首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

Background

Acute Intermittent Porphyria (AIP) is an inherited disease produced by a deficiency of Porphobilinogen deaminase (PBG-D). The aim of this work was to evaluate the effects of Isoflurane and Sevoflurane on heme metabolism in a mouse genetic model of AIP to further support our previous proposal for avoiding their use in porphyric patients. A comparative study was performed administering the porphyrinogenic drugs allylisopropylacetamide (AIA), barbital and ethanol, and also between sex and mutation using AIP (PBG-D activity 70% reduced) and T1 (PBG-D activity 50% diminished) mice.

Methods

The activities of 5-Aminolevulinic synthetase (ALA-S), PBG-D, Heme oxygenase (HO) and CYP2E1; the expression of ALA-S and the levels of 5-aminolevulinic acid (ALA) were measured in different tissues of mice treated with the drugs mentioned.

Results

Isoflurane increased liver, kidney and brain ALA-S activity of AIP females but only affected kidney AIP males. Sevoflurane induced ALA-S activity in kidney and brain of female AIP group. PBG-D activity was further reduced by Isoflurane in liver male T1; in AIP male mice activity remained in its low basal levels. Ethanol and barbital also caused biochemical alterations. Only AIA triggered neurological signs similar to those observed during human acute attacks in male AIP being the symptoms less pronounced in females although ALA-S induction was greater. Heme degradation was affected.

Discussion

Biochemical alterations caused by the porphyrinogenic drugs assayed were different in male and female mice and also between T1 and AIP being more affected the females of AIP group.

General significance

This is the first study using volatile anaesthetics in an AIP genetic model confirming Isoflurane and Sevoflurane porphyrinogenicity.  相似文献   

11.
12.
13.
Inorganic cobalt was found to induce heme oxygenase activity in primary cultures of embryonic chick liver cells and to inhibit the induction of delta-aminolevulinate synthetase by the porphyrinogenic compounds allylisopropylacetamide, dicarbethoxy-1,4-dihydrocollidine, etiocholanolone, phenobarbital, Aroclor (R)1254, and secobarbital. Much smaller concentrations of Co2+ (5 muM) were required to inhibit delta-aminolevulinate synthetase than to induce heme oxygenase activity (50 muM). These effects of Co2+ on heme synthesis and heme degradation were potentiated by depletion of cellular glutathione content as a result of treatment with diethyl maleate. Cobalt inhibition of the induction of delta-aminolevulinate synthetase was of the same magnitude and probably involved the same mechanism as that produced by cobalt heme dimethyl ester and iron heme. The induction of heme oxygenase by cobalt could be blocked by cycloheximide. Plasma protein synthesis was not inhibited in the presence of concentrations of Co2+ which produced inhibition of delta-aminolevulinate synthetase or induction of heme oxygenase. Other metals such as Cd2+ and Cu2+ also inhibited the induction of delta-aminolevulinate synthetase by allylisopropylacetamide. These findings indicate that Co2+ can regulate heme metabolism directly in liver cells without intermediate actions on extrahepatic tissues. It is suggested that regulation of production of delta-aminolevulinate synthetase and heme oxygenase is mediated through the action of the metal ion rather than the metal in the form of a tetrapyrrole chelate.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号