首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Carotenoids are nutritionally important tetraterpenoid pigments that upon oxidative cleavage give rise to apocarotenoid (norisoprene) aroma volatiles. beta-Carotene is the predominant pigment in orange-fleshed melon (Cucumis melo L.) varieties, reaching levels of up to 50 microg/gFW. Pale green and white cultivars have much lower levels (0-10 microg/gFW). In parallel, beta-ionone, the 9,10 cleavage product of beta-carotene, is present (12-33ng/gFW) in orange-fleshed melon varieties that accumulate beta-carotene, and in much lower levels (0-5 ng/gFW) in pale green and white fleshed varieties. A search for a gene putatively responsible for the cleavage of beta-carotene into beta-ionone was carried out in annotated melon fruit EST databases yielding a sequence (CmCCD1) highly similar (84%) to other plant carotenoid cleavage dioxygenase genes. To test its function, the clone was overexpressed in Escherichia coli strains previously engineered to produce different carotenoids. We show here that the CmCCD1 gene product cleaves carotenoids at positions 9,10 and 9',10', generating geranylacetone from phytoene; pseudoionone from lycopene; beta-ionone from beta-carotene, as well as alpha-ionone and pseudoionone from delta-carotene. CmCCD1 gene expression is upregulated upon fruit development both in orange, pale-green and white melon varieties, despite the lack of apocarotenoid volatiles in the later. Thus, the accumulation of beta-ionone in melon fruit is probably limited by the availability of carotenoid substrate.  相似文献   

3.
Characterization of a novel carotenoid cleavage dioxygenase from plants   总被引:27,自引:0,他引:27  
The plant hormone abscisic acid is derived from the oxidative cleavage of a carotenoid precursor. Enzymes that catalyze this carotenoid cleavage reaction, nine-cis epoxy-carotenoid dioxygenases, have been identified in several plant species. Similar proteins, whose functions are not yet known, are present in diverse organisms. A putative cleavage enzyme from Arabidopsis thaliana contains several highly conserved motifs found in other carotenoid cleavage enzymes. However, the overall homology with known abscisic acid biosynthetic enzymes is low. To determine the biochemical function of this protein, it was expressed in Escherichia coli and used for in vitro assays. The recombinant protein was able to cleave a variety of carotenoids at the 9-10 and 9'-10' positions. In most instances, the enzyme cleaves the substrate symmetrically to produce a C(14) dialdehyde and two C(13) products, which vary depending on the carotenoid substrate. Based upon sequence similarity, orthologs of this gene are present throughout the plant kingdom. A similar protein in beans catalyzes the same reaction in vitro. The characterization of these activities offers the potential to synthesize a variety of interesting, natural products and is the first step in determining the function of this gene family in plants.  相似文献   

4.
In flowers of Hoya carnosa R. Br. the nocturnal emission of fragrance occurs according to an endogenous circadian rhythmicity. This was demonstrated by the continuation of rhythmical emission for two to three cycles under conditions of permanent illumination. The free-running period was approx. 29 h under these conditions. The inversion of light/dark cycles caused the entrainment of the next peak of emission by approx. 12 h whether the inversion was started with a light period or a with dark period prolonged for 12 h. When only the flower used for fragrance analysis was subjected to an inverted photoperiod, the rest of the plant remaining under the original light/dark cycle, the synchronization of fragrance emission occurred according to the Zeitgeber perceived by the individual flower.  相似文献   

5.
The volatile profiles from flowers of Nicotiana sylvestris and N. suaveolens were investigated by means of dynamic headspace sampling and capillary gas chromatography. Under conditions of light/dark entrainment both species emitted phenylpropanoid-derived volatiles (e.g. benzyl alcohol, methyl benzoate) with maximum emission occurring during the dark period. Emission of these compounds was demonstrated to be circadian by continuance of rhythmicity under conditions of constant light and subsequent re-entrainment to a new light/dark cycle. In contrast, emission of the sesquiterpene hydrocarbon, caryophyllene, from N. sylvestris followed no apparent pattern. The emission of monoterpene hydrocarbons from flowers of N. suaveolens showed diurnal differences only under conditions of light/dark entrainment.  相似文献   

6.
Carotenoid cleavage dioxygenases (CCDs) are involved in the production of diverse apocarotenoids including phytohormones, the visual molecules and the aromatic volatile compounds derived from carotenoids. Here, we examined the spatial expression of four of the CCD genes (AtCcd1, 4, 7 and 8) among the nine members of this family in Arabidopsis by RT-PCR. We found that the AtCcd7 gene showed strong expression in seeds. However, the promoter activity of the 1,867-bp 5′-upstream region of this gene exhibited a vascular specificity at all developmental stages throughout the transgenic Arabidopsis plants tested. The strength of the AtCcd7 promoter was also found to be lower than that of the 35S promoter by about 60%. The whole body expression of the β-glucuronidase (GUS) reporter gene driven by the AtCcd7 promoter in Arabidopsis plants was confirmed in different organs by RT-PCR and GUS enzymatic assays. Histochemical GUS staining further revealed that the AtCcd7 promoter has utility in limiting the expression of target genes to the vascular tissues in all plant organs such as the leaf, stem, root, flower and seed.  相似文献   

7.
《FEBS letters》2014,588(9):1802-1807
Strigolactones are phytohormones synthesized from carotenoids via a stereospecific pathway involving the carotenoid cleavage dioxygenases 7 (CCD7) and 8. CCD7 cleaves 9-cis-β-carotene to form a supposedly 9-cis-configured β-apo-10′-carotenal. CCD8 converts this intermediate through a combination of yet undetermined reactions into the strigolactone-like compound carlactone. Here, we investigated the substrate and stereo-specificity of the Arabidopsis and pea CCD7 and determined the stereo-configuration of the β-apo-10′-carotenal intermediate by using Nuclear Magnetic Resonance Spectroscopy. Our data unequivocally demonstrate the 9-cis-configuration of the intermediate. Both CCD7s cleave different 9-cis-carotenoids, yielding hydroxylated 9-cis-apo-10′-carotenals that may lead to hydroxylated carlactones, but show highest affinity for 9-cis-β-carotene.  相似文献   

8.
9.
The plant growth regulator, abscisic acid (ABA), is synthesized via the oxidative cleavage of an epoxy-carotenoid. Specifically, a double bond is cleaved by molecular oxygen and an aldehyde is formed at the site of cleavage in both products. The Vp14 gene from maize encodes an oxidative cleavage enzyme for ABA biosynthesis and the recombinant VP14 protein catalyzes the cleavage reaction in vitro. The enzyme has a strict requirement for a 9-cis double bond adjacent to the site of cleavage (the 11-12 bond), but shows some plasticity in other features of carotenoids that are cleaved. A kinetic analysis with the 9-cis isomer of five carotenoids displays several substrate activity relationships. One of the carotenoids was not readily cleaved, but inhibited the cleavage of another substrate in mixed assays. Of the remaining four carotenoids used in this study, three of the substrates have similar V(max) values. The V(max) for the cleavage of one carotenoid substrate was significantly higher. Molecular modeling and several three-dimensional quantitative substrate-activity relationship programs were used to analyze these results. In addition to a 9-cis double bond, the presence and orientation of the ring hydroxyl affects substrate binding or the subsequent cleavage. Additional variations that affect substrate cleavage are proposed.  相似文献   

10.
Quantitative headspace analyses of rose flowers showed no significant differences in composition of emitted volatile compounds between flowers on the intact plant and cut flowers placed in vase water containing sucrose at 0, 15 or 30 g · l−1. Volatile components emitted were geraniol, nerol, citronellol, E-citral, Z-citral, methylgeranylate, trans-caryophyllene, β-cubebene, dihydro-β-ionone, 2-phenylethanol, 2-phenylethylacetate, 3,5-dimethoxytoluene and hexylacetate. When exposed to a 12-h photoperiod these components showed maximum emission during the light period and a rhythmicity which differed for the individual compounds. The circadian nature of the rhythmicity was confirmed by the continuation of rhythmicity during continued darkness or light, and was characterized by `transient' and `free running' periods of 27 and 24 h, respectively, and a phase shift of 12 h in rhythmicity when a 24-h period of continuous darkness was followed by re-exposure to a 12-h photoperiod. Rhythmicity in emission was not observed when flowers were kept in darkness before flower bud opening, but started immediately upon exposure to a 12-h photoperiod. Received: 14 April 1998 / Accepted: 28 May 1998  相似文献   

11.
Carotenoid cleavage dioxygenases (CCDs) are a class of enzymes involved in the biosynthesis of a broad diversity of secondary metabolites known as apocarotenoids. In plants, CCDs are part of a genetic family with members which cleave specific double bonds of carotenoid molecules. CCDs are involved in the production of diverse and important metabolites such as vitamin A and abscisic acid (ABA). Bixa orellana L. is the main source of the natural pigment annatto or bixin, an apocarotenoid accumulated in large quantities in its seeds. Bixin biosynthesis has been studied and the involvement of a CCD has been confirmed in vitro. However, the CCD genes involved in the biosynthesis of the wide variety of apocarotenoids found in this plant have not been well documented. In this study, a new CCD1 gene member (BoCCD1) was identified and its expression was charaterized in different plant tissues of B. orellana plantlets and adult plants. The BoCCD1 sequence showed high homology with plant CCD1s involved mainly in the cleavage of carotenoids in several sites to generate multiple apocarotenoid products. Here, the expression profiles of the BoCCD1 gene were analysed and discussed in relation to total carotenoids and other important apocarotenoids such as bixin.  相似文献   

12.
The effect of various surfactants on both the solubilization of the carotenoid cleavage dioxygenase, AtCCD1, from cell lysates and the enzymatic activity in an aqueous micellar system was investigated. Solubilization with sodium cholate more than doubled the specific activity. Lag phases were observed when Tween surfactants were used for substrate delivery and were dependent on the surfactant and enzyme modification. In contrast to His6- and GST-tagged AtCCD1, unmodified AtCCD1 showed a 45% increased maximum rate in the Tween 20 system compared to Triton X-100 based reference system. The results emphasize the importance of engineering the interface for the in vitro application of this enzyme family.  相似文献   

13.
In many organisms, various enzymes mediate site-specific carotenoid cleavage to generate biologically active apocarotenoids. These carotenoid-derived products include provitamin A, hormones, and flavor and fragrance molecules. In plants, the CCD1 enzyme cleaves carotenoids at 9,10 (9',10') bonds to generate multiple apocarotenoid products. Here we systematically analyzed volatile apocarotenoids generated by maize CCD1 (ZmCCD1) from multiple carotenoid substrates. ZmCCD1 did not cleave geranylgeranyl diphosphate or phytoene but did cleave other linear and cyclic carotenoids, producing volatiles derived from 9,10 (9',10') bond cleavage. Additionally the Arabidopsis, maize, and tomato CCD1 enzymes all cleaved lycopene to generate 6-methyl-5-hepten-2-one. 6-Methyl-5-hepten-2-one, an important flavor volatile in tomato, was produced by cleavage of the 5,6 or 5',6' bond positions of lycopene but not geranylgeranyl diphosphate, zeta-carotene, or phytoene. In vitro, ZmCCD1 cleaved linear and cyclic carotenoids with equal efficiency. Based on the pattern of apocarotenoid volatiles produced, we propose that CCD1 recognizes its cleavage site based on the saturation status between carbons 7 and 8 (7' and 8') and carbons 11 and 12 (11' and 12') as well as the methyl groups on carbons 5, 9, and 13 (5', 9', and 13').  相似文献   

14.
A recombinant carotenoid cleavage dioxygenase from Vitis vinifera L. was produced by Escherichia coli as a fusion with the glutathione-S-transferase (GST) protein under different bacterial growth conditions. The enzyme production was monitored by a GST assay. Addition of Triton X-100 prior to bacterial cell disruption doubled the release of soluble protein. A simple spectrophotometric enzyme assay was developed to measure carotenoid cleavage activity using lutein as substrate. Enzyme activity showed a 26-fold increase with the addition of 10% (v/v) acetone in the reaction mixture.  相似文献   

15.
Carotenoids are converted by carotenoid cleavage dioxygenases that catalyze oxidative cleavage reactions leading to apocarotenoids. However, apocarotenoids can also be further truncated by some members of this enzyme family. The plant carotenoid cleavage dioxygenase 1 (CCD1) subfamily is known to degrade both carotenoids and apocarotenoids in vitro, leading to different volatile compounds. In this study, we investigated the impact of the rice CCD1 (OsCCD1) on the pigmentation of Golden Rice 2 (GR2), a genetically modified rice variety accumulating carotenoids in the endosperm. For this purpose, the corresponding cDNA was introduced into the rice genome under the control of an endosperm-specific promoter in sense and anti-sense orientations. Despite high expression levels of OsCCD1 in sense plants, pigment analysis revealed carotenoid levels and patterns comparable to those of GR2, pleading against carotenoids as substrates in rice endosperm. In support, similar carotenoid contents were determined in anti-sense plants. To check whether OsCCD1 overexpressed in GR2 endosperm is active, in vitro assays were performed with apocarotenoid substrates. HPLC analysis confirmed the cleavage activity of introduced OsCCD1. Our data indicate that apocarotenoids rather than carotenoids are the substrates of OsCCD1 in planta.  相似文献   

16.
17.
Carotenoid oxygenases catalyse the cleavage of C-C double bonds forming apocarotenoids, a diverse group of compounds, including retinoids and the precursors of some phytohormones. Some apocarotenoids, like β-ionone (C13), are ecologically important volatiles released by plants and cyanobacteria. In this work, we elucidated the activity of the N ostoc c arotenoid c leavage d ioxygenase (NosCCD, previously named NSC1) using synthetic and cyanobacterial substrates. NosCCD converted bicyclic and monocyclic xanthophylls, including myxoxanthophylls, glycosylated carotenoids that are essential for thylakoid and cell wall structure. The products identified revealed two different cleavage patterns. The first is observed with bicyclic xanthophylls and is identical with that of plant orthologues, while the second is novel and occurs upon cleavage of monocyclic substrates at the C9-C10 and C7'-C8' double bonds. These properties enable the enzyme to produce a plenitude of different C10 and C13 apocarotenoids. Expression analyses indicated a role of NosCCD in response to highlight stress. Western blot analyses of Nostoc cells revealed NosCCD as a soluble enzyme in the cytosol, which also accomodates NosCCD substrates. Incubation of the corresponding fraction with synthetic substrates revealed the activity of the native enzyme and confirmed its induction by highlight.  相似文献   

18.

Background  

Carotenoids are plant metabolites which are not only essential in photosynthesis but also important quality factors in determining the pigmentation and aroma of flowers and fruits. To investigate the regulation of carotenoid metabolism, as related to norisoprenoids and other volatile compounds in peach (Prunus persica L. Batsch.), and the role of carotenoid dioxygenases in determining differences in flesh color phenotype and volatile composition, the expression patterns of relevant carotenoid genes and metabolites were studied during fruit development along with volatile compound content. Two contrasted cultivars, the yellow-fleshed 'Redhaven' (RH) and its white-fleshed mutant 'Redhaven Bianca' (RHB) were examined.  相似文献   

19.
BACKGROUND: Plant development is exquisitely environmentally sensitive, with plant hormones acting as long-range signals that integrate developmental, genetic, and environmental inputs to regulate development. A good example of this is in the control of shoot branching, where wide variation in plant form can be generated in a single genotype in response to environmental and developmental cues. RESULTS: Here we present evidence for a novel plant signaling molecule involved in the regulation of shoot branching. We show that the MAX3 gene of Arabidopsis is required for the production of a graft-transmissible, highly active branch inhibitor that is distinct from any of the previously characterized branch-inhibiting hormones. Consistent with its proposed function in the synthesis of a novel signaling molecule, we show that MAX3 encodes a plastidic dioxygenase that can cleave multiple carotenoids. CONCLUSIONS: We conclude that MAX3 is required for the synthesis of a novel carotenoid-derived long-range signal that regulates shoot branching.  相似文献   

20.
To investigate the relationship between a carotenoid profile and gene expression for carotenoid cleavage dioxygenases, three citrus varieties that exhibit different 9-cis-violaxanthin levels in their juice sacs, Satsuma mandarin (Citrus unshiu Marc.; a variety accumulating a low level of 9-cis-violaxanthin), Valencia orange (Citrus sinensis Osbeck; variety accumulating a high level of 9-cis-violaxanthin), and Lisbon lemon (Citrus limon Burm.f.; a variety accumulating an undetectable level of 9-cis-violaxanthin) were used. Three cDNAs (CitCCD1, CitNCED2, and CitNCED3) were cloned. The recombinant CitCCD1 protein cleaved beta-cryptoxanthin, zeaxanthin, and all-trans-violaxanthin at the 9-10 and 9'-10' positions and 9-cis-violaxanthin at the 9'-10' position. The recombinant CitNCED2 and CitNCED3 proteins cleaved 9-cis-violaxanthin at the 11-12 position to form xanthoxin, a precursor of abscisic acid (ABA). The gene expression of CitCCD1 increased in the flavedos and juice sacs of the three varieties during maturation. In Satsuma mandarin, the gene expression of CitNCED2 and CitNCED3 increased noticeably, accompanying a massive accumulation of ABA in the flavedo and juice sacs. In Valencia orange, the gene expression of CitNCED3 increased with a slight elevation of the ABA level in the flavedo, whereas neither the gene expression of CitNCED2 nor the ABA level increased noticeably in the juice sacs. In Lisbon lemon, the gene expression of CitNCED2 increased remarkably, accompanying increases in the ABA level in the flavedo and juice sacs. These results suggest that, in the juice sacs, the efficient cleavage reaction for ABA synthesis reduces the 9-cis-violaxanthin level in Satsuma mandarin and Lisbon lemon, whereas the low cleavage reaction maintains the predominant 9-cis-violaxanthin accumulation in Valencia orange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号