首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Corollary discharge signals associated with the motor command that elicits the electric organ discharge are prominent in the electrosensory lobe of mormyrid fish (Gnathonemus petersii). Central pathways and structures that convey these signals from the motor command nucleus to the electrosensory lobe are known anatomically, but these structures and their contributions to the various corollary discharge phenomena have not been examined physiologically. This study examines one such structure, the mesencephalic command associated nucleus (MCA).Recordings from MCA cells show a highly stereotyped two spike response. The first spike of the response has a latency of about 2.5 ms following the initiation of the electric organ discharge (EOD) motor command which is about 5.5 ms before the occurrence of the EOD.Results from stimulation and lesion experiments indicate that MCA is responsible for: 1) the gate-like corollary discharge-driven inhibition of the knollenorgan pathway; 2) the gate-like corollary discharge-driven excitation of granule cells in the mormyromast regions of the electrosensory lobe; and 3) various excitatory effects on other cells in the mormyromast regions.Some corollary discharge phenomena are still present after MCA lesions, including the earliest corollary discharge effects and the plasticity that follows pairing with electrosensory stimuli. These phenomena must be mediated by structures other than MCA.Abbreviations BCA bulbar command associated nucleus - C EOD motor command - C3 central cerebellar lobule 3 - COM EOD motor command nucleus - DLZ dorsolateral zone of ELL cortex - EGa eminentia granularis anterior - EGp eminentia granularis posterior - ELa nucleus exterolateralis anterior - ELL electrosensory lobe - ELLml molecular layer of ELL cortex - EOD electric organ discharge - gang ganglion layer - gran granule layer - jlem juxtalemniscal region - JLl lateral juxtalobar nucleus - JLm medial juxtalobar nucleus - lat nucleus lateralis - ll lateral lemniscus - MCA mesencephalic command associated nucleus - mol molecular layer - MOml molecular layer of the medial octavolateral nucleus - MRN medullary relay nucleus - MZ medial zone of ELL cortex - nALL anterior lateral line nerve - NELL nucleus of the electrosensory lobe - nX cranial nerve X (vagus) - OT optic tectum - PCA paratrigeminal command associated nucleus - pee praeeminentialis electrosensory tract - plex plexiform layer - prae nucleus praeeminentialis - sublem sublemniscal nucleus - TEL telencephalon - VLZ ventrolateral zone of ELL cortex - vped valvular peduncle  相似文献   

2.
The first stage of information processing in the electrosensory system involves the encoding of local changes in transdermal potential into trains of action potentials in primary electrosensory afferent nerve fibers. To develop a quantitative model of this encoding process for P-type (probability-coding) afferent fibers in the weakly electric fish Apteronotus leptorhynchus, we recorded single unit activity from electrosensory afferent axons in the posterior branch of the anterior lateral line nerve and analyzed responses to electronically generated sinusoidal amplitude modulations of the local transdermal potential. Over a range of AM frequencies from 0.1 to 200 Hz, the modulation transfer function of P-type afferents is high-pass in character, with a gain that increases monotonically up to AM frequencies of 100 Hz where it begins to roll off, and a phase advance with a range of 15–60 degrees. Based on quantitative analysis of the observed gain and phase characteristics, we present a computationally efficient model of P-type afferent response dynamics which accurately characterizes changes in afferent firing rate in response to amplitude modulations of the fish's own electric organ discharge over a wide range of AM frequencies relevant to active electrolocation. Accepted: 14 June 1997  相似文献   

3.
Summary The responses of single neurons to visual and electrosensory stimulation were studied in the optic tectum of the weakly electric fishApteronotus albifrons. Most of the cells recorded in the region of the tectum studied, the anterior medial quadrant, were poorly responsive or completely insensitive to flashes of light or to bursts of AC electrical stimuli applied to the entire fish. However, these cells gave vigorous responses to moving visual or electrosensory stimuli. Most cells showed differences in their response contingent upon the direction of the stimulus movement and most received input from both the visual and electrosensory systems. Electrosensory responses to moving stimuli were depressed by jamming stimuli, 4 Hz amplitude modulation of the animal's electric organ discharge, presented simultaneously with the moving stimulus. However, the jamming signal presented alone typically evoked no response. Moving visual stimuli, presented simultaneously with the electrosensory, were usually able to restore the magnitude of a response toward its value in the unjammed situation. For most of the cells studied the receptive fields for vision and electroreception were in register. In some cases the visual and electrosensory components could be separated by presenting the two types of stimuli separately, or by presenting both simultaneously but with some amount of spatial separation, which causes the two to be misaligned relative to the fish. In other cases the individual responses could not be separated by spatial manipulations of the two stimuli and in these cases differences in the alignment of the two types of stimuli could cause changes in the intensity of the cells' responses.Abbreviations AM amplitude modulation - EOD electric organ discharge - PLLL posterior lateral line lobe  相似文献   

4.
The electrosensory system of elasmobranchs is extremely sensitive to weak electric fields, with behavioral thresholds having been reported at voltage gradients as low as 5 nV/cm. To achieve this amazing sensitivity, the electrosensory system must extract weak extrinsic signals from a relatively large reafferent background signal associated with the animal's own movements. Ventilatory movements, in particular, strongly modulate the firing rates of primary electrosensory afferent nerve fibers, but this modulation is greatly suppressed in the medullary electrosensory processing nucleus, the dorsal octavolateral nucleus. Experimental evidence suggests that the neural basis of reafference suppression involves a common-mode rejection mechanism supplemented by an adaptive filter that fine tunes the cancellation. We present a neural model and computer simulation results that support the hypothesis that the adaptive component may involve an anti-Hebbian form of synaptic plasticity at molecular layer synapses onto ascending efferent neurons, the principal output neurons of the nucleus. Parallel fibers in the molecular layer carry a wealth of proprioceptive, efference copy, and sensory signals related to the animal's own movements. The proposed adaptive mechanism acts by canceling out components of the electrosensory input signal that are consistently correlated with these internal reference signals.Abbreviations AEN ascending efferent neuron - AFF primary afferent nerve fiber - DGR dorsal granular ridge - DON dorsal octavolateral nucleus - ELL electrosensory lateral line lobe - GABA -aminobutyric acid - IN inhibitory interneuron - ISI interspike interval - ST stellate cell  相似文献   

5.
Extracellular injections of horseradish peroxidase were used to label commissural cells connecting the electrosensory lateral line lobes of the weakly electric fish Apteronotus leptorhynchus. Multiple commissural pathways exist; a caudal commissure is made up of ovoid cell axons, and polymorphic cells' axons project via a rostral commissure. Intracellular recording and labeling showed that ovoid cells discharge spontaneously at high rates, fire at preferred phases to the electric organ discharge, and respond to increased receptor afferent input with short latency partially adapting excitation. Ovoid cell axons ramify extensively in the rostro-caudal direction but are otherwise restricted to a single ELL subdivision. Polymorphic cells are also spontaneously active, but their firing is unrelated to the electric organ discharge waveform. They respond to increased receptor afferent activity with reduced firing frequency and response latency is long. Electrical stimulation of the commissural axons alters the behavior of pyramidal cells in the contralateral ELL. Basilar pyramidal cells are hyperpolarized and nonbasilar pyramidal cells are depolarized by this type of stimulation. The physiological results indicate that the ovoid cells participate in common mode rejection mechanisms and also suggest that the ELLs may function in a differential mode in which spatially restricted electrosensory stimuli can evoke heightened responses.Abbreviations ccELL caudal commissure of the ELL - CE contralaterally excited - DML dorsal molecular layer - ELL electrosensory lateral line lobe - EOD electric organ discharge - HRP horseradish peroxidase - IE ipsilaterally excited - MTI mouth-tail inverted - MTN mouth-tail normal - rcELL rostral commissure of the ELL - TRI transverse inverted - TRN transverse normal  相似文献   

6.
Summary In electric fish of the family Mormyridae some primary afferent fibers conduct impulses not only from electroreceptors to the brain but also from the brain to the receptors. The efferent impulses may be elicited by electrical stimulation which is within the physiological range, i.e., by stimulation which is similar in amplitude and duration to the stimulation that is caused by the fish's own electric organ discharge. Afferent and efferent impulses in the same afferent fiber were identified by: simultaneously recording from a fiber at two different points, at the receptor and at the nerve trunk (Figs. 2C-H; 3B-D); by cutting the afferent fiber between the brain and the recording site as well as between the recording site and the periphery; and by intra-axonal recording from the afferent fiber near its entry into the brain (Fig. 4). The efferent impulses result from the central integration of a corollary discharge of the electric organ motor command with excitatory and inhibitory input from several different receptors near the one from which afferent impulses originate (Fig. 4). The centrally originating impulse may be capable of modifying the effect of signals originating in the periphery.Abbreviations ELLL electrosensory lateral line lobe - EOCD electric organ corollary discharge - EOD electric organ discharge - epsp excitatory postsynaptic potential - NPLL posterior lateral line nerve  相似文献   

7.
The responses of E-cells, basilar pyramidal cells, of the electrosensory lateral line lobe (ELLL) were studied in normal animals (Apteronotus leptorhynchus) and in fish in which a component of the descending input from the midbrain n. praeeminentialis to the ELLL was interrupted by lesions or by application of local anesthetics. This treatment increased the responsiveness of these neurons by 100 to 300%. A method is described by which the animal's electric organ discharge (EOD) can be increased or decreased in amplitude. Responses of E-cells to a brief stationary electrosensory stimulus and to moving electrolocation targets were studied in normal and in lesioned animals with normal and altered EOD amplitudes. Large reductions in EOD amplitude, approximately 50%, result in no significant changes in the average size of E-cells' responses to either type of electrosensory stimulus in normal animals. Interruption of the descending input, however, results in a loss of the E-cells' ability to maintain constant response size when the EOD amplitude is reduced. Increases in EOD amplitude cause reductions in the size of E-cell responses to the moving electrolocation targets and to the stationary stimulus. The effects of increased EOD amplitude are present in normal animals and in animals in which the descending input is interrupted. The descending input to the ELLL seems to function as a gain control mechanism that is capable of compensating for losses in stimulus strength resulting from reduced EOD amplitude. The component of the descending input studied here does not seem to play a role in the response of the system to increases in EOD amplitude. These results are discussed in conjunction with the known details of the ELLL circuitry and its connections with other brain areas.  相似文献   

8.
Mormryid electric fish (Gnathonemus petersii) respond to novel stimuli with an increase in the rate of the electric organ discharge (EOD). These novelty responses were used to measure the fish's ability to detect small changes in the amplitude and latency of an electrosensory stimulus. Responses were evoked in curarized fish in which the EOD was blocked but in which the EOD motor command continued to be emitted. An artificial EOD was provided to the fish at latencies of 2.4 to 14.4 ms following the EOD motor command.Novelty responses were evoked in response to transient changes in artificial EOD amplitude as small as 1% of baseline amplitude, and in latency as small as 0.1 ms. Changes in latency were effective only at baseline delays of less than 12.4 ms.The sensitivity to small changes in latency supports the hypothesis that latency is used as a code for stimulus intensity in the active electrolocation system of mormyrid fish. The results also indicate that a corollary discharge signal associated with the EOD motor command is used to measure latency.Abbreviations EOD electric organ discharge - ELL electrosensory lateral line lobe - epsp excitatory post synaptic potential  相似文献   

9.
10.
Summary Previous anatomical and physiological studies of the gymnotoid electrosensory lateral line lobe (ELLL) suggest that the anatomically identified basilar and non-basilar pyramidal cells correspond to the physiologically defined E and I cells. Intracellular injection of horseradish peroxidase (HRP) into physiologically identified E and I cells confirms this hypothesis. The morphologies and physiological responses of the basilar and non-basilar pyramidal cells were compared. Both types of pyramidal cells have extensive apical dendritic trees that interact with a parallel fiber network in the ELLL. The apical dendritic trees of the non-basilar pyramidal cells have a wider spread along the rostrocaudal axis of the ELLL than those of the basilar pyramidal cells. This difference is discussed in reference to the interaction of these cell types with the parallel fibers of the ELLL. The density of apical dendritic branches was measured and related to the distance of these branches from the cell body. No obvious differences were seen between the dendritic density patterns of basilar and non-basilar pyramidal cells. An interesting correlation, however, exists between the atypical physiological characteristics of two basilar pyramidal cells and their dendritic density patterns. Two cells of the medial (ampullary) segment of the ELLL were analyzed. Like the pyramidal cells of the three lateral (tuberous) regions of the ELLL, the physiology of these cells appears to be related to the presence of an extended basilar process. The ampullary cells, however, have apical dendritic trees that are oriented orthogonally to the dendritic trees of the pyramidal cells.Abbreviations AM amplitude modulation - DML dorsal molecular layer - ELLL electrosensory lateral line lobe - EOD electric organ discharge - HRP horseradish peroxidase - LC lobus caudalis - Npd nucleus praeeminentialis dorsalis - PSTH post stimulus time histogram  相似文献   

11.
Summary Weakly electric fish (Gymnotiformes) emit quasi-sinusoidal electric organ discharges within speciesspecific frequency ranges. The electrosensory system is organized into 2 parallel pathways which convey either the amplitude or the timing of each electric organ discharge cycle. Two putative metabolic activity markers, calbindin D 28K and cytochrome c oxidase, and their relationship with the electrosensory nuclei of high- and low-frequency species were studied. Calbindin is found in the somata of the spherical neurons in the first-order electrosensory recipient nucleus, the electrosensory lateral-line lobe, and in layer VI of the midbrain's torus semicircularis, in Eigenmannia virescens, an intermediate-frequency species, and Apteronotus leptorhynchus, a high-frequency species. Calbindin immunoreactivity was completely absent in these nuclei in Sternopygus macrurus, a closely related, low-frequency species. Cytochrome c oxidase levels were inversely related to calbindin immunoreactivity since relatively high levels were observed in the electrosensory lateral-line lobe and torus semicircularis of S. macrurus but were absent in these nuclei in A. leptorhynchus. Our studies indicate that calbindin immunoreactivity is present in tonic, repetitively firing neurons with high frequencies.  相似文献   

12.
Electrosensory modulation of escape responses   总被引:1,自引:0,他引:1  
Once initiated, rapid escape responses of teleost fishes are thought to be completed without additional sensory modification. This suggests that the motor program for a particular response is selected for by the constellation of sensory cues existing at the time of the releasing stimulus. This paper presents initial evidence that a highly specialized, phylogenetically recent electrosensory system is integrated with a primitive motor system and allows an animal to continuously monitor its environment for producing accurate escape behaviors.Behavioral testing for directed startle responses in a Y-maze demonstrates that when presented immediately before an acoustic startle stimulus, electric fish (Eigenmannia virescens), direct their response away from the cue (a transient shorting of their electric field). Thus, electrosensory cues as brief as 100 ms provide directional information to the escape motor network.In electric fish that are curarized to facilitate intracellular recording, the normal electric organ discharge is attenuated. When an electronically generated replacement field of the same frequency and amplitude as the fish's normal signal is shorted, a fast-rising, 7 ms latency post-synaptic potential is evoked from the Mauthner cell. Similar PSPs are generated by turning the replacement stimulus on and off. In some recordings, removing the S1 replacement field elicits a rebound of other afferent activity to the Mauthner cell; replacing the field suppresses this activity.Abbreviations EHP extrinsic hyperpolarizing potential - EOD electric organ discharge - JAR jaming avoidance response - LED light emitting diode - PSP postsynaptic potential  相似文献   

13.
Summary In the context of aggression and courtship, Eigenmannia repeatedly interrupts its electric organ discharges (EODs) These interruptions (Fig. 1) contain low-frequency components as well as high-frequency transients and, therefore, stimulate ampullary and tuberous electroreceptors, respectively (Figs. 2, 3). Information provided by these two classes of receptors is relayed along separate pathways, via the electrosensory lateral line lobe (ELL) of the hindbrain, to the dorsal torus semicircularis (TSd) of the midbrain. Some neurons of the torus receive inputs from both types of receptors (Figs. 14, 15), and some respond predominantly to EOD interruptions while being rather insensitive to other forms of signal modulations (Figs. 12, 13). This high selectivity appears to result from convergence and gating of inputs from individually less selective neurons.Abbreviations CP central posterior thalamic nucleus - Df frequency difference between neighbor's EOD and fish's own - DPn dorsal posterior nucleus (thalamus) - EOD electric organ discharge - ELL electrosensory lateral line lobe - JAR jamming avoidance response - LMR lateral mesencephalic reticular formation - nE nucleus electrosensorius - nEb nucleus electrosensorius, beat-related area - nE nucleus electrosensorius, area causing rise of EOD frequency - nE nucleus electrosensorius, area causing fall of EOD frequency - nEar nucleus electrosensorius-acusticolateralis area - NPd nucleus praeeminentialis, pars dorsalis - PPn prepacemaker nucleus - PT pretectal nucleus - SE nucleus subelectrosensorius - TeO optic tectum - TSd dorsal (electrosensory) torus semicircularis - TSv ventral (mechano-sensory and auditory) torus semicircularis  相似文献   

14.
Summary Gnathonemus petersii discriminates between ohmic and capacitive objects. To investigate the sensory basis of this discrimination we recorded from primary afférents that innervate either A or B mormyromast sensory cells. Modified and natural electric organ discharges were used as stimuli. In both A and B fibres frequencies below the peak-power frequency (3.8 to 4.5 kHz) of the electric organ discharge caused minimal first-spike latencies and a maximum number of spikes. A fibres did not discriminate phase-shifted stimuli, whereas B fibres responded significantly with a decrease in first-spike latency if the phase shift was only — 1°. In both A and B fibres an amplitude increase caused a decrease in spike latency and an increase in spike number; an amplitude decrease had the reverse effect. If stimulated with quasi-natural electric organ discharges distorted by capacitive objects, the responses of A fibres decreased with increasing signal distortion. In contrast, the responses of B fibres increased until amplitude effects began to dominate. Gnathonemus may use the physiological differences between A and B fibres to detect and discriminate between capacitive and purely ohmic objects.Abbreviations ELL electrosensory lateral line lobe - EOD electric organ discharge - LFS local filtered signal - p-p peak-to-peak  相似文献   

15.
Summary Brain regions participating in the control ofEigenmannia's electric organ discharge frequency were localized by electrical microstimulation and anatomically identified by means of horseradish peroxidase deposition. A diencephalic region was found which, when stimulated, caused electric organ discharge (EOD) frequency increases of similar magnitude and time course as the frequency increases seen during the jamming avoidance response. Single unit recordings from this region revealed one cell type which preferentially responded to stimuli that cause the acceleration phase of the jamming avoidance response (electric organ discharge frequency increase). A second cell type responded preferentially to stimuli which cause EOD frequency decrease, and both cell types were tuned to stimuli which evoked maximal jamming avoidance behaviors.The results of the horseradish peroxidase experiments showed that the recording and stimulation sites correspond to the previously described nucleus electrosensorius. Our results confirm the earlier finding that this nucleus receives output from the torus semicircularis and we also found that the N. electrosensorius projects to the mesencephalic prepacemaker nucleus. The prepacemaker projects to the medullary pacemaker nucleus which generates the commands that evoke electric organ discharges.The anatomical and physiological results described here establish this diencephalic region as a link between the major sensory processing region for the jamming avoidance response, the torus semicircularis, and a mesencephalic pre-motor region, the prepacemaker nucleus.Abbreviations AM amplitude modulation - DF Delta F - ELLL electrosensory lateral line lobe - EOD electric organ discharge - JAR jamming avoidance response - NE nucleus electrosensorius - PPN prepacemaker nucleus - PN pacemaker nucleus  相似文献   

16.
Summary The electric organ of a fish represents an internal current source, and the largely isopotential nature of the body interior warrants that the current associated with the fish's electric organ discharges (EODs) recruits all electroreceptors on the fish's body surface evenly. Currents associated with the EODs of a neighbor, however, will not penetrate all portions of the fish's body surface equally and will barely affect regions where the neighbor's current flows tangentially to the skin surface. The computational mechanisms of the jamming avoidance response (JAR) in Eigenmannia exploit the uneven effects of a neighbor's EOD current to calculate the correct frequency difference between the two interfering EOD signals even if the amplitude of a neighbor's signal surpasses that of the fish's own signal by orders of magnitude. The particular geometry of the fish's own EOD current thus yields some immunity against the potentially confusing effects of unusually strong interfering EOD currents of neighbors.Abbreviations DF frequency difference - ELL electrosensory lateral line lobe - EOD electric organ discharge - JAR jamming avoidance response  相似文献   

17.
The two closely related gymnotiform fishes, Apteronotus and Eigenmannia, share many similar communication and electrolocation behaviors that require modulation of the frequency of their electric organ discharges. The premotor linkages between their electrosensory system and their medullary pacemaker nucleus, which controls the repetition rate of their electric organ discharges, appear to function differently, however. In the context of the jamming avoidance response, Eigenmannia can raise or lower its electric organ discharge frequency from its resting level. A normally quiescent input from the diencephalic prepacemaker nucleus can be recruited to raise the electric organ discharge frequency above the resting level. Another normally active input, from the sublemniscal prepacemaker nucleus, can be inhibited to lower the electric organ discharge frequency below the resting level (Metzner 1993). In contrast, during a jamming avoidance response, Apteronotus cannot lower its electric organ discharge frequency below the resting level. The sublemniscal prepacemaker is normally completely inhibited and release of this inhibition allows the electric organ discharge frequency to rise during the jamming avoidance response. Further inhibition of this nucleus cannot lower the electric organ discharge frequency below the resting level. Lesions of the diencephalic prepacemaker do not affect performance of the jamming avoidance response. Thus, in Apteronotus, the sublemniscal prepacemaker alone controls the change of the electric organ discharge frequency during the jamming avoidance response.  相似文献   

18.
Summary An in vitro brain slice preparation of the electrosensory lateral line lobe (ELL) of weakly electric fish was developed. The morphology of this slice was studied and revealed that most ELL neurons and synapses retained their normal appearance for at least 10 h in vitro. The electrophysiological characteristics of the main ELL output neurons, the pyramidal cells, were measured. Extracellular electrode recordings demonstrated that pyramidal cells are capable of spontaneous, rhythmic spike activity. Intracellular recordings showed that intrinsic oscillations in membrane potential underlie the bursting behavior. The majority of pyramidal cells respond to depolarizing current pulses with an initial lag in spike firing followed by a non-accommodating, higher frequency spike train.Time and voltage-dependent properties of pyramidal cell responsiveness, as well as the effects of pharmacological blocking agents indicated that rhythmic activity and repetitive firing are dominated by a persistent, subthreshold sodium conductance (gNa) which activates at depolarized levels and is the driving force behind the membrane potential oscillations and the sustained (non-accommodating) spike firing. In addition, a transient, outward potassium conductance (gA) is responsible for the lag in spike firing by acting as a brake during the initial 50–200 ms of a depolarizing stimulus.Calcium currents and calcium-dependent potassium conductance add to the interval between spontaneous bursts but appear insufficient for spike frequency accommodation.The in vitro behaviour of pyramidal cells differs substantially from the behaviour of the same cell type in vivo. These observations raise possibilities that intrinsic membrane properties together with local synaptic interactions may regulate pyramidal cell responsiveness.Abbreviations ACSF artificial cerebrospinal fluid - 4-AP 4-amino-pyridine - BP basilar pyramidal cell - DML dorsal molecular layer - EGTA ethyleneglycol-bis(B-aminoethylether)-N,Ntetraacetic acid - ELL electrosensory lateral line lobe - EOD electric organ discharge - EPSP excitatory postsynaptic potential - FPP fast prepotential - IPSP inhibitory postsynaptic potential - LF Lucifer Yellow - NBP non-basilar pyramidal cell - Rin input resistance - SP slow potential - TEA tetraethyl ammonium - tsf tractus stratum fibrosum - TTX tetrodotoxin - Vm membrane potential - VML ventral molecular layer  相似文献   

19.
Summary In the spiny eel, Macrognathus aculeatus, anterodorsal and (to a lesser degree) anteroventral lateralline nerves project massively to the granular layer of the valvula cerebelli, throughout its rostrocaudal extent. The posterior lateral-line nerve terminates in the corpus cerebelli. Thus, valvula and corpus cerebelli are supplied with mechanosensory input of different peripheral origins. An analysis of the taxonomic distribution of experimentally determined primary lateral-line input to the three parts of the teleostean cerebellum reveals that the eminentia granularis always receives such input, and that the corpus cerebelli is the recipient of primary lateral-line input in many teleosts. The valvula, however, receives primary lateral-line afferents in only two examined species. In M. aculeatus, the massive lateral-line input to the valvula probably originates in mechanoreceptors located in the elongated rostrum of the upper jaw, a characteristic feature of mastacembeloid fishes. This projection to the valvula may therefore represent a unique specialization that arose with the evolution of the peculiar rostrum.  相似文献   

20.
An African electric fish, Gymnarchus, and a South American electric fish, Eigenmannia, are believed to have evolved their electrosensory systems independently. Both fishes, nevertheless, gradually shift the frequency of electric organ discharge away when they encounter a neighbor of a similar discharge frequency. Computational algorithms employed by Gymnarchus for this jamming avoidance response have been identified in this study for comparison with those of extensively studied Eigenmannia.
  1. Gymnarchus determines whether it should raise or lower its discharge frequency based solely upon the signal mixture of its own reafferent and the exafferent signal from a neighbor, and does not internally refer to the pacemaker command signal which drives its own discharge.
  2. The signal mixture is analyzed in terms of the time courses of amplitude modulation and phase modulation at each area of the body surface.
  3. Phase of the signal mixture at each area is compared with that of another area for the detection of phase modulation.
  4. Unambiguous information necessary for the jamming avoidance response is extracted by integrating information from all body areas each of which yields ambiguous information.
  5. These computational features are identical to those of Eigenmannia, suggesting that the neural circuit for jamming avoidance responses may have evolved from preexisting mechanisms for electrolocation in both fishes.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号