首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arthromyces ramosus peroxidase (ARP) was successfully modified with a synthetic surfactant for one-electron oxidation reaction of a hydrophobic substrate in toluene. Although UV–visible absorption spectrum of surfactant–ARP complex in toluene showed slight red shift of Soret band compared to that in water, the complex can catalyze oxidation reaction of o-phenylenediamine (o-PDA) with hydrogen peroxide. It appeared that thermodynamic water activity in the reaction system has dominant effect on either the catalytic activity or the stability in the catalytic cycle. Steady-state kinetics under the optimal condition revealed that the specific constant (kcat/Km) of ARP complex for o-PDA was 2 orders of magnitude lower than that in aqueous media, while only 13-fold lower for hydrogen peroxide. The reduction of catalytic activity caused by altering the reaction media from water to toluene was found to be mainly due to the low specific constant of ARP complex for o-PDA rather than hydrogen peroxide.  相似文献   

2.
Hydrogen peroxide formed during the course of the copper(II)-catalysed oxidation of cysteamine with oxygen was continuously determined by a peroxidase (POD)-catalysed luminol chemiluminescence (CL) method. Horseradish peroxidase (HRP), lactoperoxidase (LPO) and Arthromyces ramosus peroxidase (ARP) were used as a CL catalyst. The respective PODs gave specific CL intensity-time profiles. HRP caused a CL delay, and ARP gave a time-response curve which followed the production rate of H2O2. LPO gave only a weak CL flash which decayed promptly. These differences of CL response curves could be explained in terms of the different reactivities of PODs for superoxide anion and the different formation rate of luminol radicals in the peroxidation of luminol catalysed by POD.  相似文献   

3.
Peroxidase (donor: H2O2 oxi-doreductase [EC 1.11.1.7]) was purified from the culture broth of the hyphomycete Arthromyces ramosus in the early log phase to show a single band on SDS-PAGE. The crystals of A. ramosus peroxidase (ARP) were formed by salting out with ammonium sulfate at room temperature and pH 7.5. The repeated seeding technique was employed to grow the crystals to the size large enough for X-ray diffraction study. The crystals were characterized as tetragonal, space group P42212, with unit cell dimensions of a = b = 74.5 Å, c = 117.6 Å. The asymmetric unit contains one molecule of peroxidase. They diffract X-rays to at least 2.0 Å resolution and are stable to X-rays. © 1993 Wiley-Liss, Inc.  相似文献   

4.
The thermodynamics of the one-electron reduction of the ferric heme in free and cyanide-bound Arthromyces ramosus peroxidase (ARP), a class II plant peroxidase, were determined through spectro-electrochemical experiments. The data were compared with those for class III horseradish peroxidase C (HRP) and its cyanide adduct, and were interpreted in terms of ligand binding features, electrostatic effects and solvent accessible surface area of the heme group and of catalytically relevant residues in the heme distal site. The values for free and cyanide-bound ARP (−0.183 and −0.390 V, respectively, at 25 °C and pH 7) are higher than those for HRP and HRP-CN. ARP features an enthalpic stabilization of the ferrous state and a remarkably negative reduction entropy, which are both unprecedented for heme peroxidases. Once the compensatory contributions of solvent reorganization are partitioned from the measured reduction enthalpy, the resulting protein-based value for ARP turns out to be less positive than that for HRP by +10 kJ mol−1. The smaller stabilization of the oxidized heme in ARP most probably results from the less pronounced anionic character of the proximal histidine, and the decreased polarity in the heme distal site as compared with HRP, as indicated by the X-ray structures. The surprisingly negative value for ARP is the result of peculiar reduction-induced solvent reorganization effects.  相似文献   

5.
Optimal conditions were found for the oxidation of luminol by hydrogen peroxide in the presence of peroxidase isolated from leaves of the African oil palm tree Elaeis guineensis (AOPTP). The pH range for maximal chemiluminescence intensity (8.3-8.6) is similar for AOPTP, horseradish, and Arthromyces ramosus peroxidases and slightly different from that for tobacco peroxidase (9.3). Increasing the buffer concentration decreases the chemiluminescence intensity. As in the case of other anionic peroxidases, the catalytic efficiency of AOPTP does not depend on the presence of enhancers (4-iodophenol and 4-hydroxycinnamic acid) in the reaction medium. The detectable limit of AOPTP assayed by luminol peroxidation is 2·10–12 M. The long-term chemiluminescence signal produced during AOPTP-dependent luminol peroxidation is a characteristic feature of the African oil palm enzyme. This feature in combination with its very high stability suggests that AOPTP will be a promising tool in analytical practice.  相似文献   

6.
Tryparedoxin peroxidase (TXNPx) of Trypanosomatidae is the terminal peroxidase of a complex redox cascade that detoxifies hydroperoxides by NADPH (Nogoceke et al., Biol. Chem. 378, 827-836, 1997). A gene putatively coding for a peroxiredoxin-type TXNPx was identified in L. donovani and expressed in Escherichia coli to yield an N-terminally His-tagged protein (LdH6TXNPx). LdH6TXNPx proved to be an active peroxidase with tryparedoxin (TXN) 1 and 2 of Crithidia fasciculata as cosubstrates. LdH6TXNPx efficiently reduces H2O2, is moderately active with t-butyl and cumene hydroperoxide, but only marginally with linoleic acid hydroperoxide and phosphatidyl choline hydroperoxide. The enzyme displays ping-pong kinetics with a kcat of 11.2 s−1 and limiting Km values for t-butyl hydroperoxide and CfTXN1 of 50 and 3.6 μM, respectively. Site-directed mutagenesis confirmed that C52 and C173, as in related peroxiredoxins, are involved in catalysis. Exchanges of R128 against D and T49 against S and V, supported by molecular modelling, further disclose that the SH group of C52 builds the center of a novel catalytic triad. By hydrogen bonding with the OH of T49 and by the positive charge of R128 the solvent-exposed thiol of C52 becomes deprotonated to react with ROOH. Molecular models of oxidized TXNPx show C52 disulfide-bridged with C173′ that can be attacked by C41 of TXN2. By homology, the deduced mechanism may apply to most peroxiredoxins and complements current views of peroxiredoxin catalysis.  相似文献   

7.
The reactions of the fungal enzymes Arthromyces ramosus peroxidase (ARP) and Phanerochaete chrysosporium lignin peroxidase (LiP) with hydrogen peroxide (H(2)O(2)) have been studied. Both enzymes exhibited catalase activity with hyperbolic H(2)O(2) concentration dependence (K(m) approximately 8-10 mm, k(cat) approximately 1-3 s(-1)). The catalase and peroxidase activities of LiP were inhibited within 10 min and those of ARP in 1 h. The inactivation constants were calculated using two independent methods; LiP, k(i) approximately 19 x 10(-3) s(-1); ARP, k(i) approximately 1.6 x 10(-3) s(-1). Compound III (oxyperoxidase) was detected as the majority species after the addition of H(2)O(2) to LiP or ARP, and its formation was accompanied by loss of enzyme activity. A reaction scheme is presented which rationalizes the turnover and inactivation of LiP and ARP with H(2)O(2). A similar model is applicable to horseradish peroxidase. The scheme links catalase and compound III forming catalytic pathways and inactivation at the level of the [compound I.H(2)O(2)] complex. Inactivation does not occur from compound III. All peroxidases studied to date are sensitive to inactivation by H(2)O(2), and it is suggested that the model will be generally applicable to peroxidases of the plant, fungal, and prokaryotic superfamily.  相似文献   

8.
Relation to Copper of N-1, a Nonobligate Bacterial Predator   总被引:4,自引:4,他引:0       下载免费PDF全文
Nonobligate bacterial predator strain N-1 was highly resistant to copper. In fact, it required more than minimal amounts of copper to initiate growth, but not for growth that followed growth initiation. Strain N-1 made a peptide growth initiation factor (GIF) to marshal copper from its environment for growth initiation. Production of this GIF occurred before the onset of growth initiation, but production was shut down if excess copper was present. At high copper levels, the time required for onset of growth initiation was directly related to the amount of copper that was present. At low copper levels, a similar graded response occurred for increments of added GIF. Agromyces ramosus is a predator in its own right, but it also is a prey species for strain N-1. A. ramosus was found to be very sensitive to copper and to the copper GIF produced by N-1. It is possible that the copper GIF is the means used by N-1 to kill A. ramosus.  相似文献   

9.
Summary Carbon and nitrogen sources were investigated for improving peroxidase production by Arthromyces ramosus, a hyperproducer of peroxidase. Glucose as carbon source and a mixture of yeast extract and polypeptone at the ratio of 3 to 5 as nitrogen source in a production medium were shown to give the highest peroxidase activity. During the culture amino acids such as alanine, arginine, methionine, leucine, tyrosine and tryptophan were depleted. Therefore, glucose supplemented nitrogen source fed-batch culture was carried out and a peroxidase activity of 73 U/ml was obtained. This activity was 1.7 times higher than that of glucose fed-batch culture. This indicates that an adequate nitrogen source supply during the culture is effective for improving the peroxidase production by A. ramosus.  相似文献   

10.
Interaction of Agromyces ramosus with Other Bacteria in Soil   总被引:3,自引:3,他引:0       下载免费PDF全文
Agromyces ramosus occurs in very high numbers in most soils and, based on studies of laboratory isolates, does not require host cells for growth. Nevertheless, it attacked and destroyed most of the gram-positive and gram-negative bacterial species tested as possible host organisms. A. ramosus also attacked and destroyed Saccharomyces cerevisiae. The possibility of attack on fungi was unclear. Among the bacteria serving as hosts were the important soil species Azotobacter vinelandii, Rhizobium leguminosarum, Rhizobium meliloti, and Agrobacterium tumefaciens. Dead cells were not attacked. A. vinelandii cysts were attacked but left unharmed. To some extent, A. vinelandii seemed to survive this attack by encysting. Attack by A. ramosus occurred in natural soil and over a broad range of nutritional levels in laboratory media. The attack did not seem to be a means for obtaining an increased supply of commonly available nutrients. Instead, it seemed to be a means of obtaining something produced, perhaps in small amounts, by a variety of organisms, but not by all organisms. Several types of culture filtrates were tested for activity. The filtrates neither stimulated nor inhibited the growth of A. ramosus or the host organisms. The availability of catalase activity in host organisms did not seem to be involved. It is not known whether the attack by Agromyces ramosus in soil can be manipulated to cause a decrease in numbers of Agrobacterium tumefaciens or other pathogens without simultaneously depressing the numbers of beneficial organisms in this habitat.  相似文献   

11.
Many known prokaryotic organisms depend on a single bifunctional enzyme, encoded by the RibC of RibF gene and named FAD synthetase (FADS), to convert Riboflavin (RF), first into FMN and then into FAD. The reaction occurs through the sequential action of two activities present on a single polypeptide chain where the N-terminus is responsible for the ATP:FMN adenylyltransferase (FMNAT) activity and the C-terminus for the ATP: riboflavin kinase (RFK) activity. Sequence and structural analysis suggest that T208, N210 and E268 at the C-terminus RFK module of Corynebacterium ammoniagenes FADS (CaFADS) might be key during RF phosphorylation. The effect of site-directed mutagenesis on the RFK activity, as well as on substrates and products binding, indicates that T208 and N210 provide the RFK active-site geometry for binding and catalysis, while E268 might be involved in the catalytic step as catalytic base. These data additionally suggest concerted conformational changes at the RFK module of CaFADS during its activity. Mutations at the RFK site also modulate the binding parameters at the FMNAT active site of CaFADS, altering the catalytic efficiency in the transformation of FMN into FAD. This observation supports the hypothesis that the hexameric assembly previously revealed by the crystal structure of CaFADS might play a functional role during catalysis.  相似文献   

12.
13.
We report the first characterization and classification of Orf13 (S. refuineus) as a heme-dependent peroxidase catalyzing the ortho-hydroxylation of L-tyrosine to L-DOPA. The putative tyrosine hydroxylase coded by orf13 of the anthramycin biosynthesis gene cluster has been expressed and purified. Heme b has been identified as the required cofactor for catalysis, and maximal L-tyrosine conversion to L-DOPA is observed in the presence of hydrogen peroxide. Preincubation of L-tyrosine with Orf13 prior to the addition of hydrogen peroxide is required for L-DOPA production. However, the enzyme becomes inactivated by hydrogen peroxide during catalysis. Steady-state kinetic analysis of L-tyrosine hydroxylation revealed similar catalytic efficiency for both L-tyrosine and hydrogen peroxide. Spectroscopic data from a reduced-CO(g) UV-vis spectrum of Orf13 and electron paramagnetic resonance of ferric heme Orf13 are consistent with heme peroxidases that have a histidyl-ligated heme iron. Contrary to the classical heme peroxidase oxidation reaction with hydrogen peroxide that produces coupled aromatic products such as o,o'-dityrosine, Orf13 is novel in its ability to catalyze aromatic amino acid hydroxylation with hydrogen peroxide, in the substrate addition order and for its substrate specificity for L-tyrosine. Peroxygenase activity of Orf13 for the ortho-hydroxylation of L-tyrosine to L-DOPA by a molecular oxygen dependent pathway in the presence of dihydroxyfumaric acid is also observed. This reaction behavior is consistent with peroxygenase activity reported with horseradish peroxidase for the hydroxylation of phenol. Overall, the putative function of Orf13 as a tyrosine hydroxylase has been confirmed and establishes the first bacterial class of tyrosine hydroxylases.  相似文献   

14.
Antioxidant defenses include a group of ubiquitous, non-heme peroxidases, designated the peroxiredoxins, which rely on an activated cysteine residue at their active site to catalyze the reduction of hydrogen peroxide, organic hydroperoxides, and peroxynitrite. In the typical 2-Cys peroxiredoxins, a second cysteinyl residue, termed the resolving cysteine, is also involved in intersubunit disulfide bond formation during the course of catalysis by these enzymes. Many bacteria also express a flavoprotein, AhpF, which acts as a dedicated disulfide reductase to recycle the bacterial peroxiredoxin, AhpC, during catalysis. Mechanistic and structural studies of these bacterial proteins have shed light on the linkage between redox state, oligomeric state, and peroxidase activity for the peroxiredoxins, and on the conformational changes accompanying catalysis by both proteins. In addition, these studies have highlighted the dual roles that the oxidized cysteinyl species, cysteine sulfenic acid, can play in eukaryotic peroxiredoxins, acting as a catalytic intermediate in the peroxidase activity, and as a redox sensor in regulating hydrogen peroxide-mediated cell signaling.  相似文献   

15.
Except for its redox properties, cytochrome c is an inert protein. However, dissociation of the bond between methionine-80 and the heme iron converts the cytochrome into a peroxidase. Dissociation is accomplished by subjecting the cytochrome to various conditions, including proteolysis and hydrogen peroxide (H2O2)-mediated oxidation. In affected cells of various neurological diseases, including Parkinson's disease, cytochrome c is released from the mitochondrial membrane and enters the cytosol. In the cytosol cytochrome c is exposed to cellular proteases and to H2O2 produced by dysfunctional mitochondria and activated microglial cells. These could promote the formation of the peroxidase form of cytochrome c. In this study we investigated the catalytic and cytolytic properties of the peroxidase form of cytochrome c. These properties are qualitatively similar to those of other heme-containing peroxidases. Dopamine as well as sulfhydryl group-containing metabolites, including reduced glutathione and coenzyme A, are readily oxidized in the presence of H2O2. This peroxidase also has cytolytic properties similar to myeloperoxidase, lactoperoxidase, and horseradish peroxidase. Cytolysis is inhibited by various reducing agents, including dopamine. Our data show that the peroxidase form of cytochrome c has catalytic and cytolytic properties that could account for at least some of the damage that leads to neuronal death in the parkinsonian brain.  相似文献   

16.
A battery of enzymes from the eukaryotic antioxidant defense system was measured in salivary gland and in whole body extract of fourth instar larvae of Chironomus ramosus with an objective of finding any clue for the dipteran insect's capacity to tolerate heavy doses of ionizing radiation. Levels of activity of antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), and glutathione peroxidase (GSH-Px) were quantified in 30 days old larvae exposed to LD20 dose of gamma radiation. Compared to controls, activity of Cu,Zn-SOD increased 3 to 4 fold and catalase 2 fold in response to ionizing radiation stress, while activities of GR and GSH-Px enzymes were decreased. Among the other SOD isoenzymes, our results showed comparable levels of Mn-SOD and Cu,Zn-SOD activity in control and irradiated groups of larvae. The increase in levels of the Cu,Zn-SOD isoenzyme was also confirmed by Western blot and zymography supported by densitometric quantification. No evidence of Fe-SOD was found in C. ramosus larvae. These findings could help to explain the persistence of natural populations of Chironomus in radioactively contaminated regions.  相似文献   

17.
Nitric oxide is a physiological substrate for mammalian peroxidases   总被引:24,自引:0,他引:24  
We now show that NO serves as a substrate for multiple members of the mammalian peroxidase superfamily under physiological conditions. Myeloperoxidase (MPO), eosinophil peroxidase, and lactoperoxidase all catalytically consumed NO in the presence of the co-substrate hydrogen peroxide (H(2)O(2)). Near identical rates of NO consumption by the peroxidases were observed in the presence versus absence of plasma levels of Cl(-). Although rates of NO consumption in buffer were accelerated in the presence of a superoxide-generating system, subsequent addition of catalytic levels of a model peroxidase, MPO, to NO-containing solutions resulted in the rapid acceleration of NO consumption. The interaction between NO and compounds I and II of MPO were further investigated during steady-state catalysis by stopped-flow kinetics. NO dramatically influenced the build-up, duration, and decay of steady-state levels of compound II, the rate-limiting intermediate in the classic peroxidase cycle, in both the presence and absence of Cl(-). Collectively, these results suggest that peroxidases may function as a catalytic sink for NO at sites of inflammation, influencing its bioavailability. They also support the potential existence of a complex and interdependent relationship between NO levels and the modulation of steady-state catalysis by peroxidases in vivo.  相似文献   

18.
The enzymes of hydrogen peroxide metabolism have been investigated in the cestodes H. diminuta and M. expansa. Neither catalase, lipoxygenase, glutathione peroxidase, NADH peroxidase nor NADPH peroxidase could be detected in homogenates of either species. However, both H. diminuta and M. expansa possessed a peroxidase which had a high affinity for reduced cytochrome c. The peroxidase was characterized by substrate and inhibitor studies and cell fractionation showed the enzyme to be located in the mitochondrial membrane fraction. The peroxidase could act as a substitute for catalase, by destroying metabolic hydrogen peroxide. Appreciable superoxide dismutase activity was found in M. expansa and H. diminuta and it is possible that this enzyme is the source of helminth hydrogen peroxide.  相似文献   

19.
In flowering plants, meiocytes develop from subepidermal cells in anthers and ovules. The mechanisms that integrate gene-regulatory processes with meiotic programs during reproductive development remain poorly characterized. Here, we show that Arabidopsis thaliana plants deficient in ACTIN-RELATED PROTEIN6 (ARP6), a subunit of the SWR1 ATP-dependent chromatin-remodeling complex, exhibit defects in prophase I of female meiosis. We found that this meiotic defect is likely due to dysregulated expression of meiotic genes, particularly those involved in meiotic recombination, including DMC1 (DISRUPTED MEIOTIC cDNA1). Analysis of DMC1 expression in arp6 mutant plants indicated that ARP6 inhibits expression of DMC1 in the megasporocyte and surrounding nonsporogeneous ovule cells before meiosis. After cells enter meiosis, however, ARP6 activates DMC1 expression specifically in the megasporocyte even as it continues to inhibit DMC1 expression in the nonsporogenous ovule cells. We further show that deposition of the histone variant H2A.Z, mediated by the SWR1 chromatin-remodeling complex at the DMC1 gene body, requires ARP6. Therefore, ARP6 regulates female meiosis by determining the spatial and temporal patterns of gene expression required for proper meiosis during ovule development.  相似文献   

20.
The catalytic mechanism of Pseudomonas cytochrome c peroxidase   总被引:1,自引:0,他引:1  
The catalytic mechanism of Pseudomonas cytochrome c peroxidase has been studied using rapid-scan spectrometry and stopped-flow measurements. The reaction of the totally ferric form of the enzyme with H2O2 was slow and the complex formed was inactive in the peroxidatic cycle, whereas partially reduced enzyme formed highly reactive intermediates with hydrogen peroxide. Rapid-scan spectrometry revealed two different spectral forms, one assignable to Compound I and the other to Compound II as found in the reaction cycle of other peroxidases. The formation of Compound I was rapid approaching that of diffusion control. The stoichiometry of the peroxidation reaction, deduced from the formation of oxidized electron donor, indicates that both the reduction of Compound I to Compound II and the conversion of Compound II to resting (partially reduced) enzyme are one-electron steps. It is concluded that the reaction mechanism generally accepted for peroxidases is applicable also to Pseudomonas cytochrome c peroxidase, the intramolecular source of one electron in Compound I formation, however, being reduced heme c.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号