首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 331 毫秒
1.
Nitrogen-fixing Klebsiella and Enterobacter strains isolated from several plants were assayed for fimbriae and for adhesion to plant roots in vitro. All eight Klebsiella strains formed type 3 fimbriae, and five strains also formed type 1 fimbriae; all 21 Enterobacter strains had type 1 fimbriae. Three strains of Klebsiella carrying either type 1, type 3, or no fimbriae were used as model organisms in developing an in vitro adhesion test. Adhesion was assayed with bacterial cells labeled with [3H]leucine. Fifteen N2-fixing strains and the three model strains were compared for adhesion to the roots of seven grasses and five cereals. Type 3-fimbriated Klebsiella strains adhered better than the other strains, and type 3 fimbriae appeared to be major adhesins for the Klebsiella strains. Although variations between plants were observed, no host specificity for bacterial adhesion was found.  相似文献   

2.
Nitrogen-fixing Klebsiella and Enterobacter strains isolated from several plants were assayed for fimbriae and for adhesion to plant roots in vitro. All eight Klebsiella strains formed type 3 fimbriae, and five strains also formed type 1 fimbriae; all 21 Enterobacter strains had type 1 fimbriae. Three strains of Klebsiella carrying either type 1, type 3, or no fimbriae were used as model organisms in developing an in vitro adhesion test. Adhesion was assayed with bacterial cells labeled with [H]leucine. Fifteen N(2)-fixing strains and the three model strains were compared for adhesion to the roots of seven grasses and five cereals. Type 3-fimbriated Klebsiella strains adhered better than the other strains, and type 3 fimbriae appeared to be major adhesins for the Klebsiella strains. Although variations between plants were observed, no host specificity for bacterial adhesion was found.  相似文献   

3.
Adhesion sites on grass roots for Klebsiella strains carrying type 3 or type 1 fimbriae or both were determined. Adhesion of the strains to the roots of Poa pratensis and Festuca rubra was highly localized; the bacteria adhered strongly to root hairs and with a markedly lower efficiency to the surface of the zone of elongation and to the root cap mucilage. No adhesion to the epidermal cells between root hairs was observed. The adhesion sites were identical for the type 3- and 1-fimbriated bacteria and for P. pratensis, F. rubra, and Trifolium pratense. Inoculation of P. pratensis seedlings with Klebsiella pneumoniae strain As resulted in morphological changes in plant roots. The roots of infected plants were heavily covered with root hairs, which often were deformed and branched.  相似文献   

4.
Type 1 fimbriae of Klebsiella pneumoniae and Enterobacter agglomerans mediated bacterial adhesion to the roots of bluegrass, Poa pratensis. Purified, radiolabeled fimbriae bound to grass roots in vitro; binding was inhibited by alpha-methyl-d-mannoside or Fab fragments to the fimbriae. Anti-type 1 fimbriae Fab fragments and alpha-methyl-d-mannoside also inhibited adhesion of type 1-fimbriated bacteria to P. pratensis roots. It is proposed that associative nitrogen fixation by Klebsiella and Enterobacter strains also involves type 1 fimbriae, in addition to the type 3 fimbriae of Klebsiella spp. (T. K. Korhonen, E. Tarkka, H. Ranta, and K. Haahtela, J. Bacteriol. 155:860-865, 1983).  相似文献   

5.
Root colonization studies, employing immunofluorescence and using locally isolated strains, showed thatEnterbacter sp. QH7 andEnterobacter agglomerans AX12 attached more readily to the roots of most plants compared withAzospirillum brasilense JM82. Heat treatment of either root or inoculum significantly decreased the adsorption of bacteria to the root surface. Kallar grass and rice root exudates sustained the growth ofA. brasilense JM82,Enterobacter sp. QH7 andE. agglomerans AX12 in Hoagland and Fahraeus medium. All the strains colonized kallar grass and rice roots in an axenic culture system. However, in studies involving mixed cultures,A. brasilense JM82 was inhibited byEnterobacter sp. QH7 in kallar grass rhizosphere and the simultaneous presence ofEnterobacter sp. QH7 andE. agglomerans AX12 suppressed the growth ofA. brasilense JM82 in rice rhizosphere. The bacterial colonization pattern changed from dispersed to aggregated within 3 days of inoculation. The colonization sites corresponded mainly to the areas where root mucigel was present. The area around the point of emergence of lateral roots usually showed maximum colonization.  相似文献   

6.
Type 3 fimbriae of Klebsiella were purified and characterized. The fimbriae were 4 to 5 nm in diameter and 0.5 to 2 microns long. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the fimbrillin had an apparent molecular weight of 23,500, and it differed from enterobacterial type 1 fimbrillins in its amino acid composition. Hydrophobic amino acids comprised 33.6% of all amino acids in the fimbrillin, which lacked cystine, phenylalanine, and arginine. Serologically, the type 3 fimbriae were also distinct from the type 1 fimbriae. Purified type 3 fimbriae agglutinated tannin-treated human blood group O erythrocytes; this confirms the role of type 3 fimbriae as hemagglutinins. Purified 125I-labeled type 3 fimbriae bound to the roots of Poa pratensis, and this binding could be inhibited by Fab fragments to the purified fimbriae. Anti-type 3 fimbriae Fab fragments also inhibited bacterial adhesion to plant roots. These results demonstrate that type 3 fimbriae mediate adhesion of klebsiellas to plant roots. Eight nitrogen-fixing strains of Klebsiella also produced type 3 fimbriae when grown under anaerobic nitrogen fixation conditions. It is proposed that type 3 fimbriae are involved in the establishment of the plant-bacterium association concerning nitrogen-fixing Klebsiella strains.  相似文献   

7.
Tissue-binding specificity of the type-3 fimbriae of pathogenic enteric bacteria was determined using frozen sections of human kidney. A wild-type Klebsiella sp. strain and the recombinant strain Escherichia coli HB101(pFK12), both expressing type-3 fimbriae, as well as the purified type-3 fimbriae effectively bound to sites at or adjacent to tubular basement membranes, Bowman's capsule, arterial walls, and the interstitial connective tissue. Bacterial adherence to kidney was decreased after collagenase treatment of the tissue sections. Recombinant strains expressing type-3 fimbriae specifically adhered to type V collagen immobilized on glass slides, whereas other collagens, fibronectin or laminin did not support bacterial adherence. In accordance with these findings, specific binding of purified type-3 fimbriae to immobilized type V collagen was demonstrated. Specific adhesion to type V collagen was also seen with the recombinant strain HB101(pFK52/pDC17), which expresses the mrkD gene of the type-3 fimbrial gene cluster in association with the pap-encoded fimbrial filament of E. coli, showing that the observed binding was mediated by the minor lectin (MrkD) protein of the type-3 fimbrial filament. The interaction is highly dependent on the conformation of type V collagen molecules since type V collagen in solution did not react with the fimbriae. Specific binding to type V collagen was also exhibited by type-3 fimbriate strains of Yersinia and Salmonella, showing that the ability to use type V collagen as tissue target is widespread among enteric bacteria.  相似文献   

8.
Adherence of type-1-fimbriate Salmonella enterica and Escherichia coli to immobilized proteins of the extracellular matrix and reconstituted basement membranes was studied. The type-1-fimbriate strain SH401 of S. enterica serovar Enteritidis showed good adherence to laminin, whereas the adherence to fibronectin, type I, type III, type IV or type V collagens was poor. Only minimal adherence to the matrix proteins was seen with a non-fimbriate strain of S. enterica serovar Typhimurium. A specific and mannoside-inhibitable adhesion to laminin was exhibited by the recombinant E. coli strain HB101(plSF101) possessing fim genes of Typhimurium. Adherence to laminin of strain SH401 was inhibited by Fab fragments against purified SH401 fimbriae, and a specific binding to laminin, of the purified fimbriae, was demonstrated using fimbriae-coated fluorescent microparticles. Periodate treatment of laminin abolished the bacterial adhesion as well as the fimbrial binding. Specific adhesion to immobilized laminin was also shown by the type-1 -fimbriate E. coli strain 2131 and the recombinant strain E. coli HB101(pPKL4) expressing the cloned type-1-fimbriae genes of E. coli. Adhesion to laminin of strain HB101(pPKL4) was inhibited by mannoside, and no adherence was seen with the fimH mutant E. coli HB101(pPKL5/pPKL53) lacking the fimbrial lectin subunit. The type-1 fimbriate strains also adhered to reconstituted basement membranes from mouse sarcoma cells and human placenta. Adhesion of strains HB101(plSF101) and HB101(pPKL4) to both basement membrane preparations was inhibited by mannoside. We conclude that type-1 fimbriae of S. enterica and E. coli bind to oMgomannoside chains of the lamjnjn network in basement membranes.  相似文献   

9.
Nitrogen-fixing bacteria were isolated from surface sterilized banana (Musa spp.) plants and constituted a minor proportion of banana endophytic bacteria. Some isolates were characterized by alloenzyme profiles, biochemical tests, 16S rRNA and rpoB partial gene sequences, plasmid profiles and plant colonization. A large group of enterobacterial isolates that could not be clearly affiliated, most of them ascribed to group I (with characteristics of Enterobacter cloacae) were the diazotrophs most frequently found in banana. Different Klebsiella spp. and Rhizobiumsp. were identified as well. Klebsiella spp. were isolated from inside the roots and stems of plants grown in the two geographical regions sampled and from tissue culture-derived plantlets. Rhizobium sp. isolates were obtained only from Colima where bananas are grown extensively. Group I isolates and Rhizobium sp. could be re-isolated from surface-sterilized banana derived from tissue culture at five months after inoculation and significant increases in stem and leave fresh weight were obtained with some of the isolates.  相似文献   

10.
Inoculation of canola seeds withPseudomonas putida GR12-2 stimulates root elongation under gnotobiotic conditions. Transformation ofP. putida GR12-2 with the broad-host-range plasmid pGSS15 abolishes the enhancement of root elongation. With scanning electron microscopy it was found that both transformed and nontransformedP. putida GR12-2 are capable of binding to canola seed coats. In addition, it was observed that 4 days after the initial inoculation the roots of bothP. putida GR12-2- and GR12-2/pGSS15-treated seedlings were free of adhering bacteria despite the fact that it was subsequently shown that both bacterial strains are capable of binding to roots. Thus, adhesion to roots is not necessary for the initial phase of enhanced root elongation that is induced byP. putida GR12-2 under gnotobiotic conditions.  相似文献   

11.
Biological Dinitrogen Fixation in Gramineae and Palm Trees   总被引:1,自引:0,他引:1  
Biological nitrogen fixation (BNF) in the Gramineae family has been well documented, but a complete understanding of this issue is needed to turn the research into a practical approach. The literature has a long and diverse list of diazotrophic bacteria found colonizing several plant tissues, such as roots, stems, leaves, and trash as well as the rhizosphere. However, only a limited amount of research has focussed on existing associations of N2-fixing microorganisms with grasses or cereal, especially for BNF inputs and ecological studies under field conditions. The recent discovery of the endophytic diazotroph bacteria such as Acetobacter diazotrophicus, Herbaspirillum spp. and Azoarcus spp. colonizing the interior of sugarcane, rice, Kallar grass (Leptochloa fusca (L.) Kunth), respectively, and other species of grasses as well as cereals has led to a considerable interest in exploring these novel associations. There is a general consensus that plant genotype is a key factor to higher contributions of BNF together with the selection of more efficient bacterial strains. This review summarizes the present data on this field and introduces the discovery of a new group of diazotrophic bacteria colonizing palm trees and therefore opening a future perspective for using these plants, especially African oil palm, to replace diesel as a fuel.  相似文献   

12.
Association of Azospirillum with Grass Roots   总被引:20,自引:13,他引:7       下载免费PDF全文
The association between grass roots and Azospirillum brasilense Sp 7 was investigated by the Fahraeus slide technique, using nitrogen-free medium. Young inoculated roots of pearl millet and guinea grass produced more mucilaginous sheath (mucigel), root hairs, and lateral roots than did uninoculated sterile controls. The bacteria were found within the mucigel that accumulated on the root cap and along the root axes. Adherent bacteria were associated with granular material on root hairs and fibrillar material on undifferentiated epidermal cells. Significantly fewer numbers of azospirilla attached to millet root hairs when the roots were grown in culture medium supplemented with 5 mM potassium nitrate. Under these growth conditions, bacterial attachment to undifferentiated epidermal cells was unaffected. Aseptically collected root exudate from pearl millet contained substances which bound to azospirilla and promoted their adsorption to the root hairs. This activity was associated with nondialyzable and proteasesensitive substances in root exudate. Millet root hairs adsorbed azospirilla in significantly higher numbers than cells of Rhizobium, Pseudomonas, Azotobacter, Klebsiella, or Escherichia. Pectolytic activities, including pectin transeliminase and endopolygalacturonase, were detected in pure cultures of A. brasilense when this species was grown in a medium containing pectin. These studies describe colonization of grass root surfaces by A. brasilense and provide a possible explanation for the limited colonization of intercellular spaces of the outer root cortex.  相似文献   

13.
Persistent urinary tract infections (UTI) are often caused by E. coli adhered to urothelium. This type of cells is generally recognized as very tolerant to antibiotics which renders difficult the treatment of chronic UTI. This study investigates the use of lytic bacteriophages as alternative antimicrobial agents, particularly the interaction of phages with E. coli adhered to urothelium and specifically determines their efficiency against this type of cells. The bacterial adhesion to urothelium was performed varying the bacterial cell concentrations and the period and conditions (static, shaken) of adhesion. Three collection bacteriophages (T1, T4, and phiX174 like phages) were tested against clinical E. coli isolates and only one was selected for further infection experiments. Based on the lytic spectrum against clinical isolates and its ability to infect the highest number of antibiotic resistant strains, the T1-like bacteriophage was selected. This bacteriophage caused nearly a 45% reduction of the bacterial population after 2 h of treatment. This study provides evidence that bacteriophages are effective in controlling suspended and adhered cells and therefore can be a viable alternative to antibiotics to control urothelium- adhered bacteria.  相似文献   

14.
Bacterial growth in the rhizosphere and resulting changes in plant growth parameters were studied in small aseptic seedlings of birch (Betula pendula and B. pubescens) and grasses (Poa pratensis and Festuca rubra). The seedlings were inoculated with three Frankia strains (Ai1a and Ag5b isolated from native Alnus root nodules and Ai17 from a root nodule induced by soil originating from a Betula pendula stand), and three associative N2-fixing bacteria (Enterobacter agglomerans, Klebsiella pneumoniae and Pseudomonas sp., isolated from grass roots). Microscopic observations showed that all the Frankia strains were able to colonize and grow on the root surface of the plants tested without addition of an exogenous carbon source. No net growth of the associative N2-fixers was observed in the rhizosphere, although inoculum viable counts were maintained over the experimental period. Changes in both the biomass and morphology of plant seedlings in response to bacterial inoculation were recorded, which were more dependent on the plant species than on the bacterial strain.  相似文献   

15.
Adhesion of pathogenic strains of Serratia spp. to the foregut tissue of the New Zealand grass grub (Costelytra zealandica) was shown to be associated with the development of amber disease. Bacteria were always found adhering to the crop in the region of the cardiac valve in larvae showing disease symptoms after in vivo treatment with pathogenic bacteria while no significant colonization was observed in larvae treated with wild‐type, non‐pathogenic strains. The in vitro inoculation of excised crops with pathogenic and non‐pathogenic strains resulted in a similar pattern of adhesion. It is suggested that adhesion is an early step in pathogenesis and that farther bacterial mediated factors could be required for fall expression of amber disease.  相似文献   

16.
Klebsiella was found to multiply and colonize growing radish root bulb surfaces following the inoculation of seeds with 101–104 cells. All 29 cultures ofKlebsiella originally isolated from 5 different sources were capable of growth to 106–107 colony-forming units/g of root bulb within 1 week after seed germination. Linear regression analysis illustrated differences inKlebsiella survival rates over 4 weeks of radish plant development. Analysis of covariance showed the survival ability wasKlebsiella from vegetables>mastitis>human, water, and pulp mill isolates. It was also shown thatKlebsiella species 2 had a significantly higher survival rate than the otherKlebsiella species. This finding correlates well with the observation thatKlebsiella species 2 is the most commonKlebsiella species isolated from vegetables. Average densities for allKlebsiella groups at plant harvest (5 weeks) ranged from 103–105 colony-forming units/g of radish plant. The possible health significance of these densities ofKlebsiella on vegetables consumed raw by humans is discussed.  相似文献   

17.
Staphylococcus aureus strains isolated from bovine intramammary infection (mastitis) were tested for adhesion to bovine mammary epithelial cells after growth in milk whey or TSB. Bacteria grown in milk whey adhered more efficiently to mammary gland epithelial cells in vitro than the corresponding homologous bacteria grown in TSB. Trypsin treatment of milk whey-grown S. aureus had no effect on their adherence. Whereas, pretreatment with periodate significantly decreased bacterial adherence capacity. Periodate treatment of TSB-grown bacteria had no effect on adhesion to the mammary gland epithelial cells.  相似文献   

18.
The influence of type 1 fimbriae, mannose-sensitive structures, on biofilm development and maturation has been examined by the use of three isogenic Escherichia coli K12 strains: wild type, fimbriated, and non-fimbriated. Experiments with the three strains were done in minimal medium or Luria–Bertani broth supplemented with different concentrations of d-mannose. The investigation consisted of: (1) characterizing the bacterial surface of the three strains with respect to hydrophilicity and surface charge, (2) investigating the effect of type 1 fimbriae on bacterial adhesion rate and reversibility of initial adhesion on glass surfaces, and (3) verifying the role of type 1 fimbriae and exopolysaccharides (EPS) in biofilm maturation. The results suggest that type 1 fimbriae are not required for the initial bacterial adhesion on glass surfaces as the non-fimbriated cells had higher adhesion rates and irreversible deposition. Type 1 fimbriae, however, are critical for subsequent biofilm development. It was hypothesized that in the biofilm maturation step, the cells synthesize mannose-rich EPS, which functions as a ‘conditioning film’ that can be recognized by the type 1 fimbriae.  相似文献   

19.
Rhizobacteria isolated from the rhizoplane of grasses growing at the Nylsvlei Nature Reserve in South Africa were investigated for growth promotion and root colonization in wheat (Triticum aestivum L.) and tomato (Lycopersicon esculentum Mill.) under greenhouse and microplot field conditions. The identities of the isolates were determined by means of 16S rRNA gene sequencing as Bacillus simplex (KBS1F-3), Bacillus megaterium (NAS7-L), Bacillus cereus (KFP9-F) and Paenibacillus alvei (NAS6G-6). The three Bacillus strains were isolated from the perennial grass Themeda triandra while the Paenibacillus strain was isolated from another perennial grass Sporobolus fimbriatus. Enhanced plant shoot and root weight in wheat was achieved by single inoculation with three of the isolates whereas no significant increase was observed in root length. Combined inoculation of Paenibacillus alvei (NAS6G-6) and Bacillus cereus (KFP9-F) on wheat resulted in significant increase in these parameters. Single inoculations of Bacillus simplex (KBS1F-3) and Bacillus cereus (KFP9-F) resulted in significant increase in root and shoots fresh weight, root dry weight and total root length in tomatoes. Indoleacetic acid production, phosphate solubilization and siderophore secretion were studied as possible mechanisms by which the bacterial isolates enhanced plant growth. Root colonization was studied by means of spontaneous rifampicin resistant strains of the wild type isolates. Except for B. megaterium (NAS7-L), the rest of the isolates colonized the roots efficiently resulting in concentrations of 106–108 cfu g−1 root. The root colonization of Bacillus simplex (KBS1F-3) and Paenibacillus alvei (NAS6G-6) was visualized by confocal scanning laser microscope (CSLM) after successful transformation of the isolates with the pNF8 plasmid carrying the gene for the green fluorescent protein (gfp).  相似文献   

20.
Saliva is known to modulate the adhesion of bacteria in the oral cavity. The present work was performed to assess the effect of salivary components on the adhesion of Escherichia coli to a model oral surface. Several genetically engineered E. coli strains were used to examine the role of type 1 fimbriation in the interaction of these strains with salivary components in solution or adsorbed to hydroxyapatite. High (MG1) and low (MG2) molecular weight salivary mucins, and secretory immunoglobulin A (sIgA), were found to interact with the surface of E. coli, and these interactions were independent of the expression of fimbriae or capsule. In contrast, fimbriated strains of E. coli adhered to a greater extent to saliva-coated synthetic hydroxyapatite (HAP) than did nonfimbriated strains. Testing of salivary components separated by gel filtration chromatography revealed that only high-molecular-weight components promoted adhesion of E. coli to HAP. Additional studies found that purified MG2 and sIgA promoted the adhesion of E. coli to HAP. Expression of type 1 fimbriae enhanced adhesion, while mannose inhibited adhesion of fimbriated strains, to saliva-coated HAP and to HAP coated with MG2 and sIgA. We conclude that salivary MG2 and sIgA may provide receptors for the adhesion of type 1 fimbriated E. coli to oral surfaces. Received: 10 February 1996 / Accepted: 11 March 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号