首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A proteomic approach is undertaken aiming at the identification of novel proteins involved in the alkaloid biosynthesis of Catharanthus roseus. The C. roseus cell suspension culture A11 accumulates the terpenoid indole alkaloids strictosidine, ajmalicine and vindolinine. Cells were grown for 21 days, and alkaloid accumulation was monitored during this period. After a rapid increase between day 3 and day 6, the alkaloid content reached a maximum on day 16. Systematic analysis of the proteome was performed by two-dimensional polyacrylamide gel electrophoresis. After day 3, the proteome started to change with an increasing number of protein spots. On day 13, the proteome changed back to roughly the same as at the start of the growth cycle. 88 protein spots were selected for identification by mass spectrometry (MALDI-MS/MS). Of these, 58 were identified, including two isoforms of strictosidine synthase (EC 4.3.3.2), which catalyzes the formation of strictosidine in the alkaloid biosynthesis; tryptophan synthase (EC 4.1.1.28), which is needed for the supply of the alkaloid precursor tryptamine; 12-oxophytodienoate reductase, which is indirectly involved in the alkaloid biosynthesis as it catalyzes the last step in the biosynthesis of the regulator jasmonic acid. Unique sequences were found, which may also relate to unidentified biosynthetic proteins.  相似文献   

2.
Biosynthesis of Erythrina alkaloids in Erythrina crista-galli.   总被引:1,自引:0,他引:1  
A precursor application system was developed to allow the study of Erythrina alkaloid formation in Erythrina crista-galli. Fruit wall tissue of this species was recognized as the major site of alkaloid biosynthesis. The application of radioactively and 13C-labelled potential precursors showed that the hitherto assumed precursor (S)-norprotosinomenine was not incorporated into the Erythrina alkaloids. In contrast, (S)-coclaurine as well as (S)-norreticuline were metabolized to erythraline and erythrinine, respectively, suggesting that a coclaurine-norreticuline pathway is operative in Erythrina alkaloid formation. Feeding of [1-13C]-labelled (S)-norreticuline with subsequent NMR spectroscopy demonstrated that the resulting erythraline was exclusively labelled at position C-10. Therefore, the participation of a symmetrical intermediate of the diphenoquinone type in Erythrina alkaloid biosynthesis can be excluded.  相似文献   

3.
Since the diamine putrescine can be metabolized into the pyrrolidine ring of tobacco alkaloids as well as into the higher polyamines, we have investigated the quantitative relationship between putrescine and these metabolites in tobacco callus cultured in vitro. We measured levels of free and conjugated putrescine and spermidine, and pyrrolidine alkaloids, as well as activities of the putrescine-biosynthetic enzymes arginine and ornithine decarboxylase. In callus grown on high (11.5 micromolar) α-naphthalene acetic acid, suboptimal for alkaloid biosynthesis, putrescine and spermidine conjugates were the main putrescine derivatives, while in callus grown on low (1.5 micromolar) α-naphthalene acetic acid, optimal for alkaloid formation, nornicotine and nicotine were the main putrescine derivatives. During callus development, a significant negative correlation was found between levels of perchloric acid-soluble putrescine conjugates and pyrrolidine alkaloids. The results suggest that bound putrescine can act as a pool for pyrrolidine alkaloid formation in systems where alkaloid biosynthesis is active. In addition, changes in arginine decarboxylase activity corresponding to increased alkaloid levels suggest a role for this enzyme in the overall biosynthesis of pyrrolidine alkaloids.  相似文献   

4.
The relationship between malate dependent conversion of cholesterol to progesterone and citrate biosynthesis in human term placental mitochondria has been investigated. It has been shown that ADP and ATP (but not AMP) stimulate, significantly, both progesterone and citrate formation. The stimulatory effect of these adenine nucleotides was dependent on the presence of Mn2+ in the incubation medium. When Mn2+ was omitted or replaced by Mg2+ only negligible stimulatory effect of ADP and ATP was observed. Atractyloside and oligomycin were without effect on ADP and ATP stimulated progesterone and citrate production. Other dinucleotides tested as: GDP, UDP and CDP stimulated both progesterone and citrate formation only slightly. In all the experiments presented the rate of progesterone biosynthesis was found to be significantly correlated with the rate of citrate production. The experimental results presented in this paper suggest that the stimulatory effect of ADP and ATP on malate dependent progesterone biosynthesis is a consequence of an increased conversion of malate to tricarboxylic Krebs cycle intermediates. The possible mechanism by which ATP and ADP stimulate the citrate formation in human placental mitochondria is discussed.  相似文献   

5.
Studies on the comparative utilization of tyrosine for protein and alkaloid biosynthesis indicate that this amino acid is incorporated into peyote alkaloids at three times the rate at which it is incorporated into protein. In addition, the biosynthetic pathway for tyrosine formation appears to be compartmented into two channels; one supplying the needs for alkaloid biosynthesis and the other providing tyrosine for protein biosynthesis. The latter compartment is possibly under a negative feedback control mechanism.  相似文献   

6.
The effect of a carbohydrate component of the medium, trace elements and aeration on biosynthesis of the alkaloids costaclavine and epicostaclavine was studied with Penicillium gorlenkoanum. Alkaloid biosynthesis was shown to depend on the nature of a carbohydrate component: virtually no alkaloids were accumulated in media with glucose and fructose although these were synthesized at a high rate in a medium with mannitol. The quantity of synthesized alkaloids and the dynamics of the biosynthesis depended on carbohydrate concentration. The growth and alkaloid synthesis were influenced by traces of zinc, iron, copper and manganese. A more intensive aeration stimulated biomass accumulation but suppressed alkaloid biosynthesis.  相似文献   

7.
Abstract Penicillium cyclopium produces benzodiazepine alkaloids from l -phenylalanine and anthranilate. The biosynthesis of both precursors involves the enzymes of the shikimate pathway DAHP synthase, chorismate mutase and anthranilate synthase, the latter two competing for the common substrate chorismate. After the cultures reached the phase of alkaloid production, the in vitro measurable activities of these three enzymes could be increased by adding the alkaloids during incubation. The stimulation is most pronounced with anthranilate synthase, whose activity most probably limits the rate of alkaloid formation. It is not seen with tryptophan synthase which is not involved in the formation of alkaloid precursors. The data suggest a far reaching feedback activation, coordinating precursor biosynthesis with the formation of secondary product.  相似文献   

8.
Cultured Coptis japonica cells are able to take up berberine, a benzylisoquinoline alkaloid, from the medium and transport it exclusively into the vacuoles. Uptake activity depends on the growth phase of the cultured cells whereas the culture medium had no effect on uptake. Treatment with several inhibitors suggested that berberine uptake depended on the ATP level. Some inhibitors of P-glycoprotein, an ABC transporter involved in multiple drug resistance in cancer cells, strongly inhibited berberine uptake, whereas a specific inhibitor for glutathione biosynthesis and vacuolar ATPase, bafilomycin A1, had little effect. Vanadate-induced ATP trap experiments to detect ABC proteins expressed in C. japonica cells showed that three membrane proteins of between 120 and 150 kDa were photolabelled with 8-azido-[alpha-32P] ATP. Two revealed the same photoaffinity-labelling pattern as P-glycoprotein, and the interaction of these proteins with berberine was also demonstrated. These results suggest that ABC proteins of the MDR-type are involved in the uptake of berberine from the medium.  相似文献   

9.
From the mycelium of Penicillium cyclopium a biologically active fraction (P-factor) was isolated, which increases conidiation and the formation of the benzodiazepine alkaloids cyclopenin and cyclopenol. Its activity was determined by measuring the increase of alkaloid formation in strain SM 72. On a preparative scale P-factor preparations were obtained from fermenter-grown hyphae of mutant dev 63 by extraction with water at 120°. P-factor is strongly hydrophilic but it is not a protein. It was active if added during conidiospore germination and early growth phase, causing an acceleration of protein biosynthesis. The action on alkaloid biosynthesis and sporulation is indirect and resembles that of a developmental hormone.  相似文献   

10.
ABSTRACT

A new protocol to obtain an embryogenic cell line from cultured seedling explants of Catharanthus roseus is described. In order to assess the relationship between tissue differentiation and secondary metabolite biosynthesis, the biosynthetic capabilities (alkaloid production) of an embryogenic cell line and two non-embryogenic C. roseus strains were comparatively examined. Faster cell growth rate was associated with higher alkaloid production in the embryogenic cell line. The kinetics of ajmalicine and serpentine production by the three cell lines is also reported.  相似文献   

11.
Summary Opium poppy (Papaver somniferum L.) contains a number of pharmaceutically important alkaloids of the benzylisoquinoline type including morphine, codeine, papaverine, and sanguinarine. Although these alkaloids accumulate to high concentrations in various organs of the intact plant, only the phytoalexin sanguinarine has been found at significant levels in opium poppy cell cultures. Moreover, even sanguinarine biosynthesis is not constitutive in poppy cell suspension cultures, but is typically induced only after treatment with a funga-derived elicitor. The absence of appreciable quantities of alkaloids in dedifferentiated opium poppy cell cultures suggests that benzylisoquinoline alkaloid biosynthesis is developmentally regulated and requires the differentiation of specific tissues. In the 40 yr since opium poppy tissues were first culturedin vitro, a number of reports on the redifferentiation of roots and buds from callus have appeared. A requirement for the presence of specialized laticifer cells has been suggested before certain alkaloids, such as morphine and codeine, can accumulate. Laticifers represent a complex internal secretory system in about 15 plant families and appear to have multiple evolutionary origins. Opium poppy laticifers differentiate from procambial cells and undergo articulation and anastomosis to form a continuous network of elements associated with the phloem throughout much of the intact plant. Latex is the combined cytoplasm of fused laticifer vessels, and contains numerous large alkaloid vesicles in which latex-associated poppy alkaloids are sequestered. The formation of alkaloid vesicles, the subcellular compartmentation of alkaloid biosynthesis, and the tissue-specific localization and control of these processes are important unresolved problems in plant cell biology. Alkaloid biosynthesis in opium poppy is an excellent model system to investigate the developmental regulation and cell biology of complex metabolic pathways, and the relationship between metabolic regulation and cell-type specific differentiation. In this review, we summarize the literature on the roles of cellular differentiation and plant development in alkaloid biosynthesis in opium poppy plants and tissue cultures.  相似文献   

12.
13.
The medicinal plant Psychotria ipecacuanha produces ipecac alkaloids, a series of monoterpenoid-isoquinoline alkaloids such as emetine and cephaeline, whose biosynthesis derives from condensation of dopamine and secologanin. Here, we identified three cDNAs, IpeOMT1–IpeOMT3, encoding ipecac alkaloid O-methyltransferases (OMTs) from P. ipecacuanha. They were coordinately transcribed with the recently identified ipecac alkaloid β-glucosidase Ipeglu1. Their amino acid sequences were closely related to each other and rather to the flavonoid OMTs than to the OMTs involved in benzylisoquinoline alkaloid biosynthesis. Characterization of the recombinant IpeOMT enzymes with integration of the enzymatic properties of the IpeGlu1 revealed that emetine biosynthesis branches off from N-deacetylisoipecoside through its 6-O-methylation by IpeOMT1, with a minor contribution by IpeOMT2, followed by deglucosylation by IpeGlu1. The 7-hydroxy group of the isoquinoline skeleton of the aglycon is methylated by IpeOMT3 prior to the formation of protoemetine that is condensed with a second dopamine molecule, followed by sequential O-methylations by IpeOMT2 and IpeOMT1 to form cephaeline and emetine, respectively. In addition to this central pathway of ipecac alkaloid biosynthesis, formation of all methyl derivatives of ipecac alkaloids in P. ipecacuanha could be explained by the enzymatic activities of IpeOMT1–IpeOMT3, indicating that they are sufficient for all O-methylation reactions of ipecac alkaloid biosynthesis.  相似文献   

14.
Alkaloids represent a large and diverse group of compounds that are related by the occurrence of a nitrogen atom within a heterocyclic backbone. Unlike other types of secondary metabolites, the various structural categories of alkaloids are unrelated in terms of biosynthesis and evolution. Although the biology of each group is unique, common patterns have become apparent. Opium poppy ( Papaver somniferum ), which produces several benzylisoquinoline alkaloids, and Madagascar periwinkle ( Catharanthus roseus ), which accumulates an array of monoterpenoid indole alkaloids, have emerged as the premier organisms used to study plant alkaloid metabolism. The status of these species as model systems results from decades of research on the chemistry, enzymology and molecular biology responsible for the biosynthesis of valuable pharmaceutical alkaloids. Opium poppy remains the only commercial source for morphine, codeine and semi-synthetic analgesics, such as oxycodone, derived from thebaine. Catharanthus roseus is the only source for the anti-cancer drugs vinblastine and vincristine. Impressive collections of cDNAs encoding biosynthetic enzymes and regulatory proteins involved in the formation of benzylisoquinoline and monoterpenoid indole alkaloids are now available, and the rate of gene discovery has accelerated with the application of genomics. Such tools have allowed the establishment of models that describe the complex cell biology of alkaloid metabolism in these important medicinal plants. A suite of biotechnological resources, including genetic transformation protocols, has allowed the application of metabolic engineering to modify the alkaloid content of these and related species. An overview of recent progress on benzylisoquinoline and monoterpenoid indole alkaloid biosynthesis in opium poppy and C. roseus is presented.  相似文献   

15.
本文叙述了九连小檗植物细胞悬浮培养过程中,药根碱的累积和细胞生长与培养液中可溶性糖转化的关系。实验表明细胞培养过程中培养液的可溶性糖逐渐消耗,细胞生物量和药根碱量都逐渐增加,且细胞生长与药根碱累积的曲线几乎是平行的。然细胞生长速度较快,其生长速率曲线的峰形较尖陡。药根碱累积速度较慢,延续时间较长,其累积速率曲线的峰形较平缓。根据糖的消耗与细胞生物量增长和药根碱累积的关系,计算出蔗糖——细胞转化率为59%,蔗糖——药根碱转化率为3.3%。  相似文献   

16.
Summary Varying the air flow rate (vvm) in a fermentor under constant drive speed, Claviceps purpurea dimorphism as well as alkaloid biosynthesis were greatly influenced. At a high flow rate (2.5 vvm) sclerotial growth was favoured in seed and in production media, while at a low air flow rate (1.0 vvm) sphacelial growth dominated. When using high flow rates the oxygen uptake rate was small, but at low flow rates it increased markedly. In both cases the alkaloid production was lower than at the intermediate value of 1.5 vvm of air flow rate, which proved to be optimal. This could be explained by the difference in the air/water interface and two-phase oxygen uptake. At a high air/water interface direct oxygen uptake from the gaseous phase prevails, while at a low air/water interface uptake is due to the oxygen liquid-phase only. Thus for optimal fungal development and alkaloid production a compromise between uptake from the liquid and the gaseous phase has to be established by a defined ratio between aeration and agitation.  相似文献   

17.
Conditions of agroclavine biosynthesis by the mutant Claviceps sp. strain s 106 were studied. The content of agroclavine was maximum (1.5-2 g/l) on days 15-16 of cultivation in the complex medium T25, containing sucrose, citric acid, and yeast extract. Agroclavine was the major component of the alkaloid fraction (90-95%). Storage of the culture at -70 degrees C in T25 supplemented by 7% glycerol provided a stable level of alkaloid formation.  相似文献   

18.
The effect of the alkaloid sparteine on arginyl-tRNA formation was studied. It was demonstrated that sparteine sulfate in the concentration range 10–60 mM inhibits the charging reaction when amino acid, ATP and tRNA are used as variable substrates. The mode of action is different for all substrates studied. It was concluded that at high sparteine concentration the pattern of inhibition for all varied substrates is generally uncompetitive. A non-competitive mechanism for amino acid and tRNA was observed at low sparteine concentration, but in the case of ATP it is also uncompetitive.  相似文献   

19.
外源乙烯对长春花生理水平和生物碱积累的影响   总被引:1,自引:0,他引:1  
常博文  刘杰  钟鹏  郭晓瑞 《植物研究》2018,38(2):284-291
药用植物长春花中含有100多种萜类吲哚生物碱(TIAs),其中具有抗肿瘤功效的长春碱和长春新碱受到关注。为了研究外源乙烯处理对长春花生长情况、生理状态和萜类吲哚生物碱合成的整体影响,本文以长春花幼苗为实验材料,使用外源乙烯处理后对比了不同生长条件下长春花的生物量积累、根茎伸长、光合参数以及生物碱含量等指标,分析了生物碱合成与其他指标之间的相关性。结果表明,外源乙烯处理使长春花乙稀释放量上升,乙烯信号响应因子erf基因表达量提高。乙烯利抑制长春花幼苗生物量积累、根纵向生长,促进茎秆横向加粗生长,由非气孔因素导致净光合速率(Pn)和气孔导度(Gs)下降。外源乙烯促进异胡豆苷(STR)、长春质碱(CAT)、文多灵(VIN)和长春碱(VINB)积累,并且促进长春碱合成途径中关键酶基因str和CrPRX上调表达。相关性分析结果表明,次生代谢产物的积累、生长指标、光合参数之间存在明显的相关性;长春质碱、文多灵、长春碱与茎秆直径(SD)显著正相关(P < 0.05),与生物量(B)、株高(H)、根长(RL)、净光合速率(Pn)呈显著负相关(P < 0.05)。本文为研究外源乙烯调控长春花生物碱积累的机制提供理论基础。  相似文献   

20.
A cell suspension culture from Tabernaemontana divaricata was fed with 15N-labelled ammonium or nitrate. The incorporation of label in free amino acids, protein amino acids and indole alkaloids was determined. Ammonium was found to be used more extensively than nitrate in the biosynthesis of these compounds. For tryptamine considerably lower labelling percentages were found than for the indole alkaloid O-acetylvallesamine and the amino acids. This indicates a vacuolar pool of tryptamine, formed at the beginning of the culture-period and not available for further alkaloid biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号