首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
ITSF and ITSReub, constituting a new primer set designed for the amplification of the 16S-23S rRNA intergenic transcribed spacers, have been compared with primer sets consisting of 1406F and 23Sr (M. M. Fisher and E. W. Triplett, Appl. Environ. Microbiol. 65:4630-4636, 1999) and S-D-Bact-1522-b-S-20 and L-D-Bact-132-a-A-18 (L. Ranjard et al., Appl. Environ. Microbiol. 67:4479-4487, 2001), previously proposed for automated ribosomal intergenic spacer analysis (ARISA) of complex bacterial communities. An agricultural soil and a polluted soil, maize silage, goat milk, a small marble sample from the facade of the Certosa of Pavia (Pavia, Italy), and brine from a deep hypersaline anoxic basin in the Mediterranean Sea were analyzed with the three primer sets. The number of peaks in the ARISA profiles, the range of peak size (width of the profile), and the reproducibility of results were used as indices to evaluate the efficiency of the three primer sets. The overall data showed that ITSF and ITSReub generated the most informative (in term of peak number) and reproducible profiles and yielded a wider range of spacer sizes (134 to 1,387) than the other primer sets, which were limited in detecting long fragments. The minimum amount of DNA template and sensitivity in detection of minor DNA populations were evaluated with artificial mixtures of defined bacterial species. ITSF and ITSReub amplified all the bacteria at DNA template concentrations from 280 to 0.14 ng microl(-1), while the other primer sets failed to detect the spacers of one or more bacterial strains. Although the primer set consisting of ITSF and ITSReub and that of S-D-Bact-1522-b-S-20 and L-D-Bact-132-a-A-18 showed similar sensitivities for the DNA of Allorhizobium undicula mixed with the DNA of other species, the S-D-Bact-1522-b-S-20 and L-D-Bact-132-a-A-18 primer set failed to detect the DNA of Pseudomonas stutzeri.  相似文献   

3.
The objective of this study was to compare the automated ribosomal intergenic spacer analysis (ARISA) and the denaturing gradient gel electrophoresis (DGGE) techniques for analysing the effects of diet on diversity in bacterial pellets isolated from the liquid (liquid-associated bacteria (LAB)) and solid (solid-associated bacteria (SAB)) phase of the rumen. The four experimental diets contained forage to concentrate ratios of 70:30 or 30:70 and had either alfalfa hay or grass hay as forage. Four rumen-fistulated animals (two sheep and two goats) received the diets in a Latin square design. Bacterial pellets (LAB and SAB) were isolated at 2 h post-feeding for DNA extraction and analysed by ARISA and DGGE. The number of peaks in individual samples ranged from 48 to 99 for LAB and from 41 to 95 for SAB with ARISA, and values of DGGE-bands ranged from 27 to 50 for LAB and from 18 to 45 for SAB. The LAB samples from high concentrate-fed animals tended (p < 0.10) to show greater peak numbers and Shannon index values than those isolated from high forage-fed animals with ARISA, but no differences were identified with DGGE. The SAB samples from high concentrate-fed animals had lower (< 0.05) peak numbers and Shannon index values than those from animals fed high-forage diets with ARISA, but only a trend was noticed for these parameters with DGGE (< 0.10). The ARISA detected that animals fed alfalfa hay diets showed lower (< 0.05) SAB diversity than those fed grass hay diets, but no differences were observed with DGGE. No effect of forage type on LAB diversity was detected by any technique. In this study, ARISA detected some changes in ruminal bacterial communities that were not detected by DGGE, and therefore ARISA was considered more appropriate for assessing bacterial diversity of ruminal bacterial pellets. The results highlight the impact of the fingerprinting technique used to draw conclusions on dietary factors affecting bacterial diversity in ruminal bacterial pellets.  相似文献   

4.
Biofilms are complex communities playing an important role in aquatic ecosystems. Automated ribosomal intergenic spacer analysis (ARISA) has been used successfully to explore biofilm bacterial diversity. However, a gap remains to be filled as regards its application to biofilm eukaryotic populations. The aim of this study is to use ARISA to detect eukaryotic population shifts in biofilm. We designed a new set of primers to focus specifically on the ITS1-5.8S-ITS2 region of diatoms and tested it on natural biofilms. Additionally, we tested universal primers, used previously to perform ARISA on fungal communities. Cloning and sequencing showed that the universal primer set amplified various eukaryotes, whereas the new set was diatom specific. The new set amplified a wider variety of diatoms. Therefore, the universal set is appropriate to study the general eukaryotic population shifts in biofilms, whereas the new set is more appropriate to study diatoms specifically. We used both primer sets, along with a bacterial set, to study the population shifts in natural river biofilms. Principal component analysis of the ARISA fingerprints revealed seasonal shifts that did not coincide for bacterial and eukaryotic communities. Therefore, the use of both eukaryotic and bacterial primers provides a useful insight to assess microbial succession in biofilms.  相似文献   

5.
Two primer sets for automated ribosomal intergenic spacer analysis (ARISA) were used to assess the bacterial community composition (BCC) in Lake Mendota, Wisconsin, over 3 years. Correspondence analysis revealed differences in community profiles generated by different primer sets, but overall ecological patterns were conserved in each case. ARISA is a powerful tool for evaluating BCC change through space and time, regardless of the specific primer set used.  相似文献   

6.
Bacteria of the genus Methylobacterium are widespread in the environment, but their ecological role in ecosystems, such as the plant phyllosphere, is not very well understood. To gain better insight into the distribution of different Methylobacterium species in diverse ecosystems, a rapid and specific cultivation-independent method for detection of these organisms and analysis of their community structure is needed. Therefore, 16S rRNA gene-targeted primers specific for this genus were designed and evaluated. These primers were used in PCR in combination with a reverse primer that binds to the tRNA(Ala) gene, which is located upstream of the 23S rRNA gene in the 16S-23S intergenic spacer (IGS). PCR products that were of different lengths were obtained due to the length heterogeneity of the IGS of different Methylobacterium species. This length variation allowed generation of fingerprints of Methylobacterium communities in environmental samples by automated ribosomal intergenic spacer analysis. The Methylobacterium communities on leaves of different plant species in a natural field were compared using this method. The new method allows rapid comparisons of Methylobacterium communities and is thus a useful tool to study Methylobacterium communities in different ecosystems.  相似文献   

7.
The intergenic spacer (IGS) region, which is located between the 3′ end of 26S ribosomal DNA (rDNA) and the 5′ end of 5S rDNA, of sixArmillaria species from Hokkaido was investigated using polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLP). Restriction with onlyAlu I could distinguishA. mellea subsp.nipponica from the other species. WithAlu I andDde I,A. ostoyae andA. gallica could be distinguished from the other species. Digestion withAlu I resulted in two patterns (types A and B) ofA. singula and three patterns (types A, B, and C) ofA. jezoensis. One pattern (type B) of the former species and two patterns (types B and C) of the latter species were each different from those of the other species.Armillaria sinapina gave only oneAlu I digestion pattern, which was identical to that ofA. jezoensis (type A) andA. singula (type A). However, by digestion withDde I,A. singula (type A) could be distinguished fromA. jezoensis (type A) andA. sinapina.  相似文献   

8.
The ascomycete community colonizing decaying Spartina alterniflora blades in a southeastern U.S. salt marsh was characterized by analysis of internal transcribed spacer (ITS) regions of fungal rRNA genes. ITS sequences were amplified with ascomycete-specific primers from DNA extracted from S. alterniflora blades at two stages of decay (early and late) and were identified based on sequence analysis of a companion ascomycete culture collection. The S. alterniflora ITS libraries were dominated by clones from three species of ascomycetes: Mycosphaerella sp. 2, Phaeosphaeria spartinicola, and Phaeosphaeria halima. ITS sequences from five other less abundant ascomycete species were also found in the clone libraries, only two of which could be identified based on the culture collection, Hydropisphaera erubescens and a new species nicknamed '4clt'. Ascospore expulsion assays indicated dominance by the same three species as the ITS analysis, although this non-molecular approach differed from the molecular method in relative ranking of the dominant species and in characterization of minor species. Analysis of ITS amplicons from three replicate plots by terminal restriction fragment length polymorphism (T-RFLP) analysis showed significant spatial homogeneity in ascomycete community composition for both early- and late-stage decay. ITS sequence analysis identified morphologically cryptic subgroups for two of the three dominant salt marsh ascomycetes.  相似文献   

9.
AIMS: To apply culture-independent techniques to explore the bacterial community composition in catfish pond water. METHODS AND RESULTS: 16S rDNA libraries were constructed and sequenced from 15 pond water samples. Automated ribosomal intergenic spacer analysis (ARISA) was used to fingerprint each bacterial community. A broad diversity in bacterial species composition was found by 16S rDNA analysis. Alphaproteobacteria was the most represented class in all ponds, followed by Gammaproteobacteria and Gram-positive high G + C content bacteria. Uniqueness of bacterial communities from each individual pond was confirmed by ARISA. Catfish pathogens were detected sporadically. CONCLUSIONS: Bacterial communities in a catfish aquaculture setting can vary from pond to pond at one given point. No correlation could be made between bacteria composition and fish strain or between bacterial profile and the presence of catfish pathogens in a particular pond. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report showing the composition of bacterial communities in catfish ponds. Fish health specialists and catfish aquaculture managers should be aware of the wide differences in bacterial communities between ponds and include this variable in fish husbandry practices.  相似文献   

10.
Dynamics of bacterial and fungal communities on decaying salt marsh grass   总被引:4,自引:0,他引:4  
Both bacteria and fungi play critical roles in decomposition processes in many natural environments, yet only rarely have they been studied as an integrated microbial community. Here we describe the bacterial and fungal assemblages associated with two decomposition stages of Spartina alterniflora detritus in a productive southeastern U.S. salt marsh. 16S rRNA genes and 18S-to-28S internal transcribed spacer (ITS) regions were used to target the bacterial and ascomycete fungal communities, respectively, based on DNA sequence analysis of isolates and environmental clones and by using community fingerprinting based on terminal restriction fragment length polymorphism (T-RFLP) analysis. Seven major bacterial taxa (six affiliated with the alpha-Proteobacteria and one with the Cytophagales) and four major fungal taxa were identified over five sample dates spanning 13 months. Fungal terminal restriction fragments (T-RFs) were informative at the species level; however, bacterial T-RFs frequently comprised a number of related genera. Amplicon abundances indicated that the salt marsh saprophyte communities have little-to-moderate variability spatially or with decomposition stage, but considerable variability temporally. However, the temporal variability could not be readily explained by either successional shifts or simple relationships with environmental factors. Significant correlations in abundance (both positive and negative) were found among dominant fungal and bacterial taxa that possibly indicate ecological interactions between decomposer organisms. Most associations involved one of four microbial taxa: two groups of bacteria affiliated with the alpha-Proteobacteria and two ascomycete fungi (Phaeosphaeria spartinicola and environmental isolate "4clt").  相似文献   

11.
An automated method of ribosomal intergenic spacer analysis (ARISA) was developed for the rapid estimation of microbial diversity and community composition in freshwater environments. Following isolation of total community DNA, PCR amplification of the 16S-23S intergenic spacer region in the rRNA operon was performed with a fluorescence-labeled forward primer. ARISA-PCR fragments ranging in size from 400 to 1,200 bp were next discriminated and measured by using an automated electrophoresis system. Database information on the 16S-23S intergenic spacer was also examined, to understand the potential biases in diversity estimates provided by ARISA. In the analysis of three natural freshwater bacterial communities, ARISA was rapid and sensitive and provided highly reproducible community-specific profiles at all levels of replication tested. The ARISA profiles of the freshwater communities were quantitatively compared in terms of both their relative diversity and similarity level. The three communities had distinctly different profiles but were similar in their total number of fragments (range, 34 to 41). In addition, the pattern of major amplification products in representative profiles was not significantly altered when the PCR cycle number was reduced from 30 to 15, but the number of minor products (near the limit of detection) was sensitive to changes in cycling parameters. Overall, the results suggest that ARISA is a rapid and effective community analysis technique that can be used in conjunction with more accurate but labor-intensive methods (e.g., 16S rRNA gene cloning and sequencing) when fine-scale spatial and temporal resolution is needed.  相似文献   

12.
A direct molecular method for assessing the diversity of specific populations of rhizobia in soil, based on nested PCR amplification of 16S-23S ribosomal RNA gene (rDNA) intergenic spacer (IGS) sequences, was developed. Initial generic amplification of bacterial rDNA IGS sequences from soil DNA was followed by specific amplification of (1) sequences affiliated with Rhizobium leguminosarum "sensu lato" and (2) R. tropici. Using analysis of the amplified sequences in clone libraries obtained on the basis of soil DNA, this two-sided method was shown to be very specific for rhizobial subpopulations in soil. It was then further validated as a direct fingerprinting tool of the target rhizobia based on denaturing gradient gel electrophoresis (DGGE). The PCR-DGGE approach was applied to soils from fields in Brazil cultivated with common bean (Phaseolus vulgaris) under conventional or no-tillage practices. The community fingerprints obtained allowed the direct analysis of the respective rhizobial community structures in soil samples from the two contrasting agricultural practices. Data obtained with both primer sets revealed clustering of the community structures of the target rhizobial types along treatment. Moreover, the DGGE profiles obtained with the R. tropici primer set indicated that the abundance and diversity of these organisms were favoured under NT practices. These results suggest that the R. leguminosarum-as well as R. tropici-targeted IGS-based nested PCR and DGGE are useful tools for monitoring the effect of agricultural practices on these and related rhizobial subpopulations in soils.  相似文献   

13.
14.
15.
Five genomic clones containing ribosomal DNA repeats from the gymnosperm white spruce (Picea glauca) have been isolated and characterized by restriction enzyme analysis. No nucleotide variation or length variation was detected within the region encoding the ribosomal RNAs. Four clones which contained the intergenic spacer (IGS) region from different rDNA repeats were further characterized to reveal the sub-repeat structure within the IGS. The sub-repeats were unusually long, ranging from 540 to 990 bp but in all other respects the structure of the IGS was very similar to the organization of the IGS from wheat, Drosophila and Xenopus.  相似文献   

16.
DNA sequences from the intergenic spacer (IGS) region of the ribosomal operon were amplified by the polymerase chain reaction (PCR) technique using two primers derived from 16S and 23S rRNA conserved sequences. The PCR products, cleaved by 4 base cutting restriction enzymes, were used to differentiate Nitrobacter strains. This method offered a convenient alternative to serological testing for characterization of Nitrobacter isolates and enabled a large number of strains to be genotypically characterized easily and rapidly. This method was successfully used to characterize natural populations of Nitrobacter from various soils and a lake. A diversity was demonstrated in various soils, and in a lake both in freshwater and in sediments. Strains closely related to both WL and LL were found in these eco-systems. It seems that the diversity of Nitrobacter populations was not associated with global environments but may be related to the presence of locally coexisting niches.Non-commun abbreviations PCR polymerase chain reaction - RFLP restriction fragment length polymorphism - IGS intergenic spacer  相似文献   

17.
18.
The emergence of seedlings, the length of roots and shoots, and the biomass of four dominant plant species and shore height were measured to investigate the growth strategy of these plants on the salt marsh of Mankyung River estuary. Four salt marsh plants showed a distinctive zonation, for example, Suaeda japonica was predominantly spread around the low salt marsh, Atriplex gmelini and Aster tripolium were in the middle, and S. asparagoides was in the upper part of the marsh. In terms of emergence of seedlings, S. japonica appeared first followed by A. gmelini, S. asparagoides, and A. tripolium. The growth strategies of halophytes were as follows: S. japonica germinated earlier than the other halophytes so that its root grew rapidly and extensively at the beginning of growth. This species adopted a continuous germination strategy, allowing growth whenever favorable conditions were provided. A. gmelini germinated later than S. japonica, as a quasi-simultaneous germination type, it showed the highest germination rate within the shortest time. Aster tripolium germinated later than any other halophyte. Since this species exhibited characteristics between the continuous germination type and the quasi-simultaneous germination type, it did not show a very high germination rate. Instead, it showed continuous germination and consistent growth of both above-ground and underground parts. Suaeda asparagoides showed an especially high emergence rate at the beginning of its growth. However, the high density retarded its growth until the middle stage. Its roots extended longer than the other halophytes, allowing it to grow well in the dry conditions of the upper marsh.  相似文献   

19.
Wetlands Ecology and Management - The unprecedented size of the deepwater horizon oil spill and scope of the subsequent response elicited intense and sustained interest in microbial responses to...  相似文献   

20.
采用PCR和DNA测序技术,对浙江省4个地点桃花水母(Craspedacusta)的核糖体RNA基因内转录间隔区(rDNA-ITS)进行了扩增与测序,并与GenBank中已有的桃花水母ITS区基因序列进行比对分析,计算了它们的遗传距离,利用MEGA 4.1构建了系统发育树。结果显示:这4个地点的桃花水母与索氏桃花水母(Craspedacusta sowerbyi)的ITS区基因相似度极高,同源性都在97%以上,遗传距离保持在0~0.008之间,在进化树中与索氏桃花水母聚为同一支。研究结果表明,这4地的桃花水母都属于索氏桃花水母(C.sowerbyi)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号