首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
N-1-naphthylphthalamic acid (NPA), an auxin transport inhibitor, was found to bind specifically to a crude membrane preparation from sugar beet seedling leaf cell suspension cultures. The dissociation constant (Kd) and binding protein concentration were found to be 1.71 mol dm–3 and 220 pmol g–1(membrane protein), respectively. The amount of specific 3H-NPA binding was significantly increased by adding Mg2+ATP to the binding assay solution. Treatment of membrane preparations with acid phosphatase, prior to the NPA binding assay, resulted in lower specific binding. ATP activation and phosphatase inactivation were culture stage dependent. Although a considerable effect could be detected when using cells from day 8 (representing the linear phase), the same treatment did not alter the binding if cells from day 1 (representing lag phase) or day 14 (representing the stationary phase) were used. These observations have strongly highlighted the possible involvement of a phosphorylation and dephosphorylation mechanism in vivo in the regulation of the activity of the NPA binding protein. High phosphatase activity was found in the supernatant, but not in the membrane pellet) after 50 000 g centrifugation. Our present study has indicated that receptor activity could be regulated by a phosphorylation and dephosphorylation mechanism in plants.  相似文献   

2.
A method was developed for evaluating the empirical alterationof xylem vessel differentiation in the central leaf trace ofPopulus deltoides, a species that exhibits helical phyllotaxis.Effects of experimental treatments for a period of six plastochronswere evaluated by vessel parameter ratios = 2.PT/ (PT+1 + PT–1),where P was either vessel number or mean transverse vessel areameasured at mid-intern ode at Leaf Plastochron Indices of T– 1, T, and T + 1. Excising leaf laminae reduced vesselnumber and mean vessel area in the associated central leaf traceby 50% and 70%, respectively, compared to unexcised laminaecontrols. Replacing excised laminae with a concentration seriesof exogenous indoleacetic acid (IAA) resulted in a 5% increaseper log mol m–3 of IAA in the number of vessels differentiatingin the associated central leaf traces compared to excised controls.Mean vessel areas within these leaf traces were 50% of thoseof intact leaf traces. No significant effects of different concentrationsof exogenously applied IAA on mean vessel area could be demonstrated.A lanolin paste ring of N-1 -naphthylphthalamic acid (NPA),an auxin transport inhibitor, around the petioles of intactleaves reduced the number of differentiating vessels by 7% andmean vessel area by 29% per log mol m–3 of NPA comparedto central leaf traces of leaves ringed with plain lanolin paste.The results suggest that NPA treatments may be used to distinguishexperimentally, at least in part, the cell division from thecell enlargement phases of primary xylogenesis within centralleaf traces of P. deltoides stems. Key words: Auxin transport, Vessel area, Vessel number  相似文献   

3.
The rise in alternative respiratory capacity upon aging of potato (Solanum tuberosum) tuber slices is correlated with changes in mitochondrial membrane protein composition and a requirement for cytoplasmic protein synthesis. However, the lack of an antibody specific to the alternative oxidase has, until recently, prevented examination of the alternative oxidase protein(s) itself. We have employed a monoclonal antibody raised against the Sauromatum guttatum alternative oxidase to investigate developmental changes in the alternative pathway of aging potato slice mitochondria and to characterize the potato alternative oxidase by one- and two-dimensional gel electrophoresis. The relative levels of a 36 kilodalton protein parallel the rise in alternative path capacity. A plausible interpretation is that this alternative oxidase protein is synthesized de novo during aging of potato slices.  相似文献   

4.
5.
6.
When treated with blue light, intact cells of Euglena gracilis Klebs var. bacillaris Cori, bleached strain W3BUL, show a series of positive peaks at 384, 411, and 440 nm in the blue-light-minus-dark difference spectrum; bleached strain 1224-5/24 shows a series of positive peaks at 386, 417, and 448 nm under the same conditions. The same changes are observed in a 27,000xg supernatant from darkgrown W3. The absorption change appears to be a consequence of shifts in the absorption of carotenoids; it is not seen in cells of W3BUL grown on SAN 9789 (4-chloro-5-(methylamino)-2-(,, -trifluoro-m-tolyl)-3(2H)pyridazinone) to deplete the carotenoids or in cells of W10BSmL, a mutant lacking carotenoids. Inhibitors of flavin-mediated reactions, reductants and valinomycin had no effect on the activity of the system. The activity in the 27,000xg supernatant was associated with material of a molecular weight more than 2.5×106 and was insensitive to heating for 2 min at 100° C but was reduced or eliminated on longer heat treatment or addition of Triton X-100, indicating a possible association with membrane material. Photoactivity is enriched in the lower density fractions of a flotation gradient, and correlates with the -carotene content in all fractions. Similar spectral changes can be obtained by comparing the iodine catalyzed cis-to-trans isomerization of -carotene in a CS2-CHCl3 solvent. The action spectrum for the absorbance change shows effectiveness peaks in the 370–390 and 420–448-nm regions, with no marked effectiveness past 500 nm. Thus the photosensitizer may not be a carotenoid (at least not a normally-occurring C40 carotenoid). These blue-lightinduced absorption changes and their action spectra are discussed in relation to such blue-light-mediated responses as carotenogenesis, chloroplast development and phototaxis.Abraham and Etta Goodman Professor of Biology, to whom reprint requests should be directed  相似文献   

7.
Suttle JC 《Plant physiology》1997,113(2):519-525
An endogenous inhibitor of the in vitro binding of the phytotropin N-1-naphthylphthalamic acid to microsomal membranes was detected in extracts prepared from etiolated pea (Pisum sativum L.) epicotyls. Following extensive purification, the inhibitor was identified as linoleic acid. Authentic linoleic acid inhibited N-1-naphthylphthalamic acid binding noncompetitively in a dose-dependent manner, exhibiting a 50% inhibitory concentration of approximately 24 ([mu]M. Using a variety of fatty acids and their derivatives, this inhibition was found to exhibit strict structural requirements, with both linoleic and linolenic acids being the most inhibitory. A variety of membrane-solubilizing detergents elicited no such inhibitory activity when tested at equivalent concentrations. The possible physiological significance of this interaction is discussed and it is proposed that linoleic acid serves as an intracellular modulator of phytotropin binding and therefore polar auxin transport.  相似文献   

8.
Polar transport of the plant hormone auxin is blocked by substances such as N-1-naphthylphthalamic acid (NPA), which inhibit auxin efflux and block polar auxin transport. To understand how auxin transport is regulated in vivo, it is necessary to discern whether auxin transport inhibitors act at the intra- or extracellular side of the plasma membrane. Populations of predominantly in-side-in plasma membrane vesicles were subjected to treatments that reverse the orientation. These treatments, which included osmotic shock, cycles of freezing and thawing, and incubation with 0.05% Brij-58, all increased NPA-binding activity and the accessibility of the binding protein to protease digestion. Marker activities for inside-out vesicles also increased, indicating that these treatments act by altering the membrane orientation. Finally, binding data were analyzed by multiple analyses and indicated that neither the affinity nor abundance of binding sites changed. Kinetic analyses indicated that the change in NPA-binding activity by Brij-58 treatment was due to an increase in the initial rates of both association and dissociation of this ligand. These experiments indicated that the NPA-binding site is on the cytoplasmic face of the plasma membrane in zucchini (Cucurbita pepo L. cv Burpee Fordhook).  相似文献   

9.
The Saccharomyces cerevisiae SCS2 gene has been cloned as a suppressor of inositol auxotrophy of CSE1 and hac1/ire15 mutants (J. Nikawa, A. Murakami, E. Esumi, and K. Hosaka, J. Biochem. 118:39–45, 1995) and has homology with a synaptobrevin/VAMP-associated protein, VAP-33, cloned from Aplysia californica (P. A. Skehel, K. C. Martin, E. R. Kandel, and D. Bartsch, Science 269:1580–1583, 1995). In this study we have characterized an SCS2 gene product (Scs2p). The product has a molecular mass of 35 kDa and is C-terminally anchored to the endoplasmic reticulum, with the bulk of the protein located in the cytosol. The disruption of the SCS2 gene causes yeast cells to exhibit inositol auxotrophy at temperatures of above 34°C. Genetic studies reveal that the overexpression of the INO1 gene rescues the inositol auxotrophy of the SCS2 disruption strain. The significant primary structural feature of Scs2p is that the protein contains the 16-amino-acid sequence conserved in yeast and mammalian cells. The sequence is required for normal Scs2p function, because a mutant Scs2p that lacks the sequence does not complement the inositol auxotrophy of the SCS2 disruption strain. Therefore, the Scs2p function might be conserved among eukaryotic cells.  相似文献   

10.
11.
The inner nuclear membrane (INM) protein Nemp1/TMEM194A has previously been suggested to be involved in eye development in Xenopus, and contains two evolutionarily conserved sequences in the transmembrane domains (TMs) and the C-terminal region, named region A and region B, respectively. To elucidate the molecular nature of Nemp1, we analyzed its interacting proteins through those conserved regions. First, we found that Nemp1 interacts with itself and lamin through the TMs and region A, respectively. Colocalization of Nemp1 and lamin at the INM suggests that the interaction with lamin participates in the INM localization of Nemp1. Secondly, through yeast two-hybrid screening using region B as bait, we identified the small GTPase Ran as a probable Nemp1-binding partner. GST pulldown and co-immunoprecipitation assays using region B and Ran mutants revealed that region B binds directly to the GTP-bound Ran through its effector domain. Immunostaining experiments using transfected COS-7 cells revealed that full-length Nemp1 recruits Ran near the nuclear envelope, suggesting a role for Nemp1 in the accumulation of RanGTP at the nuclear periphery. At the neurula-to-tailbud stages of Xenopus embryos, nemp1 expression overlapped with ran in several regions including the eye vesicles. Co-knockdown using antisense morpholino oligos for nemp1 and ran caused reduction of cell densities and severe eye defects more strongly than either single knockdown alone, suggesting their functional interaction. Finally we show that Arabidopsis thaliana Nemp1-orthologous proteins interact with A. thaliana Ran, suggesting their evolutionally conserved physical and functional interactions possibly in basic cellular functions including nuclear transportation. Taken together, we conclude that Nemp1 represents a new type of RanGTP-binding protein.  相似文献   

12.
A high-molecular-weight c-type cytochrome, Cyc2, and a putative 22-kDa c-type cytochrome were detected in the membrane fraction released during spheroplast formation from Acidithiobacillus ferrooxidans. This fraction was enriched in outer membrane components and devoid of cytoplasmic membrane markers. The genetics, as well as the subcellular localization of Cyc2 at the outer membrane level, therefore make it a prime candidate for the initial electron acceptor in the respiratory pathway between ferrous iron and oxygen.  相似文献   

13.
The in vitro reassembled species of OmpF porin, which was renatured from its denatured monomer using n-octyl-β-D-glucopyranoside, was characterized by low-angle laser light scattering photometry, circular dichroism spectroscopy and synchrotron radiation small-angle X-ray scattering measurements. The light scattering measurement reconfirmed that the reassembled species was the dimer of the protein. Circular dichroism spectra of the reassembled dimer showed a native-like β-structure. A small-angle X-ray scattering measurement indicated that the size of the reassembled dimer was nearly equal to that of the native trimer under the present experimental conditions. In a thermal denaturation experiment followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the reassembled dimer was less stable than the native trimer.  相似文献   

14.
15.
K Wu  D Orozco  P Hearing 《Journal of virology》2012,86(19):10474-10483
A variety of cellular and viral processes are coordinately regulated during adenovirus (Ad) infection to achieve optimal virus production. The Ad late gene product L4-22K has been associated with disparate activities during infection, including the regulation of late gene expression, viral DNA packaging, and infectious virus production. We generated and characterized two L4-22K mutant viruses to further explore L4-22K functions during viral infection. Our results show that L4-22K is indeed important for temporal control of viral gene expression not only because it activates late gene expression but also because it suppresses early gene expression. We also show that the L4-22K protein binds to viral packaging sequences in vivo and is essential to recruit two other packaging proteins, IVa2 and L1-52/55K, to this region. The elimination of L4-22K gave rise to the production of only empty virus capsids and not mature virions, which confirms that the L4-22K protein is required for Ad genome packaging. Finally, L4-22K contributes to adenovirus-induced cell death by regulating the expression of the adenovirus death protein. Thus, the adenovirus L4-22K protein is multifunctional and an integral component of crucial aspects of infection.  相似文献   

16.
The MAL proteolipid is a nonglycosylated integral membrane protein found in glycolipid-enriched membrane microdomains. In polarized epithelial Madin-Darby canine kidney cells, MAL is necessary for normal apical transport and accurate sorting of the influenza virus hemagglutinin. MAL is thus part of the integral machinery for glycolipid-enriched membrane-mediated apical transport. At steady state, MAL is predominantly located in perinuclear vesicles that probably arise from the trans-Golgi network (TGN). To act on membrane traffic and to prevent their accumulation in the target compartment, integral membrane elements of the protein-sorting machinery should be itinerant proteins that cycle between the donor and target compartments. To establish whether MAL is an itinerant protein, we engineered the last extracellular loop of MAL by insertion of sequences containing the FLAG epitope or with sequences containing residues that became O-glycosylated within the cells or that displayed biotinylatable groups. The ectopic expression of these modified MAL proteins allowed us to investigate the surface expression of MAL and its movement through different compartments after internalization with the use of a combination of assays, including surface biotinylation, surface binding of anti-FLAG antibodies, neuraminidase sensitivity, and drug treatments. Immunofluorescence and flow cytometric analyses indicated that, in addition to its Golgi localization, MAL was also expressed on the cell surface, from which it was rapidly internalized. This retrieval implies transport through the endosomal pathway and requires endosomal acidification, because it can be inhibited by drugs such as chloroquine, monensin, and NH(4)Cl. Resialylation experiments of surface MAL treated with neuraminidase indicated that approximately 30% of the internalized MAL molecules were delivered to the TGN, probably to start a new cycle of cargo transport. Together, these observations suggest that, as predicted for integral membrane members of the late protein transport machinery, MAL is an itinerant protein cycling between the TGN and the plasma membrane.  相似文献   

17.
Highlights? Ensconsin is required for cargo transport driven by kinesin-1 ? The C terminus of ensconsin activates kinesin-1; its N terminus binds microtubules ? Kinesin-1 mutants without autoinhibitory activity do not require ensconsin  相似文献   

18.
Abstract Bovine adrenal chromaffin cells were maintained in culture in Dulbecco's modified Eagle's medium containing 20% foetal calf serum and 10 units per ml of Nerve Growth Factor. Under these conditions, chromaffin cells developed up to five neurites per cell. The neurites showed lateral branches and varicosities along their trunk which ended with thick growth cone-like structures. Cultures of chromaffin cells were stained by indirect immunofluorescence with antibodies against (a) chromogranin A to follow the distribution of chromaffin granules, the catecholamine-storing organelles, and (b) tubulin, to study the microtubular system during outgrowth of neurites. Chromogranin A antibodies showed a very intensely staining punctate pattern, not randomly distributed but localized in neurites. Chromaffin granules were found to migrate from the cell body to reach neurite endings where they were densely packed. Intense staining was also observed in varicosities; a linear arrangement of granules was evident along neurite trunks. Tubulin antibodies decorated a complex network, clearly visible at the cell periphery and also in the growth cone-like structures, in the palm region of the growth cone. Colchicine treatment effected retraction of neurites and disappearance of organized microtubule networks; chromaffin granules were found in the perinuclear region of the cell. Some tubulin (0.2% of total membrane proteins) was found in the purified chromaffin granule membrane preparation; however, this tubulin is probably associated with contaminating plasma membranes. By the criteria of morphology and staining with antitubulin antibodies, adult bovine chromaffin cells in culture display characteristics similar to those of sympathetic neurones. In addition, they showed an exaggerated transport of granules. Adult bovine chromaffin cells in culture offer an excellent model for studying the role of microtubules and the contractile apparatus in relation to cell morphological changes and neurosecretion.  相似文献   

19.
The factors controlling the stability, folding, and dynamics of integral membrane proteins are not fully understood. The high stability of the membrane protein bacteriorhodopsin (bR), an archetypal member of the rhodopsin photoreceptor family, has been ascribed to its covalently bound retinal cofactor. We investigate here the role of this cofactor in the thermodynamic stability and folding kinetics of bR. Multiple spectroscopic probes were used to determine the kinetics and energetics of protein folding in mixed lipid/detergent micelles in the presence and absence of retinal. The presence of retinal increases extrapolated values for the overall unfolding free energy from 6.3 ± 0.4 kcal mol− 1 to 23.4 ± 1.5 kcal mol− 1 at zero denaturant, suggesting that the cofactor contributes 17.1 kcal mol− 1 towards the overall stability of bR. In addition, the cooperativity of equilibrium unfolding curves is markedly reduced in the absence of retinal with overall m-values decreasing from 31.0 ± 2.0 kcal mol− 1 to 10.9 ± 1.0 kcal mol− 1, indicating that the folded state of the apoprotein is less compact than the equivalent for the holoprotein. This change in the denaturant response means that the difference in the unfolding free energy at a denaturant concentration midway between the two unfolding curves is only ca 3-6 kcal mol− 1. Kinetic data show that the decrease in stability upon removal of retinal is associated with an increase in the apparent intrinsic rate constant of unfolding, kuH2O, from ~1 × 10− 16 s− 1 to ~1 × 10− 4 s− 1 at 25 °C. This correlates with a decrease in the unfolding activation energy by 16.3 kcal mol− 1 in the apoprotein, extrapolated to zero SDS. These results suggest that changes in bR stability induced by retinal binding are mediated solely by changes in the activation barrier for unfolding. The results are consistent with a model in which bR is kinetically stabilized via a very slow rate of unfolding arising from protein-retinal interactions that increase the rigidity and compactness of the polypeptide chain.  相似文献   

20.
An intracellular multiplication F (IcmF) family protein is a conserved component of a newly identified type VI secretion system (T6SS) encoded in many animal and plant-associated Proteobacteria. We have previously identified ImpLM, an IcmF family protein that is required for the secretion of the T6SS substrate hemolysin-coregulated protein (Hcp) from the plant-pathogenic bacterium Agrobacterium tumefaciens. In this study, we characterized the topology of ImpLM and the importance of its nucleotide-binding Walker A motif involved in Hcp secretion from A. tumefaciens. A combination of β-lactamase-green fluorescent protein fusion and biochemical fractionation analyses revealed that ImpLM is an integral polytopic inner membrane protein comprising three transmembrane domains bordered by an N-terminal domain facing the cytoplasm and a C-terminal domain exposed to the periplasm. impLM mutants with substitutions or deletions in the Walker A motif failed to complement the impLM deletion mutant for Hcp secretion, which provided evidence that ImpLM may bind and/or hydrolyze nucleoside triphosphates to mediate T6SS machine assembly and/or substrate secretion. Protein-protein interaction and protein stability analyses indicated that there is a physical interaction between ImpLM and another essential T6SS component, ImpKL. Topology and biochemical fractionation analyses suggested that ImpKL is an integral bitopic inner membrane protein with an N-terminal domain facing the cytoplasm and a C-terminal OmpA-like domain exposed to the periplasm. Further comprehensive yeast two-hybrid assays dissecting ImpLM-ImpKL interaction domains suggested that ImpLM interacts with ImpKL via the N-terminal cytoplasmic domains of the proteins. In conclusion, ImpLM interacts with ImpKL, and its Walker A motif is required for its function in mediation of Hcp secretion from A. tumefaciens.Many pathogenic gram-negative bacteria employ protein secretion systems formed by macromolecular complexes to deliver proteins or protein-DNA complexes across the bacterial membrane. In addition to the general secretory (Sec) pathway (18, 52) and twin-arginine translocation (Tat) pathway (7, 34), which transport proteins across the inner membrane into the periplasm, at least six distinct protein secretion systems occur in gram-negative bacteria (28, 46, 66). These systems are able to secrete proteins from the cytoplasm or periplasm to the external environment or the host cell and include the well-documented type I to type V secretion systems (T1SS to T5SS) (10, 15, 23, 26, 30) and a recently discovered type VI secretion system (T6SS) (4, 8, 22, 41, 48, 49). These systems use ATPase or a proton motive force to energize assembly of the protein secretion machinery and/or substrate translocation (2, 6, 41, 44, 60).Agrobacterium tumefaciens is a soilborne pathogenic gram-negative bacterium that causes crown gall disease in a wide range of plants. Using an archetypal T4SS (9), A. tumefaciens translocates oncogenic transferred DNA and effector proteins to the host and ultimately integrates transferred DNA into the host genome. Because of its unique interkingdom DNA transfer, this bacterium has been extensively studied and used to transform foreign DNA into plants and fungi (11, 24, 40, 67). In addition to the T4SS, A. tumefaciens encodes several other secretion systems, including the Sec pathway, the Tat pathway, T1SS, T5SS, and the recently identified T6SS (72). T6SS is highly conserved and widely distributed in animal- and plant-associated Proteobacteria and plays an important role in the virulence of several human and animal pathogens (14, 19, 41, 48, 56, 63, 74). However, T6SS seems to play only a minor role or even a negative role in infection or virulence of the plant-associated pathogens or symbionts studied to date (5, 37-39, 72).T6SS was initially designated IAHP (IcmF-associated homologous protein) clusters (13). Before T6SS was documented by Pukatzki et al. in Vibrio cholerae (48), mutations in this gene cluster in the plant symbiont Rhizobium leguminosarum (5) and the fish pathogen Edwardsiella tarda (51) caused defects in protein secretion. In V. cholerae, T6SS was responsible for the loss of cytotoxicity for amoebae and for secretion of two proteins lacking a signal peptide, hemolysin-coregulated protein (Hcp) and valine-glycine repeat protein (VgrG). Secretion of Hcp is the hallmark of T6SS. Interestingly, mutation of hcp blocks the secretion of VgrG proteins (VgrG-1, VgrG-2, and VgrG-3), and, conversely, vgrG-1 and vgrG-2 are both required for secretion of the Hcp and VgrG proteins from V. cholerae (47, 48). Similarly, a requirement of Hcp for VgrG secretion and a requirement of VgrG for Hcp secretion have also been shown for E. tarda (74). Because Hcp forms a hexameric ring (41) stacked in a tube-like structure in vitro (3, 35) and VgrG has a predicted trimeric phage tail spike-like structure similar to that of the T4 phage gp5-gp27 complex (47), Hcp and VgrG have been postulated to form an extracellular translocon. This model is further supported by two recent crystallography studies showing that Hcp, VgrG, and a T4 phage gp25-like protein resembled membrane penetration tails of bacteriophages (35, 45).Little is known about the topology and structure of T6SS machinery subunits and the distinction between genes encoding machinery subunits and genes encoding regulatory proteins. Posttranslational regulation via the phosphorylation of Fha1 by a serine-threonine kinase (PpkA) is required for Hcp secretion from Pseudomonas aeruginosa (42). Genetic evidence for P. aeruginosa suggested that the T6SS may utilize a ClpV-like AAA+ ATPase to provide the energy for machinery assembly or substrate translocation (41). A recent study of V. cholerae suggested that ClpV ATPase activity is responsible for remodeling the VipA/VipB tubules which are crucial for type VI substrate secretion (6). An outer membrane lipoprotein, SciN, is an essential T6SS component for mediating Hcp secretion from enteroaggregative Escherichia coli (1). A systematic study of the T6SS machinery in E. tarda revealed that 13 of 16 genes in the evp gene cluster are essential for secretion of T6S substrates (74), which suggests the core components of the T6SS. Interestingly, most of the core components conserved in T6SS are predicted soluble proteins without recognizable signal peptide and transmembrane (TM) domains.The intracellular multiplication F (IcmF) and H (IcmH) proteins are among the few core components with obvious TM domains (8). In Legionella pneumophila Dot/Icm T4SSb, IcmF and IcmH are both membrane localized and partially required for L. pneumophila replication in macrophages (58, 70, 75). IcmF and IcmH are thought to interact with each other in stabilizing the T4SS complex in L. pneumophila (58). In T6SS, IcmF is one of the essential components required for secretion of Hcp from several animal pathogens, including V. cholerae (48), Aeromonas hydrophila (63), E. tarda (74), and P. aeruginosa (41), as well as the plant pathogens A. tumefaciens (72) and Pectobacterium atrosepticum (39). In E. tarda, IcmF (EvpO) interacted with IcmH (EvpN), EvpL, and EvpA in a yeast two-hybrid assay, and its putative nucleotide-binding site (Walker A motif) was not essential for secretion of T6SS substrates (74).In this study, we characterized the topology and interactions of the IcmF and IcmH family proteins ImpLM and ImpKL, which are two essential components of the T6SS of A. tumefaciens. We adapted the nomenclature proposed by Cascales (8), using the annotated gene designation followed by the letter indicated by Shalom et al. (59). Our data indicate that ImpLM and ImpKL are both integral inner membrane proteins and interact with each other via their N-terminal domains residing in the cytoplasm. We also provide genetic evidence showing that ImpLM may function as a nucleoside triphosphate (NTP)-binding protein or nucleoside triphosphatase to mediate T6S machinery assembly and/or substrate secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号