davis, California, U.S.A. (Received September 19, 1972; )  相似文献   

4.
Auxin induced an increase in the rate of ethylene productionby hypocotyl segments of etiolated mungbean seedlings aftera 1 hr lag period. The increase in the production rate was greatestwith segments immediately below the cotyledonary hook. Effectiveconcentrations of indoleacetic acid ranged from 1 µm to0.5 mM. Length of the lag period was the same regardless ofthe interval between segment excision and the addition of auxin.Auxin-induced ethylene production was inhibited by cycloheximidebut not by chloramphenicol. Auxin removal from, or cycloheximideaddition to, segments actively producing ethylene in responseto auxin caused a rapid decrease in the rate of ethylene production.These results suggest that the ethylene producing system inducedby auxin is rapidly turning over and that auxin acts at twosites to increase ethylene production 1This work was supported in part by grant No. 0802 from Ministryof Education, Japan (Received November 30, 1970; )  相似文献   

5.
Shoots of poplar (Populus tremula × P. tremuloïdes) were multiplied in vitro and rooted on a rooting medium in the presence of NAA. No rooting occurred in the absence of exogenous auxin. A peak of soluble peroxidase activity, which corresponded to a decrease in the free IAA level in the shoots, preceded rooting These events were considered as corresponding to the initiative phase of rooting. They are preceded by a peak in free IAA activity which might initiate the inductive phase of the rooting process. A burst of ethylene production was measured in both rooting and non-rooting shoots, but the ethylene peak from rooting shoots appeared earlier and was higher. The use of ACC indicated that the exogenous auxin might have enhanced ACC-synthetase activity.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - NAA naphthaleneacetic acid - IAA indole-3-acetic acid - 2-iP 2-isopentenyladenine - IAAsp indole-3-acetylaspartic acid - IBA indole-3-butyric acid - GC gas-chromatography  相似文献   

6.
We have previously shown that both endogenous auxin and ethylenepromote adventitious root formation in the hypocotyls of derootedsunflower (Helianthus annuus) seedlings. Experiments here showedthat promotive effects on rooting of the ethylene precursor,1-aminocyclopropane-l-carboxylic acid (ACC) and the ethylene-releasingcompound, ethephon (2-chloro-ethylphosphonic acid), dependedon the existence of cotyledons and apical bud (major sourcesof auxin) or the presence of exogenously applied indole-3-aceticacid (IAA). Ethephon, ACC, aminoethoxyvinylglycine (an inhibitorof ethylene biosynthesis), and silver thiosulphate (STS, aninhibitor of ethylene action), applied for a length of timethat significantly influenced adventitious rooting, showed noinhibitory effect on the basipetal transport of [3H]IAA. Theseregulators also had no effect on the metabolism of [3H]IAA andendogenous IAA levels measured by gas chromatography-mass spectrometry.ACC enhanced the rooting response of hypocotyls to exogenousIAA and decreased the inhibition of rooting by IAA transportinhibitor, N-1-naphthylphthalamic acid (NPA). STS reduced therooting response of hypocotyls to exogenous IAA and increasedthe inhibition of rooting by NPA. Exogenous auxins promotedethylene production in the rooting zone of the hypocotyls. Decapitationof the cuttings or application of NPA to the hypocotyl belowthe cotyledons did not alter ethylene production in the rootingzone, but greatly reduced the number of root primordia. We concludethat auxin is a primary controller of adventitious root formationin sunflower hypocotyls, while the effect of ethylene is mediatedby auxin. Key words: Auxin, ethylene, adventitious rooting, sunflower  相似文献   

7.
The stimulative effect of cytokinin on ethylene production hasbeen examined in etiolated mungbean hypocotyl segments. Therate of auxin-induced production linearly increased with timein a certain range of exogenous IAA concentration. The rateof induced production doubled with a 10-fold increase in exogenousIAA concentration or addition of benzyladenine at 5 µM.Benzyladenine did not suppress inactivation of the induced ethyleneproducing system. Although the free IAA level within the tissueswas slightly increased by benzyladenine accompanied by a decreasein IAAsp formation, the increased free IAA level did not accountfor the doubling of the production rate. When the tissues werepreincubated with benzyladenine alone followed by postincubationwith auxin, the rate of induced production in pretreated tissueswas significantly higher than that in untreated or buffer-treatedtissues supplied with auxin and benzyladenine simultaneouslyin the post-incubation medium. Formation and disappearance ofthe cytokinin effect were temperature dependent. The rate ofendogenous production was constant over an experimental periodand benzyladenine simply enhanced the rate several-fold aftera lag period. Kinetics of the cytokinin stimulation was notthe inductive type. Based on these observations, a possiblemechanism of the stimulative effect of cytokinin was discussed. 1This research was partly supported by grants from the Ministryof Education of Japan (C-856043 and C-956037) and the AsahiPress. (Received May 7, 1975; )  相似文献   

8.
An insoluble (particulate) 3H-IAA-binding system similar tothat reported by Hertel et al. (3) is described in buds frompea seedlings. The binding is competed by NAA as well as IAA.Auxin-competible binding is optimal at 25?C and pH6.5; Ca+2increases binding as does a 1 hr preincubation at 4?C. Releaseof apical dominance produces outgrowth and a large decreasein the NAA-competible 3H-IAA-binding activity in the axillarybuds; this correlates with a decreased ability of auxin to inhibitthe buds. Both the antiauxin triiodobenzoic acid and the cytokininbenzyladenine also compete with the bound IAA. 1Supported in part by a Special Research Assistance Grant fromthe College of Literature, Science and the Arts, Universityof Michigan and by USPHS Grant no. ES-000634. 2Present address: Universitet u Pritini, Prirodno-matemat-facultet,38000 Pritina, Yugoslavia. (Received May 16, 1974; )  相似文献   

9.
Treatment of normal and Agrobacterium rhizogenes-transformed root cultures of Hyoscyamus muticus with three different auxins, indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), and naphthaleneacetic acid (NAA), revealed that the response varied considerably among auxins, between transformed and normal roots, and depending on the parameter. In normal roots all three auxins provoked abundant branching, with IBA and NAA being the most effective at 2.5 and 0.5 μm, respectively, whereas IAA was most effective at low concentrations (0.05 and 0.1 μm). In transformed roots exogenously supplied auxins were generally inhibitory or, at best, without effect on growth and branching. Only 0.01 μm IAA significantly enhanced lateral root number, whereas at the higher concentrations IBA, although inhibitory, was the least effective auxin. In both root types IBA had little effect on primary root growth, but normal roots were more sensitive to IAA and NAA. These results suggest a different sensitivity to auxins of normal and transformed roots since there was no significant difference in endogenous free and conjugated IAA content nor in IAA uptake capacity. Ethylene production and biosynthesis were approximately threefold higher in hairy roots, but production could be stimulated up to tenfold that of control levels in normal roots by supplying NAA or 1-aminocyclopropane-1-carboxylic acid (ACC). Treatment with 2.5 μm NAA, but not IAA or IBA, also enhanced ethylene biosynthesis in normal roots but not in transformed ones. ACC and malonyl-1-aminocyclopropane-1-carboxylic acid accumulated to detectable levels only after treatment with an auxin (NAA). Received March 3, 1997; accepted May 28, 1997  相似文献   

10.
Pieces of callus obtained from seedlings of Digitalis purpureawere grown on solid Murashige-Skoog's medium supplemented with1 mg liter–1 BA and 0.1 mg liter–1 IAA or NAA, withor without phenobarbital (40 mg liter–1). The replacementof the natural auxin IAA by the synthetic auxin NAA increasedcallus growth and inhibited organogenesis, whereas the additionof phenobarbital had the opposite effect. Morphometric measurementsrevealed a high ratio of vacuole to cytoplasm (v/v) in calluscells. This ratio was affected by the different treatments inthe same way as the fresh weight. The activity of mitochondrialcytochrome P450scc (the enzyme that provides the precursor,pregnenolone, for the biosynthesis of cardenolide in foxgloveplants) was detected in the relevant fraction of callus grownunder all experimental conditions, and its activity was increasedby the addition of phenobarbital. The different treatments testedincreased the cardenolide content and quantifiable amounts ofdigitoxin were detected in all callus tissues. It is of specialinterest that phenobarbital added to the culture medium increasedthe accumulation of digitoxin. The mechanism affecting the developmentand production of cardenolide in callus tissues of D. purpureaby phenobarbital and the replacement of IAA by NAA is discussed. (Received July 18, 1994; Accepted December 14, 1994)  相似文献   

11.
Opening of Cassia fasciculata leaflets was induced in darknessafter application of indole-3-acetic acid (IAA). This movementwas obtained with concentrations from 10–6 M to 10–4M, after a corresponding time-lag ranging from 120 to 30 min.IAA (5x10–5 M) allowed leaflet opening at all the pH valuestested (from 3·5 to 7·5), the largest aperturebeing obtained at pH 60 in MES 2·5 mM. Our data suggesta functional involvement of calcium in the regulation of theturgor variations occurring in the pulvinar motor cells duringIAA-induced leaflet opening which occurs in darkness: indeed,this movement was inhibited by the Ca2+ chelator EGTA (thisinhibition was reversed by CaCl2) or by antagonists (LaCl3,TMB-8); on the contrary, the IAA-opening was enhanced by ionophoreA 23187. Calcium mobilization through specific channels was tested usingantagonists such as verapamil and nifedipine: at physiologicaldoses, these compounds did not significantly affect leafletresponse. The possibility that calcium could originate frominternal stores was checked using lithium chloride which isknown to block the phosphatidylinositol cycle in animal cells.This compound hindered auxin-induced opening for concentrationshigher than 5x10–4 M. The calcium-binding protein calmodulinwas shown to be implicated in the IAA-induced response sinceopening was inhibited in a concentration-dependent manner aftertreatment with compound 48/80 and with W-7. Key words: Cassia fasciculata, auxin, calcium, second messenger, turgor regulation  相似文献   

12.
The pathway of ethylene biosynthesis in auxin-treated mung beanhypocotyls was investigated by comparing the specific radioactivitiesof ethylene produced and S-adenosylmethionine (SAM) in the tissuefollowing the administration of 3,4-14C-methionine, and by analyzingthe methionine metabolites. When the rate of auxin-induced ethyleneproduction was low due to a low concentration of auxin, thespecific radioactivity of ethylene released was always higherthan that of SAM in the tissue. When the tissue was treatedwith auxin, the tissue produced and accumulated a methioninemetabolite which was converted into ethylene more efficientlythan methionine. The metabolite was identified as 1-aminocyclopropane-l-carboxylicacid (ACC) by means of paper and thin-layer chromatography,high voltage paper electrophoresis and co-crystallization. ACCformation was neither inhibited by low oxygen nor by the inhibitoryprotein of ethylene synthesis, but inhibited by aminoethoxyvinylglycine(AVG). ACC application to the tissue greatly reduced incorporationof 3,4-14C-methionine into ethylene. The control tissue thatwas not treated with auxin also converted ACC into ethyleneindicating that the enzyme which converts ACC into ethyleneis already present in the tissue and that auxin induced productionof the enzymatic system responsible for the conversion of methionineinto ACC. Ethylene synthesis from ACC was not inhibited by AVG,abscisic acid, cycloheximide or actinomycin D, but inhibitedby low oxygen and the inhibitory protein. (Received November 21, 1979; )  相似文献   

13.
The internal levels of ethylene in and the production ratesof ethylene by various parts of the cotton plant {Gossypiumhirsutum L. cultivar Acala 4–42) were determined by separatetechniques. Wounding of tissue, which resulted from both techniques,increased ethylene production. A peak in wound-induced ethyleneoccurred around the second to third hour after wounding andgradually declined until the sixth or seventh hour when ethyleneproduction began to level off. Using two techniques, with numerousobservations from each technique, ethylene levels were foundto be relatively uniform throughout the vegetative cotton plant.There was a small trend for levels of ethylene to increase fromthe bottom (oldest tissue) to the top of the plant (youngesttissue). Of major interest was the observation that the productionrates and internal concentrations of ethylene in the petiolewere two to six times higher than those in the leaf blade. Thisrelative concentration of ethylene in the petiole supports thehypothesis that ethylene is a natural regulator of abscissionwhich acts, in part, through modification of auxin transport. 1 A contribution of die Texas Agricultural Experiment Station.Supported in part by Grant GB-5640, National Science Foundationand grants from the Cotton Producers Institute. The data forthis paper was taken from a Master of Science Thesis by J. A.M. submitted to Texas A & M University January 1970. 2 Present address: Department of Agronomy, Purdue University,Lafayette, Indiana, U.S.A. (Received June 29, 1971; )  相似文献   

14.
A concentration of 10–5 M tomatine had no effect on leakagefrom, or elongation of, wheat coleoptile segments, but consistentlyreduced IAA-enhanced extension growth by c. 50 per cent. Therewas no evidence of chemical interaction between the alkaloidand the auxin in solution, and IAA action was not affected bypre-treatment for up to 3 h with 10–5 M tomatine. Studieswith [2-14C]IAA revealed that 10–5 M tomatine did notinhibit uptake of auxin into segments. The effect of pre-treatingsegments for up to 3 h with IAA could be virtually nullifiedby 10–5 M tomatine, as could also IAA-induced changesin properties of coleoptile cell walls. Results are discussedin relation to the ability of tomatine to disrupt membrane functionand to current hypotheses implicating membranes in the primaryaction of auxin.  相似文献   

15.
The influence of the auxins indole-3-acetic acid (IAA) and 1-napthylene acetic acid (NAA) on K+ channels and their control was examined in stomatal guard cells of Vicia faba L. Intact guard cells were impaled with multibarrelled microelectrodes to record membrane potentials and to monitor K+ channel currents under voltage clamp during exposures to 0.1–100 µM IAA and NAA. Following impalements, challenge with either IAA or NAA in the presence of 10 mM KCl resulted in the concerted modulation of at least four different currents with distinct kinetic characteristics and concentration dependencies. Equivalent concentrations of benzoic acid were wholly without effect. Most striking, current carried by inward-rectifying K+ channels (IK,in) exhibited a bimodal response to both IAA and NAA which was reversed on washing the auxins from the bathing medium. The steady-state current was augmented 1.3- to 2-fold at concentrations between 0.1 and 10 µM and antagonized at concentrations near 30 µM and above. Auxin agonism of IK,in was time- and voltage-independent. By contrast, IK,in inactivation at the higher auxin concentrations was marked by a voltage-dependence and slowing of the kinetics for current activation. Inactivation of IK,in by the auxins was relieved when cytoplasmic pH (pHi) was clamped near 7.0 in the presence of 30 mM Na+-butyrate. In addition to the control of IK,in, current carried by a second class of (outward-rectifying) K+ channels rose in a monotonic and largely voltage-independent manner with auxin concentrations about 10 µM and above, and IAA and NAA also activated an inward-going current with a voltage dependence characteristic of guard cell anion channels. Further changes in background current were consistent with a limited activation of the H+-ATPase. Over the concentration range examined, the auxins evoked membrane hyperpolarizations and depolarizations of up to ±12–19 mV, depending on the free-running membrane potential prevailing before auxin additions. Prolonging exposures to 100 µM auxin beyond 3–5 min frequently elicited rapid transitions to voltages near EK as well as regenerative action potentials. However, in every case the voltage response was a predictable consequence of auxin action on the K+ channels and, at 100 µM auxin, on the anion current. These results demonstrate a control of K+ channel activity by auxin, consistent with the roles of these channels in mediating K+ flux for stomatal movements; the data associate a bimodal characteristic with the activity of IK,in, implicating pHi as a putative intermediate in its control, and offer strong evidence for a multiplicity of signal cascades evoked by auxin; finally, they highlight a coordinate modulation of transport activities by auxin, thereby drawing a close analogy to the pattern of stimulus-response coupling in abscisic acid.  相似文献   

16.
Elongation of coleoptile segments, having or not having a tip,excised from rice (Oryza sativa L. cv. Sasanishiki) seedlingswas promoted by exogenous ethylene above 0.3 µl l–1as well as by IAA above 0.1 µM. Ethylene production ofdecapitated segments was stimulated by IAA above 1.0µM,and this was strongly inhibited by 1.0 µM AVG. AVG inhibitedthe IAA-stimulated elongation of the decapitated segment witha 4 h lag period, and this was completely recovered by ethyleneapplied at the concentration of 0.03 µl l–1, whichhad no effect on elongation without exogenous IAA. The effectsof IAA and ethylene on elongation were additive. These factsshow that ethylene produced in response to IAA promotes ricecoleoptile elongation in concert with IAA, probably by prolongingthe possible duration of the IAA-stimulated elongation, butthat they act independently of each other. Moreover, AVG stronglyinhibited the endogenous growth of coleoptile segments withtips and this effect was nullified by the exogenous applicationof 0.03 µl l–1 ethylene. These data imply that theelongation of intact rice coleoptiles may be regulated cooperativelyby endogenous ethylene and auxin in the same manner as foundin the IAA-stimulated elongation of the decapitated coleoptilesegments. Key words: oryza sativa, Ethylene, Auxin, Coleoptile growth  相似文献   

17.
The inhibitory protein of ethylene synthesis purified from mungbean seeds reduced ATP levels in mung bean hypocotyl segments.When the segments were incubated with 0.5mM IAA for 6 hr toinduce ethylene-producing activity, the presence of the inhibitoryprotein suppressed the ethylene production and ATP content inthe tissue about 82 and 60%, respectively. Similar suppressiveeffects were also observed for endogenous ethylene productionand ATP contents in tissue not treated with IAA. (Received June 20, 1981; Accepted October 24, 1981)  相似文献   

18.
Dunlap, J. R. 1988. Regulation of ACC-dependent ethylene productionby excised leaves from normal and albino Zea mays L. seedlings.—J.exp. Bot. 39: 1079–1089. Albino corn (Zea mays L.) seedlings lacking natural leaf pigmentswere obtained by germinating seeds treated with fluridone, aninhibitor of carotenoid biosynthesis. Basal rates of ethyleneproduction were less than 2.0 nl g–1 fr. wt h–1in both treated (albino) and untreated (normal) leaves but increasedby 10- to 20-fold in the presence of added ACC. ACC-dependentethylene production (ADEP) was inhibited by cobalt or cyanideions and stimulated by NaHCO3, CO2 and light. ADEP in both tissueswas stimulated by glucose, fructose, galactose and sucrose.The accumulation of respiratory CO2 did not account for thecarbohydrate response. The decline in the ADEP characteristicof albino leaf tissue was slowed by incubation in the presenceof sucrose. IAA and ABA stimulated ADEP in normal leaves butinhibited ADEP in albino leaves. Sucrose-stimulated ADEP wasinhibited in albino leaf tissue treated with IAA or ABA indicatinga possible role for the chloroplast in carbohydrate-facilitatedADEP. However, results from this study suggest that chloroplastsperform a function in the regulation of ethylene productionby leaf tissue that extends beyond merely influencing internallevels of CO2. In the absence of detectable ACC, EFE was responsiblefor the entire series of responses expressed in regulation ofethylene biosynthesis by corn seedling leaf tissue. Key words: Corn, ethylene, sugars, phytohormones  相似文献   

19.
  1. The effect of IAA and FC on the extension of isolated epidermisof light-grown Alaska pea epicotyls was studied under differentconditions with an extension apparatus. The following resultswere obtained.
  2. The epidermis extended in response to low pHbuffer solutionof 1–10 mM, maximum extension being achievedat pH below5.5.
  3. IAA, 5 mg/liter, caused, although not consistently,an extensionof epidermal strips in 1 mM buffer, but not at10 mM.
  4. Consistent extension of the isolated epidermis dueto IAA wasobtained by addition of GTP, ATP, ITP or UTP (sodiumsalts),but not nucleosides, nitrogen bases or sugars.
  5. A fungaltoxin, FC, at 10–5 M induced extension of theepidermiswithout addition of the nucleoside triphosphates.
  6. IAA andFC caused H+ extrusion in peeled epicotyl segments bothin thepresence and absence of GTP. IAA caused appreciable H+extrusionin the isolated epidermis only in the presence ofGTP, whereasH+ extrusion by the epidermis was induced by FCeven in theabsence of GTP.
From these results, we concluded that IAA induces extensionof the isolated epidermis under the above conditions throughthe mediation of H+ ions. (Received July 12, 1976; )  相似文献   

20.
Lycoricidinol, a natural growth inhibitor isolated from bulbsof Lycoris radiata Herb. strongly suppressed auxin-induced ethyleneproduction from the hypocotyl segments of etiolated mung bean(Vigna radiata Wilczek) seedlings. The inhibitor did not significantlyinhibit ethylene formation from its immediate precursor, 1-aminocyclopropane-1-carboxylicacid (ACG), during short-term (up to 4 h) incubation. The ACCcontent in tissue treated with IAA was reduced by lycoricidinolin close parallel with the inhibition of ethylene production.Examination of radioactive metabolites in tissues labeled with3,4-14C-methionine indicated that reduction of the ACC contentwas not due to any possible promotive effect of lycoricidinolon conjugation of ACC with malonate. Lycoricidinol showed noinhibitory effect on the activity of ACC synthase if appliedin vitro, but it almost completely abolished the increase inthe enzyme activity when applied in vivo during incubation ofthe tissue with IAA. Lycoricidinol also strongly inhibited incorporationof 14C-leucine into protein in the tissue. The suppression ofthe enzyme induction and, in turn, that, of ethylene productionby lycoricidinol were interpreted as being due to the inhibitionof protein synthesis. (Received September 30, 1983; Accepted December 8, 1983)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号